JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure.
Nanotechnology
PUBLISHED: 10-30-2014
Show Abstract
Hide Abstract
The passage of an electric current through graphite or few-layer graphene can result in a striking structural transformation, but there is disagreement about the precise nature of this process. Some workers have interpreted the phenomenon in terms of the sublimation and edge reconstruction of essentially flat graphitic structures. An alternative explanation is that the transformation actually involves a change from a flat to a three-dimensional structure. Here we describe detailed studies of carbon produced by the passage of a current through graphite which provide strong evidence that the transformed carbon is indeed three-dimensional. The evidence comes primarily from images obtained in the scanning transmission electron microscope using the technique of high-angle annular dark-field imaging, and from a detailed analysis of electron energy loss spectra. We discuss the possible mechanism of the transformation, and consider potential applications of 'three-dimensional bilayer graphene'.
Related JoVE Video
Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-06-2014
Show Abstract
Hide Abstract
Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.
Related JoVE Video
Silicon-carbon bond inversions driven by 60-keV electrons in graphene.
Phys. Rev. Lett.
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.
Related JoVE Video
Visualizing the stoichiometry of industrial-style Co-Mo-S catalysts with single-atom sensitivity.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
The functional properties of transition metal dichalcogenides (TMDs) may be promoted by the inclusion of other elements. Here, we studied the local stoichiometry of single cobalt promoter atoms in an industrial-style MoS2-based hydrotreating catalyst. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy show that the Co atoms occupy sites at the (-100) S?edge terminations of the graphite-supported MoS2 nanocrystals in the catalyst. Specifically, each Co atom has four neighboring S?atoms that are arranged in a reconstructed geometry, which reflects an equilibrium state. The structure agrees with complementary studies of catalysts that were prepared under vastly different conditions and on other supports. In contrast, a small amount of residual Fe in the graphite is found to compete for the S?edge sites, so that promotion by Co is strongly sensitive to the purity of the raw materials. The present single-atom-sensitive analytical method therefore offers a guide for advancing preparative methods for promoted TMD nanomaterials.
Related JoVE Video
Atomically resolved imaging of highly ordered alternating fluorinated graphene.
Nat Commun
PUBLISHED: 02-16-2014
Show Abstract
Hide Abstract
One of the most desirable goals of graphene research is to produce ordered two-dimensional (2D) chemical derivatives of suitable quality for monolayer device fabrication. Here we reveal, by focal series exit wave reconstruction (EWR), that C2F chair is a stable graphene derivative and demonstrates pristine long-range order limited only by the size of a functionalized domain. Focal series of images of graphene and C2F chair formed by reaction with XeF2 were obtained at 80 kV in an aberration-corrected transmission electron microscope. EWR images reveal that single carbon atoms and carbon-fluorine pairs in C2F chair alternate strictly over domain sizes of at least 150 nm(2) with electron diffraction indicating ordered domains ? 0.16 ?m(2). Our results also indicate that, within an ordered domain, functionalization occurs on one side only as theory predicts. In addition, we show that electron diffraction provides a quick and easy method for distinguishing between graphene, C2F chair and fully fluorinated stoichiometric CF 2D phases.
Related JoVE Video
Thickness-Dependent Crossover from Charge- to Strain-Mediated Magnetoelectric Coupling in Ferromagnetic/Piezoelectric Oxide Heterostructures.
ACS Nano
PUBLISHED: 12-16-2013
Show Abstract
Hide Abstract
Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic devices, where information is conveyed through spin transport in the solid state. Incomplete theories of the coupling between local strain, charge, and magnetic order have limited their deployment into new information and communication technologies. In this study, we report direct, local measurements of strain- and charge-mediated magnetization changes in the La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 system using spatially resolved characterization techniques in both real and reciprocal space. Polarized neutron reflectometry reveals a graded magnetization that results from both local structural distortions and interfacial screening of bound surface charge from the adjacent ferroelectric. Density functional theory calculations support the experimental observation that strain locally suppresses the magnetization through a change in the Mn-eg orbital polarization. We suggest that this local coupling and magnetization suppression may be tuned by controlling the manganite and ferroelectric layer thicknesses, with direct implications for device applications.
Related JoVE Video
Control of Radiation Damage in MoS2 by Graphene Encapsulation.
