JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Immune characterization of P. falciparum parasites with a shared genetic signature in a region of decreasing transmission.
Infect. Immun.
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
As malaria transmission intensity has declined, Plasmodium falciparum parasite populations display decreased clonal diversity resulting from the emergence of many parasites with common genetic signatures (CGS). We have monitored such CGS parasite clusters from 2006-2013 in Thiès, Senegal using the molecular barcode. The first, and one of the largest observed clusters of CGS parasites was present in 24% of clinical isolates in 2008, declined to 3.4% of clinical isolates in 2009, and then disappeared. To begin to explore the relationship between the immune responses of the population and the emergence and decline of specific parasite genotypes, we have determined whether antibodies to CGS parasites correlate with their prevalence. We measured:1) antibodies capable of inhibiting parasite growth in culture and 2) antibodies recognizing the surface of infected RBCs. IgGs obtained from volunteers in 2009 showed increased reactivity to the surface of CGS-parasitized erythrocytes over IgGs from 2008. As PfEMP-1 is a major variant surface antigen, we characterized the var genes expressed by CGS parasites after short term in vitro culture, by var Ups qRT-PCR and sequencing using degenerate DBL1? domain primers. CGS parasites show an upregulation of UpsA vars and 2-cysteine containing PfEMP-1 molecules and express the same dominant var transcript. Our work indicates that the CGS parasites in this cluster express similar var genes, more than would be expected by chance in the population, and there is year-to-year variation in immune recognition of surface antigens on CGS infected erythrocytes. This study lays the groundwork for detailed investigations of the mechanisms driving the expansion or contraction of specific parasite clones in the population.
Related JoVE Video
Clonal outbreak of Plasmodium falciparum in eastern Panama.
J. Infect. Dis.
PUBLISHED: 10-23-2014
Show Abstract
Hide Abstract
Identifying the source of resurgent parasites is paramount to strategic and successful intervention for malaria elimination. Although malaria incidence in Panama is low, a recent outbreak resulted in a six-fold increase in reported cases. We hypothesized parasites sampled from this epidemic might be related and exhibit clonal population structure. We tested the genetic relatedness using informative single nucleotide polymorphisms and drug resistance loci. We found the parasites to be clustered into three clonal subpopulations and shared relatedness with parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and likely resulted from epidemic expansion of imported or vestigial cases. Outbreak investigation using genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas of malaria elimination.
Related JoVE Video
Pre-amplification methods for tracking low-grade Plasmodium falciparum populations during scaled-up interventions in Southern Zambia.
Malar. J.
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
Malaria is receding in many endemic countries with intervention scale -up against the disease. However, this resilient scourge may persist in low-grade submicroscopic infections among semi-immune members of the population, and be poised for possible resurgence, creating challenges for detection and assessment of intervention impact. Parasite genotyping methods, such as the molecular barcode, can identify specific malaria parasite types being transmitted and allow tracking and evaluation of parasite population structure changes as interventions are applied. This current study demonstrates application of pre-amplification methods for successful detection and genotyping of residual Plasmodium falciparum infections during a dramatic malarial decline.
Related JoVE Video
Changes in drug sensitivity and anti-malarial drug resistance mutations over time among Plasmodium falciparum parasites in Senegal.
Malar. J.
PUBLISHED: 07-06-2013
Show Abstract
Hide Abstract
Malaria treatment efforts are hindered by the rapid emergence and spread of drug resistant parasites. Simple assays to monitor parasite drug response in direct patient samples (ex vivo) can detect drug resistance before it becomes clinically apparent, and can inform changes in treatment policy to prevent the spread of resistance.
Related JoVE Video
Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II.
Small GTPases
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Guanine nucleotide exchange factors (GEFs) control the site and extent of GTPase activity. Longin domains (LDs) are found in many Rab-GEFs, including DENNs, MON1/CCZ1, BLOC-3 and the TRAPP complex. Other GEFs, including Ragulator, contain roadblock domains (RDs), the structure of which is closely related to LDs. Other GTPase regulators, including mglB, SRX and Rags, use LDs or RDs as platforms for GTPases. Here, we review the conserved relationship between GTPases and LD/RDs, showing how LD/RD dimers act as adaptable platforms for GTPases. To extend our knowledge of GEFs, we used a highly sensitive sequence alignment tool to predict the existence of new LD/RDs. We discovered two yeast Ragulator subunits, and also a new LD in TRAPPC10 that may explain the Rab11-GEF activity ascribed to TRAPP-II.
Related JoVE Video
The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs.
Bioinformatics
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also called motor neuron disease, MND) are severe neurodegenerative diseases that show considerable overlap at the clinical and cellular level. The most common single mutation in families with FTD or ALS has recently been mapped to a non-coding repeat expansion in the uncharacterized gene C9ORF72. Although a plausible mechanism for disease is that aberrant C9ORF72 mRNA poisons splicing, it is important to determine the cellular function of C9ORF72, about which nothing is known.
Related JoVE Video
Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign.
