JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus.
J. Gen. Virol.
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20-R11-C11-M10-A22-T14-E18-H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future.
Related JoVE Video
Negative purifying selection drives prion and doppel protein evolution.
J. Mol. Evol.
PUBLISHED: 07-03-2014
Show Abstract
Hide Abstract
The prion protein (PrP) when misfolded into the pathogenic conformer PrP(Sc) is the major causative agent of several lethal transmissible spongiform encephalopathies in mammals. Studies of evolutionary pressure on the corresponding gene using different datasets have yielded conflicting results. In addition, putative PrP or PrP interacting partners with strong similarity to PrP such as the doppel protein have not been examined to determine if the same evolutionary mechanisms apply to prion paralogs or if there are coselected sites that might indicate how and where the proteins interact. We examined several taxonomic groups that contain model organisms of prion diseases focusing on primates, bovids, and an expanded dataset of rodents for selection pressure on the prion gene (PRNP) and doppel gene (PRND) individually and for coevolving sites within. Overall, the results clearly indicate that both proteins are under strong selective constraints with relaxed selection on amino acid residues connecting ?-helices 1 and 2.
Related JoVE Video
Multiple infections of rodents with zoonotic pathogens in Austria.
Vector Borne Zoonotic Dis.
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host-pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.
Related JoVE Video
Enhanced passive bat rabies surveillance in indigenous bat species from Germany--a retrospective study.
PLoS Negl Trop Dis
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.
Related JoVE Video
Leptospira spp. in rodents and shrews in Germany.
Int J Environ Res Public Health
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Leptospirosis is an acute, febrile disease occurring in humans and animals worldwide. Leptospira spp. are usually transmitted through direct or indirect contact with the urine of infected reservoir animals. Among wildlife species, rodents act as the most important reservoir for both human and animal infection. To gain a better understanding of the occurrence and distribution of pathogenic leptospires in rodent and shrew populations in Germany, kidney specimens of 2973 animals from 11 of the 16 federal states were examined by PCR. Rodent species captured included five murine species (family Muridae), six vole species (family Cricetidae) and six shrew species (family Soricidae). The most abundantly trapped animals were representatives of the rodent species Apodemus flavicollis, Clethrionomys glareolus and Microtus agrestis. Leptospiral DNA was amplified in 10% of all animals originating from eight of the 11 federal states. The highest carrier rate was found in Microtus spp. (13%), followed by Apodemus spp. (11%) and Clethrionomys spp. (6%). The most common Leptospira genomospecies determined by duplex PCR was L. kirschneri, followed by L. interrogans and L. borgpetersenii; all identified by single locus sequence typing (SLST). Representatives of the shrew species were also carriers of Leptospira spp. In 20% of Crocidura spp. and 6% of the Sorex spp. leptospiral DNA was detected. Here, only the pathogenic genomospecies L. kirschneri was identified.
Related JoVE Video
Seroprevalence of hepatitis E virus (HEV) in humans living in high pig density areas of Germany.
Med. Microbiol. Immunol.
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
An increase in acute autochthonous hepatitis E virus (HEV) infections has been recorded in Germany. These are suspected to be zoonotically transmitted from wild boar, deer and domestic pig. The latter may represent a major reservoir for HEV. In this study, 537 sera from humans living in Westphalia and Lower Saxony, representing areas of high pig density in Germany, were tested for the presence of HEV-specific antibodies. Among them were 302 individuals with occupational, direct contact to pigs and 235 individuals without direct contact to pigs. Two commercial tests and one in-house assay were applied for the detection of HEV-specific immunoglobulin G (IgG) antibodies. Sera were also tested in an assay that detects all classes of HEV-specific antibodies. Depending on the test used, the seroprevalence ranged from 4.1 to 27.9 %. Exposition to pigs was found to be associated with a significantly higher seroprevalence in subjects with contact to pigs (13.2-32.8 %) compared with that in non-exposed humans (7.7-21.7 %). In particular, individuals younger than 40 years with occupational exposure exhibited a markedly higher HEV seroprevalence compared with non-exposed individuals of that age group. In general, HEV seroprevalence increased with age resulting in a similar prevalence level in the age group of ? 50 years for exposed and non-exposed individuals. Analysis of all sera by a commercial anti-HEV IgM ELISA revealed 35 positive and 25 borderline samples. However, only one positive serum could be confirmed by an IgM line assay. Selected samples from IgM and/or IgG as well as total HEV antibody-positive individuals were also tested for the presence of HEV RNA. In one of the 78 samples, the only IgM ELISA positive and IgM line assay confirmed sample, RNA of HEV genotype 3 was detected. This sequence has high similarity to HEV sequences obtained from wild boars and domestic pigs from Germany and The Netherlands. This study demonstrates that in addition to the consumption of raw or undercooked meat, direct contact to pigs has to be considered as an additional risk factor for HEV infection.
Related JoVE Video
Hepeviridae: an expanding family of vertebrate viruses.
Infect. Genet. Evol.
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
The hepatitis E virus (HEV) was first identified in 1990, although hepatitis E-like diseases in humans have been recorded for a long time dating back to the 18th century. The HEV genotypes 1-4 have been subsequently detected in human hepatitis E cases with different geographical distribution and different modes of transmission. Genotypes 3 and 4 have been identified in parallel in pigs, wild boars and other animal species and their zoonotic potential has been confirmed. Until 2010, these genotypes along with avian HEV strains infecting chicken were the only known representatives of the family Hepeviridae. Thereafter, additional HEV-related viruses have been detected in wild boars, distinct HEV-like viruses were identified in rats, rabbit, ferret, mink, fox, bats and moose, and a distantly related agent was described from closely related salmonid fish. This review summarizes the characteristics of the so far known HEV-like viruses, their phylogenetic relationship, host association and proposed involvement in diseases. Based on the reviewed knowledge, a suggestion for a new taxonomic grouping scheme of the viruses within the family Hepeviridae is presented.
Related JoVE Video
More novel hantaviruses and diversifying reservoir hosts--time for development of reservoir-derived cell culture models?
Viruses
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.
Related JoVE Video
Autochthonous Dobrava-Belgrade virus infection in Eastern Germany.
Clin. Nephrol.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
A 21-year-old male patient from Borna, Saxony, in Eastern Germany, suffered from acute kidney injury (AKI) and symptoms typical for a hantavirus infection. These symptoms included nausea, vomiting, abdominal pain, diarrhea, and acute renal failure. Serological investigations by indirect IgM and IgG in-house ELISAs, commercial immunofluorescence and line assays, as well as chemiluminescence focus reduction neutralization assay confirmed an acute Dobrava-Belgrade virus (DOBV) infection of the patient. Serological and RT-PCR analyses of striped field mouse (Apodemus agrarius) trapped in a neighboring region of the residence of the patient identified an infection by DOBV, genotype Kurkino. This is the first report of an autochthonous DOBV infection in a German patient living far from the known endemic region in the north of the country. This finding has implications for the awareness of physicians in areas which are not recognized as hantavirus endemic regions but where the reservoir host of the virus is present.
Related JoVE Video
Chlamydiaceae and Chlamydia-like organisms in free-living small mammals in Europe and Afghanistan.