ACS Nano
PUBLISHED: 10-17-2013
Show Abstract
Hide Abstract
Recent dramatic progress in studying various two-dimensional (2D) atomic crystals and their heterostructures calls for better and more detailed understanding of their crystallography, reconstruction, stacking order, etc. For this, direct imaging and identification of each and every atom is essential. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) are ideal and perhaps the only tools for such studies. However, the electron beam can in some cases induce dramatic structure changes, and radiation damage becomes an obstacle in obtaining the desired information in imaging and chemical analysis in the (S)TEM. This is the case of 2D materials such as molybdenum disulfide MoS2, but also of many biological specimens, molecules, and proteins. Thus, minimizing damage to the specimen is essential for optimum microscopic analysis. In this article we demonstrate, on the example of MoS2, that encapsulation of such crystals between two layers of graphene allows for a dramatic improvement in stability of the studied 2D crystal and permits careful control over the defect nature and formation in it. We present STEM data collected from single-layer MoS2 samples prepared for observation in the microscope through three distinct procedures. The fabricated single-layer MoS2 samples were either left bare (pristine), placed atop a single-layer of graphene, or finally encapsulated between single graphene layers. Their behavior under the electron beam is carefully compared, and we show that the MoS2 sample "sandwiched" between the graphene layers has the highest durability and lowest defect formation rate compared to the other two samples, for very similar experimental conditions.
Related JoVE Video
Factors that determine and limit the resistivity of high-quality individual ZnO nanowires.
Nanotechnology
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
Knowing and controlling the resistivity of an individual nanowire (NW) is crucial for the production of new sensors and devices. For ZnO NWs this is poorly understood; a 10(8) variation in resistivity has previously been reported, making the production of reproducible devices almost impossible. Here, we provide accurate resistivity measurements of individual NWs, using a four-probe scanning tunnelling microscope (STM), revealing a dependence on the NW dimensions. To correctly interpret this behaviour, an atomic level transmission electron microscopy technique was employed to study the structural properties of the NWs in relation to three growth techniques: hydrothermal, catalytic and non-catalytic vapour phase. All NWs were found to be defect free and structurally equivalent; those grown with a metallic catalyst were free from Au contamination. The resistivity measurements showed a distinct increase with decreasing NW diameter, independent of growth technique. The increasing resistivity at small NW diameters was attributed to the dominance of surface states removing electrons from the bulk. However, a fundamental variance in resistivity (10(2)) was observed and attributed to changes in occupied surface state density, an effect which is not seen with other NW materials such as Si. This is examined by a model to predict the effect of surface state occupancy on the measured resistivity and is confirmed with measurements after passivating the ZnO surface. Our results provide an understanding of the primary influence of the reactive nature of the surface and its dramatic effect on the electrical properties of ZnO NWs.
Related JoVE Video
Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.
ACS Nano
PUBLISHED: 04-04-2013
Show Abstract
Hide Abstract
Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (?10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.
Related JoVE Video
Atomically abrupt silicon-germanium axial heterostructure nanowires synthesized in a solvent vapor growth system.
Nano Lett.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
The growth of Si/Ge axial heterostructure nanowires in high yield using a versatile wet chemical approach is reported. Heterostructure growth is achieved using the vapor zone of a high boiling point solvent as a reaction medium with an evaporated tin layer as the catalyst. The low solubility of Si and Ge within the Sn catalyst allows the formation of extremely abrupt heterojunctions of the order of just 1-2 atomic planes between the Si and Ge nanowire segments. The compositional abruptness was confirmed using aberration corrected scanning transmission electron microscopy and atomic level electron energy loss spectroscopy. Additional analysis focused on the role of crystallographic defects in determining interfacial abruptness and the preferential incorporation of metal catalyst atoms near twin defects in the nanowires.
Related JoVE Video
Direct evidence of stacking disorder in the mixed ionic-electronic conductor Sr4Fe6O12+?.
ACS Nano
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
Determining the structure-to-property relationship of materials becomes particularly challenging when the material under investigation is dominated by defects and structural disorder. Knowledge on the exact atomic arrangement at the defective structure is required to understand its influence on the functional properties. However, standard diffraction techniques deliver structural information that is averaged over many unit cells. In particular, information about defects and order-disorder phenomena is contained in the coherent diffuse scattering intensity which often is difficult to uniquely interpret. Thus, the examination of the local disorder in materials requires a direct method to study their structure on the atomic level with chemical sensitivity. Using aberration-corrected scanning transmission electron microscopy in combination with atomic-resolution electron energy-loss spectroscopy, we show that the controversial structural arrangement of the Fe2O2+? layers in the mixed ionic-electronic conducting Sr4Fe6O12+? perovskite can be unambiguously resolved. Our results provide direct experimental evidence for the presence of a nanomixture of "ordered" and "disordered" domains in an epitaxial Sr4Fe6O12+? thin film. The most favorable arrangement is the disordered structure and is interpreted as a randomly occurring but well-defined local shift of the Fe-O chains in the Fe2O2+? layers. By analyzing the electron energy-loss near-edge structure of the different building blocks in the Sr4Fe6O12+? unit cell we find that the mobile holes in this mixed ionic-electronic conducting oxide are highly localized in the Fe2O2+? layers, which are responsible for the oxide-ion conductivity. A possible link between disorder and oxygen-ion transport along the Fe2O2+? layers is proposed by arguing that the disorder can effectively break the oxygen diffusion pathways.