Related JoVE Video
Distribution pattern of Plasmodium falciparum chloroquine transporter (pfcrt) gene haplotypes in Sri Lanka 1996-2006.
Am. J. Trop. Med. Hyg.
PUBLISHED: 11-04-2011
Show Abstract
Hide Abstract
Widespread antimalarial resistance has been a barrier to malaria elimination efforts in Sri Lanka. Analysis of genetic markers in historic parasites may uncover trends in the spread of resistance. We examined the frequency of Plasmodium falciparum chloroquine transporter (pfcrt; codons 72-76) haplotypes in Sri Lanka in 1996-1998 and 2004-2006 using a high-resolution melting assay. Among 59 samples from 1996 to 1998, we detected the SVMNT (86%), CVMNK (10%), and CVIET (2%) haplotypes, with a positive trend in SVMNT and a negative trend in CVMNK frequency (P = 0.004) over time. Among 24 samples from 2004 to 2006, we observed only the SVMNT haplotype. This finding indicates selection for the SVMNT haplotype over time and its possible fixation in the population.
Related JoVE Video
APRI: a simple bedside marker for advanced fibrosis that can avoid liver biopsy in patients with NAFLD/NASH.
S. Afr. Med. J.
PUBLISHED: 09-17-2011
Show Abstract
Hide Abstract
Non-alcoholic steatohepatitis (NASH) can lead to cirrhosis and hepatocellular carcinoma. The NASH fibrosis score (NFS) has proven to be a reliable, non-invasive marker for prediction of advanced fibrosis. Aspartate aminotransferase-to-platelet ratio index (APRI) is a simpler calculation than NFS, but has never been studied in patients with non-alcoholic fatty liver disease (NAFLD).
Related JoVE Video
Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.
PLoS ONE
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components ?-catenin and zonula occludens (ZO)-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.
Related JoVE Video
Improving malaria control in West Africa: interruption of transmission as a paradigm shift.
Acta Trop.
PUBLISHED: 08-03-2011
Show Abstract
Hide Abstract
With the paradigm shift from the reduction of morbidity and mortality to the interruption of transmission, the focus of malaria control broadens from symptomatic infections in children ?5 years of age to include asymptomatic infections in older children and adults. In addition, as control efforts intensify and the number of interventions increases, there will be decreases in prevalence, incidence and transmission with additional decreases in morbidity and mortality. Expected secondary consequences of these changes include upward shifts in the peak ages for infection (parasitemia) and disease, increases in the ages for acquisition of antiparasite humoral and cellular immune responses and increases in false-negative blood smears and rapid diagnostic tests. Strategies to monitor these changes must include: (1) studies of the entire population (that are not restricted to children ?5 or ?10 years of age), (2) study sites in both cities and rural areas (because of increasing urbanization across sub-Saharan Africa) and (3) innovative strategies for surveillance as the prevalence of infection decreases and the frequency of false-negative smears and rapid diagnostic tests increases.
Related JoVE Video
Hybrid selection for sequencing pathogen genomes from clinical samples.
Genome Biol.
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla.
Related JoVE Video
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research.
Acta Trop.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Related JoVE Video
Identification and functional validation of the novel antimalarial resistance locus PF10_0355 in Plasmodium falciparum.
PLoS Genet.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
The Plasmodium falciparum parasites ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (? 1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.
Related JoVE Video
Rapid, field-deployable method for genotyping and discovery of single-nucleotide polymorphisms associated with drug resistance in Plasmodium falciparum.
Antimicrob. Agents Chemother.
Show Abstract
Hide Abstract
Despite efforts to reduce malaria morbidity and mortality, drug-resistant parasites continue to evade control strategies. Recently, emphasis has shifted away from control and toward regional elimination and global eradication of malaria. Such a campaign requires tools to monitor genetic changes in the parasite that could compromise the effectiveness of antimalarial drugs and undermine eradication programs. These tools must be fast, sensitive, unambiguous, and cost-effective to offer real-time reports of parasite drug susceptibility status across the globe. We have developed and validated a set of genotyping assays using high-resolution melting (HRM) analysis to detect molecular biomarkers associated with drug resistance across six genes in Plasmodium falciparum. We improved on existing technical approaches by developing refinements and extensions of HRM, including the use of blocked probes (LunaProbes) and the mutant allele amplification bias (MAAB) technique. To validate the sensitivity and accuracy of our assays, we compared our findings to sequencing results in both culture-adapted lines and clinical isolates from Senegal. We demonstrate that our assays (i) identify both known and novel polymorphisms, (ii) detect multiple genotypes indicative of mixed infections, and (iii) distinguish between variants when multiple copies of a locus are present. These rapid and inexpensive assays can track drug resistance and detect emerging mutations in targeted genetic loci in P. falciparum. They provide tools for monitoring molecular changes associated with changes in drug response across populations and for determining whether parasites present after drug treatment are the result of recrudescence or reinfection in clinical settings.
Related JoVE Video
Human cerebral malaria and Plasmodium falciparum genotypes in Malawi.
Malar. J.
Show Abstract
Hide Abstract
Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.