J. Wildl. Dis.
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Few data are available on the occurrence of chlamydial infections in wild small mammals. We investigated the significance of free-living small mammals as reservoirs or transmission hosts for microorganisms of the phylum/class Chlamydiae. We obtained 3,664 tissue samples from 911 animals in Switzerland, Germany, Austria, the Czech Republic, and Afghanistan. Samples included internal organs (n = 3,652) and feces (n = 12) from 679 rodents (order Rodentia) and 232 insectivores (order Soricomorpha) and were tested by three TaqMan® real-time PCRs specific for members of the family Chlamydiaceae and selected Chlamydia-like organisms such as Parachlamydia spp. and Waddlia spp. Only one of 911 (0.11%) animals exhibited a questionable positive result by Chlamydiaceae-specific real-time PCR. Five of 911 animals were positive by specific real-time PCR for Parachlamydia spp. but could not be confirmed by quantitative PCR targeting the Parachlamydia acanthamoebae secY gene (secY qPCR). One of 746 animals (0.13%) was positive by real-time PCR for Waddlia chondrophila. This result was confirmed by Waddlia secY qPCR. This is the first detection of Chlamydia-like organisms in small wildlife in Switzerland. Considering previous negative results for Chlamydiaceae in wild ruminant species from Switzerland, these data suggest that wild small mammals are unlikely to be important carriers or transport hosts for Chamydiaceae and Chlamydia-like organisms.
Related JoVE Video
Replicative Capacity of MERS Coronavirus in Livestock Cell Lines.
Emerging Infect. Dis.
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
Replicative capacity of Middle East respiratory syndrome coronavirus (MERS-CoV) was assessed in cell lines derived from livestock and peridomestic small mammals on the Arabian Peninsula. Only cell lines originating from goats and camels showed efficient replication of MERS-CoV. These results provide direction in the search for the intermediate host of MERS-CoV.
Related JoVE Video
First molecular evidence for Puumala hantavirus in Poland.
Viruses
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Puumala virus (PUUV) causes mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS), and is responsible for the majority of hantavirus infections of humans in Fennoscandia, Central and Western Europe. Although there are relatively many PUUV sequences available from different European countries, little is known about the presence of this virus in Poland. During population studies in 2009 a total of 45 bank voles were trapped at three sites in north-eastern Poland, namely islands on Dejguny and Dobskie Lakes and in a forest near Miko?ajki. S and M segment-specific RT-PCR assays detected PUUV RNA in three animals from the Miko?ajki site. The obtained partial S and M segment sequences demonstrated the highest similarity to the corresponding segments of a PUUV strain from Latvia. Analysis of chest cavity fluid samples by IgG ELISA using a yeast-expressed PUUV nucleocapsid protein resulted in the detection of two seropositive samples, both being also RT-PCR positive. Interestingly, at the trapping site in Miko?ajki PUUV-positive bank voles belong to the Carpathian and Eastern genetic lineages within this species. In conclusion, we herein present the first molecular evidence for PUUV in the rodent reservoir from Poland.
Related JoVE Video
The use of chimeric virus-like particles harbouring a segment of hantavirus Gc glycoprotein to generate a broadly-reactive hantavirus-specific monoclonal antibody.
Viruses
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Monoclonal antibodies (MAbs) against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV) Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs) harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa)-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80-89) or site #4 (aa 280-289). The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8) of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.
Related JoVE Video
Dobrava-Belgrade virus in Apodemus flavicollis and A. uralensis mice, Turkey.
Emerging Infect. Dis.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In 2009, human Dobrava-Belgrade virus (DOBV) infections were reported on the Black Sea coast of Turkey. Serologic and molecular studies of potential rodent reservoirs demonstrated DOBV infections in Apodemus flavicollis and A. uralensis mice. Phylogenetic analysis of DOBV strains showed their similarity to A. flavicollis mice-borne DOBV in Greece, Slovenia, and Slovakia.
Related JoVE Video
Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-16-2013
Show Abstract
Hide Abstract
The hepatitis B virus (HBV), family Hepadnaviridae, is one of most relevant human pathogens. HBV origins are enigmatic, and no zoonotic reservoirs are known. Here, we screened 3,080 specimens from 54 bat species representing 11 bat families for hepadnaviral DNA. Ten specimens (0.3%) from Panama and Gabon yielded unique hepadnaviruses in coancestral relation to HBV. Full genome sequencing allowed classification as three putative orthohepadnavirus species based on genome lengths (3,149-3,377 nt), presence of middle HBV surface and X-protein genes, and sequence distance criteria. Hepatic tropism in bats was shown by quantitative PCR and in situ hybridization. Infected livers showed histopathologic changes compatible with hepatitis. Human hepatocytes transfected with all three bat viruses cross-reacted with sera against the HBV core protein, concordant with the phylogenetic relatedness of these hepadnaviruses and HBV. One virus from Uroderma bilobatum, the tent-making bat, cross-reacted with monoclonal antibodies against the HBV antigenicity determining S domain. Up to 18.4% of bat sera contained antibodies against bat hepadnaviruses. Infectious clones were generated to study all three viruses in detail. Hepatitis D virus particles pseudotyped with surface proteins of U. bilobatum HBV, but neither of the other two viruses could infect primary human and Tupaia belangeri hepatocytes. Hepatocyte infection occurred through the human HBV receptor sodium taurocholate cotransporting polypeptide but could not be neutralized by sera from vaccinated humans. Antihepadnaviral treatment using an approved reverse transcriptase inhibitor blocked replication of all bat hepadnaviruses. Our data suggest that bats may have been ancestral sources of primate hepadnaviruses. The observed zoonotic potential might affect concepts aimed at eradicating HBV.
Related JoVE Video
Age-related and regional differences in the prevalence of hepatitis E virus-specific antibodies in pigs in Germany.
Vet. Microbiol.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
An increasing number of acute autochthonous human hepatitis E virus (HEV)-infections was noticed in Germany and other developed countries, most likely the result of a zoonotic virus transmission from pig, wild boar and deer. Currently there is still a lack of profound data concerning the actual prevalence of HEV-specific antibodies in domestic pig herds in Germany, in particular for regions with high pig density, and its age-dependency. 2273 domestic pig sera were collected in 2011 mainly from Bavaria, North Rhine-Westphalia and Lower Saxony from areas having a high pig density. Initially, 420 randomly selected pig sera were tested in three commercially available and in two in-house HEV-antibody ELISAs. 43.6% (183/420) to 65.5% (275/420) of the sera were demonstrated to be reactive against human pathogenic HEV genotypes 1 and/or 3. The majority of sera reacted only weakly or not at all with the rat HEV antigen with very few sera showing a stronger reactivity to this antigen compared to the genotype 3 antigen. The results of all three HEV-IgG tests, i.e. the PrioCHECK(®) HEV Ab porcine ELISA kit, the ID Screen(®) Hepatitis E Indirect Multi-species ELISA kit and the genotype 3 in-house ELISA were in good accordance. Therefore, the remaining sera were tested using the PrioCHECK(®) HEV Ab porcine ELISA kit. Samples with a borderline result were finally determined by application of the conjugate-modified recomLine HEV IgG assay. A total of 1065 of the 2273 sera (46.9%) were found to be anti-HEV IgG-positive. While 38.4% (306/796) of fatteners (age between 3 and 9 months) exhibited HEV-specific antibodies, 51.4% (759/1477) of sows (age older than 9 months) exhibited anti-HEV antibodies (P<0.001). Fatteners kept in Southern Germany had a significantly higher HEV IgG prevalence compared to fatteners kept in the high pig density federal states North Rhine-Westphalia and Lower Saxony but also in German federal states with a low pig density. In conclusion, the present study clearly demonstrates that a high percentage of domestic pigs in Germany have had contact with HEV. Seroprevalence depends on the pigs age and herd origin with the most significant regional variations for fatteners. The presence of anti-HEV-free herds may indicate that it is feasible to establish and sustain HEV-free pig herds. HEV seroprevalence still depends on the assay used for testing. This demonstrates an urgent need for test validation.