Related JoVE Video
Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy.
Nano Lett.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations reveal striking electronic structure differences between two distinct single substitutional Si defect geometries in graphene. Optimised acquisition conditions allow for exceptional signal-to-noise levels in the spectroscopic data. The near-edge fine structure can be compared with great accuracy to simulations and reveal either an sp(3)-like configuration for a trivalent Si or a more complicated hybridized structure for a tetravalent Si impurity.
Related JoVE Video
Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope.
Chem. Commun. (Camb.)
PUBLISHED: 07-18-2011
Show Abstract
Hide Abstract
Here, we report a simple and rapid characterisation technique combining physical and chemical analysis for DNA origami with conventional TEM.
Related JoVE Video
Metal-graphene interaction studied via atomic resolution scanning transmission electron microscopy.
Nano Lett.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
Distributions and atomic sites of transition metals and gold on suspended graphene were investigated via high-resolution scanning transmission electron microscopy, especially using atomic resolution high angle dark field imaging. All metals, albeit as singular atoms or atom aggregates, reside in the omni-present hydrocarbon surface contamination; they do not form continuous films, but clusters or nanocrystals. No interaction was found between Au atoms and clean single-layer graphene surfaces, i.e., no Au atoms are retained on such surfaces. Au and also Fe atoms do, however, bond to clean few-layer graphene surfaces, where they assume T and B sites, respectively. Cr atoms were found to interact more strongly with clean monolayer graphene, they are possibly incorporated at graphene lattice imperfections and have been observed to catalyze dissociation of C-C bonds. This behavior might explain the observed high frequency of Cr-cluster nucleation, and the usefulness as wetting layer, for depositing electrical contacts on graphene.
Related JoVE Video
High-resolution low-dose scanning transmission electron microscopy.
J Electron Microsc (Tokyo)
PUBLISHED: 11-14-2009
Show Abstract
Hide Abstract
During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.
Related JoVE Video
Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.
J Electron Microsc (Tokyo)
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.
Related JoVE Video
Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride.
Phys. Rev. Lett.
Show Abstract
Hide Abstract
Theoretical research on the two-dimensional crystal structure of hexagonal boron nitride (h-BN) has suggested that the physical properties of h-BN can be tailored for a wealth of applications by controlling the atomic structure of the membrane edges. Unexplored for h-BN, however, is the possibility that small additional edge-atom distortions could have electronic structure implications critically important to nanoengineering efforts. Here we demonstrate, using a combination of analytical scanning transmission electron microscopy and density functional theory, that covalent interlayer bonds form spontaneously at the edges of a h-BN bilayer, resulting in subangstrom distortions of the edge atomic structure. Orbital maps calculated in 3D around the closed edge reveal that the out-of-plane bonds retain a strong ?(*) character. We show that this closed edge reconstruction, strikingly different from the equivalent case for graphene, helps the material recover its bulklike insulating behavior and thus largely negates the predicted metallic character of open edges.
Related JoVE Video
Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy.
Ultramicroscopy
Show Abstract
Hide Abstract
While the development of monochromators for scanning transmission electron microscopes (STEM) has improved our ability to resolve spectral features in the 0-5 eV energy range of the electron energy loss spectrum, the overall benefits relative to unfiltered microscopes have been difficult to quantify. Simple curve fitting and reciprocal space models that extrapolate the expected behavior of the zero-loss peak are not enough to fully exploit the optimal spectral limit and can hinder the ease of interpreting the resulting spectra due to processing-induced artifacts. To address this issue, here we present a quantitative comparison of two processing methods for performing ZLP removal and for defining the low-energy spectral limit applied to three microscopes with different intrinsic emission and energy resolutions. Applying the processing techniques to spectroscopic data obtained from each instrument leads in each case to a marked improvement in the spectroscopic limit, regardless of the technique implemented or the microscope setup. The example application chosen to benchmark these processing techniques is the energy limit obtained from a silicon wedge sample as a function of thickness. Based on these results, we conclude on the possibility to resolve statistically significant spectral features to within a hundred meV of the native instrumental energy spread, opening up the future prospect of tracking phonon peaks as new and improved hardware becomes available.