Related JoVE Video
Evidence for novel hepaciviruses in rodents.
PLoS Pathog.
PUBLISHED: 06-01-2013
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) is among the most relevant causes of liver cirrhosis and hepatocellular carcinoma. Research is complicated by a lack of accessible small animal models. The systematic investigation of viruses of small mammals could guide efforts to establish such models, while providing insight into viral evolutionary biology. We have assembled the so-far largest collection of small-mammal samples from around the world, qualified to be screened for bloodborne viruses, including sera and organs from 4,770 rodents (41 species); and sera from 2,939 bats (51 species). Three highly divergent rodent hepacivirus clades were detected in 27 (1.8%) of 1,465 European bank voles (Myodes glareolus) and 10 (1.9%) of 518 South African four-striped mice (Rhabdomys pumilio). Bats showed anti-HCV immunoblot reactivities but no virus detection, although the genetic relatedness suggested by the serologic results should have enabled RNA detection using the broadly reactive PCR assays developed for this study. 210 horses and 858 cats and dogs were tested, yielding further horse-associated hepaciviruses but none in dogs or cats. The rodent viruses were equidistant to HCV, exceeding by far the diversity of HCV and the canine/equine hepaciviruses taken together. Five full genomes were sequenced, representing all viral lineages. Salient genome features and distance criteria supported classification of all viruses as hepaciviruses. Quantitative RT-PCR, RNA in-situ hybridisation, and histopathology suggested hepatic tropism with liver inflammation resembling hepatitis C. Recombinant serology for two distinct hepacivirus lineages in 97 bank voles identified seroprevalence rates of 8.3 and 12.4%, respectively. Antibodies in bank vole sera neither cross-reacted with HCV, nor the heterologous bank vole hepacivirus. Co-occurrence of RNA and antibodies was found in 3 of 57 PCR-positive bank vole sera (5.3%). Our data enable new hypotheses regarding HCV evolution and encourage efforts to develop rodent surrogate models for HCV.
Related JoVE Video
Hantaviruses as zoonotic pathogens in Germany.
Dtsch Arztebl Int
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
Hantavirus disease is a zoonosis of increasing clinical importance. A new incidence peak was reached in Germany in 2012, with more than 2800 reported cases. These viruses are transmitted from small mammals to human beings. The disease begins with high fever and non-pathognomonic manifestations that can end in shock and organ failure.
Related JoVE Video
Lymphoma outbreak in a GASH:Sal hamster colony.
Arch. Virol.
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
We have detected a high incidence of lymphomas in a colony of GASH:Sal Syrian golden hamsters (Mesocricetus auratus). This strain is characterised by its ability to present convulsive crises of audiogenic origin. Almost 16 % (90 males and 60 females) of the 975 animals were affected during a 5-year period by the development of a progressing lymphoid tumour and exhibited similar clinical profiles characterised by lethargy, anorexia, evident abdominal distension, and a rapid disease progression resulting in mortality within 1 to 2 weeks. A TaqMan® probe-based real-time PCR analysis of genomic DNA from different tissue samples of the affected animals revealed the presence of a DNA sequence encoding the hamster polyomavirus (HaPyV) VP1 capsid protein. Additionally, immunohistochemical analysis using HaPyV-VP1-specific monoclonal antibodies confirmed the presence of viral proteins in all hamster tumour tissues analysed within the colony. An indirect ELISA and western blot analysis confirmed the presence of antibodies against the VP1 capsid protein in sera, not only from affected and non-affected GASH:Sal hamsters but also from control hamsters from the same breeding area. The HaPyV genome that accumulated in tumour tissues typically contained deletions affecting the noncoding regulatory region and adjacent sequences coding for the N-terminal part of the capsid protein VP2.
Related JoVE Video
Hepatitis E virus in pork liver sausage, France.
Emerging Infect. Dis.
PUBLISHED: 01-26-2013
Show Abstract
Hide Abstract
We investigated viability of hepatitis E virus (HEV) identified in contaminated pork liver sausages obtained from France. HEV replication was demonstrated in 1 of 4 samples by using a 3-dimensional cell culture system. The risk for human infection with HEV by consumption of these sausages should be considered to be high.
Related JoVE Video
The simultaneous occurrence of human norovirus and hepatitis E virus in a Norway rat (Rattus norvegicus).
Arch. Virol.
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
Wild rats can be reservoirs and vectors for several human pathogens. An initial RT-PCR screening of the intestinal contents of Norway rats trapped in the sewer system of Copenhagen, Denmark, for caliciviruses revealed the presence of a human norovirus in one of 11 rodents. Subsequent phylogenetic analysis of the ~4.0-kb 3-terminus of the norovirus genome resulted in the identification of a recombinant GI.b/GI.6 strain. The simultaneous detection of hepatitis E virus-like particles in the feces of this rat by transmission electron microscopy was confirmed by RT-PCR and sequence determination, resulting in the identification of a novel rat hepatitis E virus.
Related JoVE Video
Detection of shrew-borne hantavirus in Eurasian pygmy shrew (Sorex minutus) in Central Europe.
Infect. Genet. Evol.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Recently, it was found that not only rodents but also shrews are reservoir hosts of hantaviruses. In Central Europe, only Seewis virus, associated with the Eurasian common shrew (Sorex araneus), has been recognized until now. In the present report, tissue samples from shrews belonging to Crocidurinae and Soricinae subfamilies, trapped in Czech Republic, Germany, and Slovakia, were screened for the presence of novel hantaviruses. Three new hantavirus partial L-segment sequences were obtained from pygmy shrews (Sorex minutus) trapped in Czech Republic and Germany. Complete nucleocapsid protein- and glycoprotein precursor-coding S- and M-segment sequences were then determined for the newly recognized hantavirus strains, CZ/Beskydy/412/2010/Sm, CZ/Drahany/420/2010/Sm, and DE/Dürrbach/1912/2009/Sm. Phylogenetic analyses showed that they represent strains of Asikkala virus (ASIV), a novel hantavirus also found in pygmy shrews from Finland. Our study reveals a broad geographic distribution of ASIV across Europe and indicates pygmy shrew as the primary reservoir host. Future studies will have to determine the pathogenic relevance of ASIV.
Related JoVE Video
Hepatitis E virus seroprevalence of domestic pigs in Germany determined by a novel in-house and two reference ELISAs.
J. Virol. Methods
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Autochthonous hepatitis E virus (HEV) infections by zoonotic transmission of genotype 3 (GT3) have been reported increasingly from industrialized countries. In this paper the development and validation of an IgG ELISA for the detection of HEV-specific antibodies in domestic pigs is described. Comparison of the diagnostic value of Escherichia coli-expressed HEV-GT3 capsid protein (CP) derivatives revealed a carboxy-terminal derivative as most suitable. Validation of the in-house assay using a commercially available IgG ELISA revealed a high diagnostic specificity and sensitivity. The average HEV seroprevalence of domestic pigs from Germany and the federal state Baden-Wuerttemberg determined by the in-house test was 42.7% and 50.3%, respectively. The seroprevalence in different districts of Baden-Wuerttemberg ranged from 34.9% to 60%, but from 0% to 100% between different herds. These data were compared to those achieved by two commercially available ELISA kits and an in-house ratHEV-based ELISA. In conclusion, the CP-based in-house test proved sensitive and specific, indicating that the ORF3-encoded protein might be dispensable for diagnostics. The novel assay also allowed a parallel analysis by a homologous ratHEV-derived antigen. Thus, the novel IgG ELISA represents a useful tool for future standardized seroprevalence studies in domestic pigs from Germany and other regions of Europe.
Related JoVE Video
Seroprevalence study in forestry workers from eastern Germany using novel genotype 3- and rat hepatitis E virus-specific immunoglobulin G ELISAs.
Med. Microbiol. Immunol.
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
Hepatitis E virus (HEV) is the causative agent of an acute self-limiting hepatitis in humans. In industrialized countries, autochthonous cases are linked to zoonotic transmission from domestic pigs, wild boar and red deer. The main route of human infection presumably is consumption of contaminated meat. Farmers, slaughterers and veterinarians are expected to be risk groups as they work close to potentially infected animals. In this study, we tested four Escherichia coli-expressed segments of the capsid protein (CP) of a German wild boar-derived HEV genotype 3 strain for their diagnostic value in an indirect immunoglobulin G (IgG) ELISA. In an initial validation experiment, a carboxy-terminal CP segment spanning amino acid (aa) residues 326-608 outperformed the other segments harbouring aa residues 112-608, 326-660 and 112-335. Based on this segment, an indirect ELISA for detection of anti-HEV IgG antibodies in human sera was established and validated using a commercial line immunoassay as reference assay. A total of 563 sera from forestry workers of all forestry offices of Brandenburg, eastern Germany and 301 sera of blood donors from eastern Germany were surveyed using these assays. The commercial test revealed seroprevalence rates of 11% for blood donors and 18% for forestry workers. These rates are in line with data obtained by the in-house test (12 and 21%). Hence, the in-house test performed strikingly similar to the commercial test (sensitivity 0.9318, specificity 0.9542). An initial screening of forestry worker and blood donor sera with a corresponding CP segment of the recently discovered Norway rat-associated HEV revealed several strong positive sera exclusively in the forestry worker panel. Future investigations have to prove the performance of this novel IgG ELISA in large-scale seroepidemiological studies. In addition, the observed elevated seroprevalence in a forestry worker group has to be confirmed by studies on groups of forestry workers from other regions. The epidemiological role of ratHEV in human disease should be assessed in a large-scale study of risk and non-risk groups.
Related JoVE Video
RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication.
J. Gen. Virol.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock-down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2,5-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that in vitro-transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.
Related JoVE Video
Seroprevalence study in forestry workers of a non-endemic region in eastern Germany reveals infections by Tula and Dobrava-Belgrade hantaviruses.
Med. Microbiol. Immunol.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Highly endemic and outbreak regions for human hantavirus infections are located in the southern, southeastern, and western parts of Germany. The dominant hantavirus is the bank vole transmitted Puumala virus (PUUV). In the eastern part of Germany, previous investigations revealed Tula virus (TULV) and Dobrava-Belgrade virus (DOBV) infections in the respective rodent reservoirs. Here, we describe a seroprevalence study in forestry workers from Brandenburg, eastern Germany, using IgG ELISA and immunoblot tests based on recombinant TULV, DOBV, and PUUV antigens. Out of the 563 sera tested, 499 from male and 64 from female workers, we found 41 out of the 499 (8.2%) sera from men (mean age 47 years) and 10 out of 64 (15.6%) from the women (mean age 48 years) anti-hantavirus-positive. The majority of the 51 seropositive samples reacted exclusively in the TULV (n=22) and DOBV tests (n=17). Focus reduction neutralization assay investigations on selected sera confirmed the presence of TULV- and DOBV-specific antibodies in the forestry workers. These investigations demonstrated a potential health threat for forestry workers and also the average population in non-endemic geographical regions where TULV and DOBV are circulating in the corresponding reservoir hosts. The infections in this region might be frequently overlooked due to their unspecific and mild symptoms.
Related JoVE Video
Distribution and frequency of VKORC1 sequence variants conferring resistance to anticoagulants in Mus musculus.
Pest Manag. Sci.
PUBLISHED: 05-15-2011
Show Abstract
Hide Abstract
Emerging resistance to anticoagulant rodenticides may significantly impair house mouse (Mus musculus L.) control. As in humans and rats, sequence variants in the gene vitamin K epoxide reductase complex subunit 1 (VKORC1) of house mice are strongly implicated in the responses of mice to anticoagulants. This study gives a first overview of the distribution and frequency of such potentially resistance-conferring sequence variants in house mice, based on tissue samples from 30 populations in Germany, Switzerland and the Azores.
Related JoVE Video
Rodents as sentinels for the prevalence of tick-borne encephalitis virus.
Vector Borne Zoonotic Dis.
PUBLISHED: 05-06-2011
Show Abstract
Hide Abstract
Tick-borne encephalitis virus (TBEV) causes one of the most important flavivirus infections of the central nervous system, affecting humans in Europe and Asia. It is mainly transmitted by the bite of an infected tick and circulates among them and their vertebrate hosts. Until now, TBE risk analysis in Germany has been based on the incidence of human cases. Because of an increasing vaccination rate, this approach might be misleading, especially in regions of low virus circulation.
Related JoVE Video
Orthopox virus infections in Eurasian wild rodents.
Vector Borne Zoonotic Dis.
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
The genus Orthopoxvirus includes variola (smallpox) virus and zoonotic cowpox virus (CPXV). All orthopoxviruses (OPV) are serologically cross-reactive and cross-protective, and after the cessation of smallpox vaccination, CPXV and other OPV infections represent an emerging threat to human health. In this respect CPXV, with its reservoir in asymptomatically infected wild rodents, is of special importance. In Europe, clinical cowpox has been diagnosed in both humans and animals. The main objective of this study was to elucidate the prevalence of OPV infections in wild rodents in different parts of Eurasia and to compare the performance of three real-time polymerase chain reaction (PCR) methods in detecting OPV DNA in wildlife samples. We investigated 962 wild rodents from Northern Europe (Finland), Central Europe (Germany), and Northern Asia (Siberia, Russia) for the presence of OPV antibodies. According to a CPXV antigen-based immunofluorescence assay, animals from 13 of the 17 locations (76%) showed antibodies. Mean seroprevalence was 33% in Finland (variation between locations 0%-69%), 32% in Germany (0%-43%), and 3.2% (0%-15%) in Siberia. We further screened tissue samples from 513 of the rodents for OPV DNA using up to three real-time PCRs. Three rodents from two German and one Finnish location were OPV DNA positive. The amplicons were 96% to 100% identical to available CPXV sequences. Further, we demonstrated OPV infections as far east as the Baikal region and occurring in hamster and two other rodent species, ones previously unnoticed as possible reservoir hosts. Based on serological and PCR findings, Eurasian wild rodents are frequently but nonpersistently infected with OPVs. Results from three real-time PCR methods were highly concordant. This study extends the geographic range and wildlife species diversity in which OPV (or CPXV) viruses are naturally circulating.