Related JoVE Video
Graphene reknits its holes.
Nano Lett.
Show Abstract
Hide Abstract
Nanoholes, etched under an electron beam at room temperature in single-layer graphene sheets as a result of their interaction with metal impurities, are shown to heal spontaneously by filling up with either nonhexagon, graphene-like, or perfect hexagon 2D structures. Scanning transmission electron microscopy was employed to capture the healing process and study atom-by-atom the regrown structure. A combination of these nanoscale etching and reknitting processes could lead to new graphene tailoring approaches.
Related JoVE Video
Direct imaging of dopant clustering in metal-oxide nanoparticles.
ACS Nano
Show Abstract
Hide Abstract
Dopant atoms are used to tailor the properties of materials. However, whether the desired effect is achieved through selective doping depends on the dopant distribution within the host material. The clustering of dopant atoms can have a deleterious effect on the achievable properties because a two-phase material is obtained instead of a homogeneous material. Thus, the examination of dopant fluctuations in nanodevices requires a reliable method to chemically probe individual atoms within the host material. This is particularly challenging in the case of functionalized nanoparticles where the characteristic length scale of the particles demands the use of a high-spatial-resolution and high-sensitivity technique. Here we demonstrate a chemically sensitive atomic resolution imaging technique which delivers direct site-specific information on the dopant distribution in nanoparticles. We employ electron energy-loss spectroscopy imaging in a scanning transmission electron microscope combined with multivariate statistical analysis to map the distribution of Ba dopant atoms in SrTiO(3) nanoparticles. Our results provide direct evidence for clustering of the Ba dopants in the SrTiO(3) nanoparticles outlining a possible explanation for the presence of polar nanoregions in the Ba:SrTiO(3) system. The results we present constitute the first example of site-specific atomic resolution spectroscopy of foreign atoms in doped nanoparticles and suggest a general strategy to ascertain the spatial distribution of impurity atoms in nanocrystals and hence improve the performance of nanoparticle-based devices.
Related JoVE Video
Direct experimental evidence of metal-mediated etching of suspended graphene.
ACS Nano
Show Abstract
Hide Abstract
Atomic resolution high angle annular dark field imaging of suspended, single-layer graphene, onto which the metals Cr, Ti, Pd, Ni, Al, and Au atoms had been deposited, was carried out in an aberration-corrected scanning transmission electron microscope. In combination with electron energy loss spectroscopy, employed to identify individual impurity atoms, it was shown that nanoscale holes were etched into graphene, initiated at sites where single atoms of all the metal species except for gold come into close contact with the graphene. The e-beam scanning process is instrumental in promoting metal atoms from clusters formed during the original metal deposition process onto the clean graphene surface, where they initiate the hole-forming process. Our observations are discussed in the light of calculations in the literature, predicting a much lowered vacancy formation in graphene when metal ad-atoms are present. The requirement and importance of oxygen atoms in this process, although not predicted by such previous calculations, is also discussed, following our observations of hole formation in pristine graphene in the presence of Si-impurity atoms, supported by new calculations which predict a dramatic decrease of the vacancy formation energy, when SiO(x) molecules are present.
Related JoVE Video
Sample preparation for atomic-resolution STEM at low voltages by FIB.
Ultramicroscopy
Show Abstract
Hide Abstract
While FIB sample preparation for transmission electron microscopy is a well established technique, few examples exist of samples of sufficient quality for atomic resolution imaging by aberration corrected (scanning) transmission electron microscopy (STEM). In this work we demonstrate the successful preparation of such samples from five different materials and present the refined lift-out preparation technique, which was applied here. Samples with parallel surfaces and a general thickness between 20 and 40 nm over a range of several ?m were repeatedly prepared and analyzed by Cs-corrected STEM at 60 and 100 kV. Here, a novel wedge pre-milling step helps to keep the protective surface layers intact during the whole milling process, allowing features close to or at the sample surface to be analyzed without preparation damage. Another example shows the cross-sectional preparation of a working thin film solar cell device to a final thickness of 10 to 20 nm over ?m sized areas in the region of interest, enabling atomic resolution imaging and elemental mapping across general grain boundaries without projection artefacts. All sample preparation has been carried out in modern Dual-Beam FIB microscopes capable of low-kV Ga(+) ion milling, but without additional preparation steps after the FIB lift-out procedure.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.