Related JoVE Video
Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein.
Virus Genes
PUBLISHED: 01-16-2011
Show Abstract
Hide Abstract
Puumala virus (PUUV) is the predominant hantavirus species in Germany causing large numbers of mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS). During an outbreak in South-East Germany in 2004 a novel PUUV subtype designated Bavaria was identified as the causative agent of HFRS in humans [1]. Here we present a molecular characterization of this PUUV strain by investigating novel partial and almost entire nucleocapsid (N) protein-encoding small (S-) segment sequences and partial medium (M-) segment sequences from bank voles (Myodes glareolus) trapped in Lower Bavaria during 2004 and 2005. Phylogenetic analyses confirmed their classification as subtype Bavaria, which is further subdivided into four geographical clusters. The entire N protein, harbouring an amino-terminal hexahistidine tag, of the Bavarian strain was produced in yeast Saccharomyces cerevisiae and showed a slightly different reactivity with N-specific monoclonal antibodies, compared to the yeast-expressed N protein of the PUUV strain Vranica/Hällnäs. Endpoint titration of human sera from different parts of Germany and from Finland revealed only very slight differences in the diagnostic value of the different recombinant proteins. Based on the novel N antigen indirect and monoclonal antibody capture IgG-ELISAs were established. By using serum panels from Germany and Finland their validation demonstrated a high sensitivity and specificity. In summary, our investigations demonstrated the Bavarian PUUV strain to be genetically divergent from other PUUV strains and the potential of its N protein for diagnostic applications.
Related JoVE Video
West Nile virus monitoring of migratory and resident birds in Germany.
Vector Borne Zoonotic Dis.
PUBLISHED: 09-22-2010
Show Abstract
Hide Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus naturally circulating in wild bird populations. The virus is also capable to infect a broad range of vertebrate species. Humans and equines are highly susceptible and can develop mild flu-like illnesses as well as severe encephalitis leading to fatalities. Most recently, WNV was found to circulate in countries close to Germany, such as France, Czech Republic, Italy, Austria, and Hungary. Given this epidemiological situation its spread to Germany cannot be ruled out. As no data on the WNV situation were available for Germany for the most recent past, we have conducted a serological survey to reveal WNV antibodies in wild birds. More than 2700 blood samples from migratory and resident birds representing 72 species that were collected during 2005-2009 were tested using an immunofluorescence assay and partly by micro-virus neutralization test. By immunofluorescence assay WNV-reactive antibodies could be demonstrated in 11 wild bird species. Similarly, WNV-neutralizing antibodies were revealed in migratory birds belonging to 10 species, but not in resident birds. According to the absence of WNV-reactive antibodies in resident birds and the absence of WNV-specific RNA in all investigated bird samples, there is currently no evidence for a WNV circulation in Germany.
Related JoVE Video
Novel hepatitis E virus genotype in Norway rats, Germany.
Emerging Infect. Dis.
PUBLISHED: 08-26-2010
Show Abstract
Hide Abstract
Human hepatitis E virus infections may be caused by zoonotic transmission of virus genotypes 3 and 4. To determine whether rodents are a reservoir, we analyzed the complete nucleotide sequence of a hepatitis E-like virus from 2 Norway rats in Germany. The sequence suggests a separate genotype for this hepatotropic virus.
Related JoVE Video
Characterization of monoclonal antibodies against hantavirus nucleocapsid protein and their use for immunohistochemistry on rodent and human samples.
Arch. Virol.
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
Monoclonal antibodies are important tools for various applications in hantavirus diagnostics. Recently, we generated Puumala virus (PUUV)-reactive monoclonal antibodies (mAbs) by immunisation of mice with chimeric polyomavirus-derived virus-like particles (VLPs) harbouring the 120-amino-acid-long amino-terminal region of the PUUV nucleocapsid (N) protein. Here, we describe the generation of two mAbs by co-immunisation of mice with hexahistidine-tagged full-length N proteins of Sin Nombre virus (SNV) and Andes virus (ANDV), their characterization by different immunoassays and comparison with the previously generated mAbs raised against a segment of PUUV N protein inserted into VLPs. All of the mAbs reacted strongly in ELISA and western blot tests with the antigens used for immunization and cross-reacted to varying extents with N proteins of other hantaviruses. All mAbs raised against a segment of the PUUV N protein presented on chimeric VLPs and both mAbs raised against the full-length AND/SNV N protein reacted with Vero cells infected with different hantaviruses. The reactivity of mAbs with native viral nucleocapsids was also confirmed by their reactivity in immunohistochemistry assays with kidney tissue specimens from experimentally SNV-infected rodents and human heart tissue specimens from hantavirus cardiopulmonary syndrome patients. Therefore, the described mAbs represent useful tools for the immunodetection of hantavirus infection.
Related JoVE Video
Comparison of two PCR systems for the rapid detection of Leptospira spp. from kidney tissue.
Curr. Microbiol.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
In this study we compared two routine PCR systems for the detection of Leptospira spp. and assessed their performance when directly applied to kidney samples from small mammals. Although the kappa value of 0.9 indicated a high level of agreement between the tests, the outer membrane lipoprotein gene lipl32 based PCR was more robust and showed a higher number of positive kidney samples.
Related JoVE Video
First insights into antimicrobial resistance among faecal Escherichia coli isolates from small wild mammals in rural areas.
Sci. Total Environ.
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
Wild rodents can be carriers of antimicrobial resistant Escherichia coli. As rodents are known to be involved in the transmission of bacteria of human and animal health concern, they could likewise contribute to the dissemination of antimicrobial resistant bacteria in the environment. The aim of this study was therefore to get first insights into the antimicrobial resistance status among E. coli isolated from wild small mammals in rural areas. We tested 188 faecal isolates from eight rodent and one shrew species originating from Germany. Preselected resistant isolates were screened by minimal inhibitory concentration (MIC) testing or agar diffusion test and subsequent PCR analysis of resistance genes. The prevalence of antimicrobial resistant isolates was low with only 5.5% of the isolates exhibiting resistant phenotypes against at least one antimicrobial compound including beta-lactams, tetracyclines, aminoglycosides and sulfonamides. These results suggest a minor role of wild rodents from rural areas in the cycle of transmission and spread of antimicrobial resistant E. coli into the environment. Nevertheless E. coli with multiple antimicrobial resistances were significantly more often detected in wildlife rodents originating from areas with high livestock density suggesting a possible transmission from livestock to wild rodents.
Related JoVE Video
A 12-year molecular survey of clinical herpes simplex virus type 2 isolates demonstrates the circulation of clade A and B strains in Germany.
J. Clin. Virol.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes.
Related JoVE Video
Sentinel birds in wild-bird resting sites as potential indicators for West Nile virus infections in Germany.
Arch. Virol.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
West Nile virus (WNV) is a mosquito-transmitted flavivirus with wild birds as its natural hosts. Ravens, falcons and jays are highly susceptible for WNV and develop deadly encephalitis, while other bird species undergo only subclinical infections. Migratory birds are efficient vectors for geographic spreading of WNV. Until now, WNV infections have not been diagnosed in Germany, but infections in humans and horses have occurred recently in Austria, Hungary and Italy. To investigate potential WNV introduction by infected wild birds, we have monitored the serological status of ducks in three national sentinel stations. No WNV-positive reactions were found, whereas sera from coots from northern Iran were positive.
Related JoVE Video
Dobrava-belgrade virus spillover infections, Germany.
Emerging Infect. Dis.
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
We present the molecular identification of Apodemus agrarius (striped field mouse) as reservoir host of the Dobrava-Belgrade virus (DOBV) lineage DOBV-Aa in 3 federal states of Germany. Phylogenetic analyses provided evidence for multiple spillover of DOBV-Aa to A. flavicollis, a crucial prerequisite for host switch and genetic reassortment.
Related JoVE Video
Detection of a novel hepatitis E-like virus in faeces of wild rats using a nested broad-spectrum RT-PCR.
J. Gen. Virol.
PUBLISHED: 11-04-2009
Show Abstract
Hide Abstract
Hepatitis E is a rare human disease in developed countries. It is caused by hepatitis E virus (HEV), which is probably transmitted zoonotically to humans from domestic pigs and wild boars. Multiple reports on the detection of HEV-specific antibodies in rats have suggested the presence of an HEV-related agent; however, infectious virus or a viral genome has not been demonstrated so far. Here, a nested broad-spectrum RT-PCR protocol was developed capable of detecting different HEV types including those derived from wild boar and chicken. Screening of 30 faecal samples from wild Norway rats (Rattus norvegicus) from Hamburg (Germany) resulted in the detection of two sequences with similarities to human, mammalian and avian HEV. Virus particles with a morphology reminiscent of HEV were demonstrated by immunoelectron microscopy in one of these samples and the virus was tentatively designated rat HEV. Genome fragments with sizes of 4019 and 1545 nt were amplified from two samples. Sequence comparison with human and avian strains revealed only 59.9 and 49.9 % sequence identity, respectively. Similarly, the deduced amino acid sequence for the complete capsid protein had 56.2 and 42.9 % identity with human and avian strains, respectively. Inoculation of the samples onto three different permanent rat liver cell lines did not result in detectable virus replication as assayed by RT-PCR with cells of the fifth virus passage. Further investigations are necessary to clarify the zoonotic potential of rat HEV and to assess its suitability to serve in a laboratory rat animal model for human hepatitis E.
Related JoVE Video
Prevalence of Hepatitis E virus-specific antibodies in sera of German domestic pigs estimated by using different assays.
Vet. Microbiol.
PUBLISHED: 09-22-2009
Show Abstract
Hide Abstract
Hepatitis E virus is the causative agent of an acute hepatitis in humans. In industrialized countries, autochthonous hepatitis E cases in the past were mainly of undetermined origin, whereupon nowadays some cases may be linked to zoonotic transmission of HEV from pigs and wild boars. In contrast to several European countries the HEV status of German domestic pigs and a possible risk of transmission are unknown so far. Here, a novel peptide-based ELISA was used to detect HEV-specific antibodies in 1072 sera from German domestic pigs resulting in an average seroprevalence of 49.8% indicating widespread HEV infections in these animals. A comparative testing of 321 randomly selected sera revealed a seroprevalence of 64.8% when using a commercially available ELISA and 43.9% for the novel peptide-based ELISA but concordant results were obtained in both tests only for 56.1% of the sera. Additional re-testing of 23 randomly selected sera with a modified commercially available immunoblot revealed discordant results also. The use of different antigens and the measurement of different immunoglobulin classes are considered to be responsible for the observed variations of the results. Though the present study revealed a high seroprevalence of HEV in the German domestic pig population and a potential risk of transmission to humans, the differing results of the tests highlight the necessity of a standardization of serological assays for comparative seroprevalence and longitudinal studies.
Related JoVE Video
Novel approach to differentiate subclades of varicella-zoster virus genotypes E1 and E2 in Germany.
Virus Res.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
Varicella-zoster virus (VZV) is the causative agent of chicken pox (varicella) in children and reactivation of VZV in elderly or immunocompromised persons can cause shingles (zoster). A subclade differentiation of the most prevalent VZV genotypes E1 and E2 in Germany was not possible with the current genotyping methods in use, but is highly important to understand the VZV molecular evolution in more detail and especially to follow up the routes of infection. Therefore the objective of this study was to develop a simple PCR-based method for differentiation of E1 and E2 subclades. Viral DNA was isolated from vesicle fluid samples of six selected German zoster patients and used to amplify nine complete open reading frames (ORFs) of the VZV genome by different PCR assays. Phylogenetic analysis was performed by a Bayesian approach. Based on the analysis of a total of nine ORFs, a 7482 bp stretch consisting of ORFs 5, 37 and 62 contained informative sites for identification of novel subclades E1a, E2a and E2b for VZV genotypes E1 and E2. Specific single nucleotide polymorphisms (SNPs) were demonstrated for subclades E2a and E2b within the ORFs 5, 37 and 62, whereas a subclade E1a-specific SNP was found in ORF 56. The classification of E1 and E2 subclades may facilitate a more exact and in-depth monitoring of the molecular evolution of VZV in Germany in the future.
Related JoVE Video
A 10-year molecular survey of herpes simplex virus type 1 in Germany demonstrates a stable and high prevalence of genotypes A and B.
J. Clin. Virol.
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
Recently three different herpes simplex virus type 1 (HSV-1) genotypes (A, B and C) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes.
Related JoVE Video
Seroepidemiological study in a Puumala virus outbreak area in South-East Germany.
Med. Microbiol. Immunol.
PUBLISHED: 01-16-2009
Show Abstract
Hide Abstract
Puumala virus (PUUV) is the cause of the majority of haemorrhagic fever with renal syndrome cases in Germany. In 2004, a nephropathia epidemica outbreak was recorded in Lower Bavaria, South-East Germany. For a seroepidemiological study in this region including the resident population at four locations (n = 178) and soldiers from one location (n = 208) indirect immunoglobulin M (IgM) and immunoglobulin G (IgG) enzyme-linked immunosorbent assays (ELISAs) and immunoblot tests based on a yeast-expressed PUUV nucleocapsid protein were established. The validation using human serum panels originating from Germany revealed a diagnostic sensitivity and specificity of 98/100% for the IgM ELISA, 99/99% for the IgG ELISA, 99/100% for the IgM immunoblot test and 100/96% for the IgG immunoblot test. Using the novel IgG assays as well as a commercial IgG ELISA and an immunofluorescence assay for the resident population an average prevalence of 6.7% (12 of 178) with a range of 0% (0 of 21) to 11.9% (7 of 59) was observed. Positive serological results were equally distributed between males and females with an average age of 63 for males and 52 for females. The seroprevalence in the soldier group was found to be about 1% with one positive male of 203 (age 46 years) and one positive female of five (age 47 years). In conclusion, the PUUV seroprevalence in the residents of the outbreak region in Lower Bavaria was found to be up to fivefold higher than the average hantavirus seroprevalence of the German population.
Related JoVE Video
Frequent combination of antimicrobial multiresistance and extraintestinal pathogenicity in Escherichia coli isolates from urban rats (Rattus norvegicus) in Berlin, Germany.
PLoS ONE
Show Abstract
Hide Abstract
Urban rats present a global public health concern as they are considered a reservoir and vector of zoonotic pathogens, including Escherichia coli. In view of the increasing emergence of antimicrobial resistant E. coli strains and the on-going discussion about environmental reservoirs, we intended to analyse whether urban rats might be a potential source of putatively zoonotic E. coli combining resistance and virulence. For that, we took fecal samples from 87 brown rats (Rattus norvegicus) and tested at least three E. coli colonies from each animal. Thirty two of these E. coli strains were pre-selected from a total of 211 non-duplicate isolates based on their phenotypic resistance to at least three antimicrobial classes, thus fulfilling the definition of multiresistance. As determined by multilocus sequence typing (MLST), these 32 strains belonged to 24 different sequence types (STs), indicating a high phylogenetic diversity. We identified STs, which frequently occur among extraintestinal pathogenic E. coli (ExPEC), such as STs 95, 131, 70, 428, and 127. Also, the detection of a number of typical virulence genes confirmed that the rats tested carried ExPEC-like strains. In particular, the finding of an Extended-spectrum beta-lactamase (ESBL)-producing strain which belongs to a highly virulent, so far mainly human- and avian-restricted ExPEC lineage (ST95), which expresses a serogroup linked with invasive strains (O18:NM:K1), and finally, which produces an ESBL-type frequently identified among human strains (CTX-M-9), pointed towards the important role, urban rats might play in the transmission of multiresistant and virulent E. coli strains. Indeed, using a chicken infection model, this strain showed a high in vivo pathogenicity. Imagining the high numbers of urban rats living worldwide, the way to the transmission of putatively zoonotic, multiresistant, and virulent strains might not be far ahead. The unforeseeable consequences of such an emerging public health threat need careful consideration in the future.
Related JoVE Video
Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics.
Arch. Virol.
Show Abstract
Hide Abstract
Dobrava-Belgrade virus (DOBV) is a human pathogen that has evolved in, and is hosted by, mice of several species of the genus Apodemus. We propose a subdivision of the species Dobrava-Belgrade virus into four related genotypes - Dobrava, Kurkino, Saaremaa, and Sochi - that show characteristic differences in their phylogeny, specific host reservoirs, geographical distribution, and pathogenicity for humans.
Related JoVE Video
Isolation of three novel rat and mouse papillomaviruses and their genomic characterization.
PLoS ONE
Show Abstract
Hide Abstract
Despite a growing knowledge about the biological diversity of papillomaviruses (PV), only little is known about non-human PV in general and about PV mice models in particular. We cloned and sequenced the complete genomes of two novel PV types from the Norway rat (Rattus norvegicus; RnPV2) and the wood mouse (Apodemus sylvaticus; AsPV1) as well as a novel variant of the recently described MmuPV1 (originally designated as MusPV) from a house mouse (Mus musculus; MmuPV1 variant). In addition, we conducted phylogenetic analyses using a systematically representative set of 79 PV types, including the novel sequences. As inferred from concatenated amino acid sequences of six proteins, MmuPV1 variant and AsPV1 nested within the Beta+Xi-PV super taxon as members of the Pi-PV. RnPV2 is a member of the Iota-PV that has a distant phylogenetic position from Pi-PV. The phylogenetic results support a complex scenario of PV diversification driven by different evolutionary forces including co-divergence with hosts and adaptive radiations to new environments. PV types particularly isolated from mice and rats are the basis for new animal models, which are valuable to study PV induced tumors and new treatment options.
Related JoVE Video
Multiple synchronous outbreaks of Puumala virus, Germany, 2010.
Emerging Infect. Dis.
Show Abstract
Hide Abstract
To investigate 2,017 cases of hantavirus disease in Germany, we compared 38 new patient-derived Puumala virus RNA sequences identified in 2010 with bank vole-derived small segment RNA sequences. The epidemic process was driven by outbreaks of 6 Puumala virus clades comprising strains of human and vole origin. Each clade corresponded to a different outbreak region.
Related JoVE Video
Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus.
Arch. Virol.
Show Abstract
Hide Abstract
We developed serological tools for the detection of hantavirus-specific antibodies and hantavirus antigens in shrews. The work was focussed to generate Thottapalayam virus (TPMV)-specific monoclonal antibodies (mAbs) and anti-shrew immunoglobulin G (IgG) antibodies. The mAbs against TPMV nucleocapsid (N) protein were produced after immunization of BALB/c mice with recombinant TPMV N proteins expressed in Escherichia coli, baculovirus and Saccharomyces cerevisiae-mediated expression systems. In total, six TPMV N-protein-specific mAbs were generated that showed a characteristic fluorescent pattern in indirect immunofluorescence assay (IFA) using TPMV-infected Vero cells. Out of the six mAbs tested, five showed no cross-reaction to rodent-associated hantaviruses (Hantaan, Seoul, Puumala, Tula, Dobrava-Belgrade and Sin Nombre viruses) in IFA and enzyme-linked immunosorbent assay (ELISA), although one mAb reacted to Sin Nombre virus in IFA. None of the mAbs cross-reacted with an amino-terminal segment of the shrew-borne Asama virus N protein. Anti-shrew-IgG sera were prepared after immunization of rabbits and BALB/c-mice with protein-G-purified shrew IgG. TPMV-N-protein-specific sera were raised by immunisation of Asian house shrews (Suncus murinus) with purified yeast-expressed TPMV N protein. Using these tools, an indirect ELISA was developed to detect TPMV-N-protein-specific antibodies in the sera of shrews. Using an established serological assay, high TPMV N protein specific antibody titres were measured in the sera of TPMV-N-protein-immunized and experimentally TPMV-infected shrews, whereas no cross-reactivity to other hantavirus N proteins was found. Therefore, the generated mAbs and the established ELISA system represent useful serological tools to detect TPMV, TPMV-related virus antigens or hantavirus-specific antibodies in hantavirus-infected shrews.
Related JoVE Video
Bats worldwide carry hepatitis E virus-related viruses that form a putative novel genus within the family Hepeviridae.
J. Virol.
Show Abstract
Hide Abstract
Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis in tropical and temperate climates. Tropical genotypes 1 and 2 are associated with food-borne and waterborne transmission. Zoonotic reservoirs (mainly pigs, wild boar, and deer) are considered for genotypes 3 and 4, which exist in temperate climates. In view of the association of several zoonotic viruses with bats, we analyzed 3,869 bat specimens from 85 different species and from five continents for hepevirus RNA. HEVs were detected in African, Central American, and European bats, forming a novel phylogenetic clade in the family Hepeviridae. Bat hepeviruses were highly diversified and comparable to human HEV in sequence variation. No evidence for the transmission of bat hepeviruses to humans was found in over 90,000 human blood donations and individual patient sera. Full-genome analysis of one representative virus confirmed formal classification within the family Hepeviridae. Sequence- and distance-based taxonomic evaluations suggested that bat hepeviruses constitute a distinct genus within the family Hepeviridae and that at least three other genera comprising human, rodent, and avian hepeviruses can be designated. This may imply that hepeviruses invaded mammalian hosts nonrecently and underwent speciation according to their host restrictions. Human HEV-related viruses in farmed and peridomestic animals might represent secondary acquisitions of human viruses, rather than animal precursors causally involved in the evolution of human HEV.
Related JoVE Video
Rat hepatitis E virus: geographical clustering within Germany and serological detection in wild Norway rats (Rattus norvegicus).
Infect. Genet. Evol.
Show Abstract
Hide Abstract
Zoonotic hepatitis E virus (HEV) infection in industrialised countries is thought to be caused by transmission from wild boar, domestic pig and deer as reservoir hosts. The detection of HEV-specific antibodies in rats and other rodents has suggested that these animals may represent an additional source for HEV transmission to human. Recently, a novel HEV (ratHEV) was detected in Norway rats from Hamburg, Germany, showing the typical genome organisation but a high nucleotide and amino acid sequence divergence to other mammalian and to avian HEV strains. Here we describe the multiple detection of ratHEV RNA and HEV-specific antibodies in Norway rats from additional cities in north-east and south-west Germany. The complete genome analysis of two novel strains from Berlin and Stuttgart confirmed the association of ratHEV to Norway rats. The present data indicated a continuing existence of this virus in the rat populations from Berlin and Hamburg. The phylogenetic analysis of a short segment of the open reading frame 1 confirmed a geographical clustering of the corresponding sequences. Serological investigations using recombinant ratHEV and genotype 3 capsid protein derivatives demonstrated antigenic differences which might be caused by the high amino acid sequence divergence in the immunodominant region. The high amount of animals showing exclusively ratHEV RNA or anti-ratHEV antibodies suggested a non-persistent infection in the Norway rat. Future studies have to prove the transmission routes of the virus in rat populations and its zoonotic potential. The recombinant ratHEV antigen generated here will allow future seroepidemiological studies to differentiate ratHEV and genotype 3 infections in humans and animals.
Related JoVE Video
Dobrava-Belgrade hantavirus from Germany shows receptor usage and innate immunity induction consistent with the pathogenicity of the virus in humans.
PLoS ONE
Show Abstract
Hide Abstract
Dobrava-Belgrade virus (DOBV) is a European hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in humans with fatality rates of up to 12%. DOBV-associated clinical cases typically occur also in the northern part of Germany where the virus is carried by the striped field mouse (Apodemus agrarius). However, the causative agent responsible for human illness has not been previously isolated.
Related JoVE Video
Bats host major mammalian paramyxoviruses.
Nat Commun
Show Abstract
Hide Abstract
The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
Related JoVE Video
Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans.
Clin. Vaccine Immunol.
Show Abstract
Hide Abstract
Toxoplasma gondii infections occur worldwide in humans and animals. In immunocompromised or prenatally infected humans, T. gondii can cause severe clinical symptoms. The identification of specific epitopes on T. gondii antigens is essential for the improvement and standardization of the serological diagnosis of toxoplasmosis. We selected 20 peptides mimicking linear epitopes on GRA1, GRA2, GRA4, and MIC3 antigenic T. gondii proteins in silico using the software ABCpred. A further 18 peptides representing previously published epitopes derived from GRA1, SAG1, NTPase1, and NTPase2 antigens were added to the panel. A peptide microarray assay was established to prove the diagnostic performance of the selected peptides with human serum samples. Seropositive human serum samples (n = 184) were collected from patients presenting with acute toxoplasmosis (n = 21), latent T. gondii infection (n = 53), and inactive ocular toxoplasmosis (n = 10) and from seropositive forest workers (n = 100). To adjust the cutoff values for each peptide, sera from seronegative forest workers (n = 75) and patients (n = 65) were used. Univariate logistic regression suggested the significant diagnostic potential of eight novel and two previously published peptides. A test based on these peptides had an overall diagnostic sensitivity of 69% (100% in ocular toxoplasmosis patients, 86% in acutely infected patients, 81% in latently infected patients, and 57% in seropositive forest workers). The analysis of seronegative sera performed with these peptides revealed a diagnostic specificity of 84%. The results of our study suggest that the use of a bioinformatic approach for epitope prediction in combination with peptide microarray testing is a powerful method for the selection of T. gondii epitopes as candidate antigens for serological diagnosis.
Related JoVE Video
Analysis of clonal type-specific antibody reactions in Toxoplasma gondii seropositive humans from Germany by peptide-microarray.
PLoS ONE
Show Abstract
Hide Abstract
Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals.
Related JoVE Video
Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe.
Virus Genes
Show Abstract
Hide Abstract
For a long time hantaviruses were believed to be exclusively rodent-borne pathogens. Recent findings of numerous shrew- and mole-borne hantaviruses raise important questions on their phylogenetic origin. The objective of our study was to prove the presence and distribution of shrew-associated Seewis virus (SWSV) in different Sorex species in Central Europe. Therefore, a total of 353 Sorex araneus, 59 S. minutus, 27 S. coronatus, and one S. alpinus were collected in Germany, the Czech Republic, and Slovakia. Screening by hantavirus-specific L-segment RT-PCR revealed specific amplification products in tissues of 49 out of 353 S. araneus and four out of 59 S. minutus. S-segment sequences were obtained for 45 of the L-segment positive S. araneus and all four L-segment positive S. minutus. Phylogenetic investigation of these sequences from Germany, the Czech Republic, and Slovakia demonstrated their similarity to SWSV sequences from Hungary, Finland, Austria, and other sites in Germany. The low intra-cluster sequence variability and the high inter-cluster divergence suggest a long-term SWSV evolution in isolated Sorex populations. In 28 of the 49 SWSV S-segment sequences, an additional putative open reading frame (ORF) on the opposite strand to the nucleocapsid protein-encoding ORF was identified. This is the first comprehensive sequence analysis of SWSV strains from Germany, the Czech Republic, and Slovakia, indicating its broad geographical distribution and high genetic divergence. Future studies have to prove whether both S. araneus and S. minutus represent SWSV reservoir hosts or spillover infections are responsible for the parallel molecular detection of SWSV in both species.
Related JoVE Video
Tula virus infections in the Eurasian water vole in Central Europe.
Vector Borne Zoonotic Dis.
Show Abstract
Hide Abstract
Recent reports of novel hantaviruses in shrews and moles and the detection of rodent-borne hantaviruses in different rodent species raise important questions about their host range and specificity, evolution, and host adaptation. Tula virus (TULV), a European hantavirus, is believed to be slightly or non-pathogenic in humans and was initially detected in the common vole Microtus arvalis, the East European vole M. levis (formerly rossiaemeridionalis), and subsequently in other Microtus species. Here we report the first multiple RT-PCR detection and sequence analyses of TULV in the Eurasian water vole Arvicola amphibius from different regions in Germany and Switzerland. Additional novel TULV S-, M-, and L-segment sequences were obtained from M. arvalis and M. agrestis trapped in Germany at sites close to trapping sites of TULV-RT-PCR-positive water voles. Serological investigations using a recombinant TULV nucleocapsid protein revealed the presence of TULV-reactive antibodies in RT-PCR-positive and a few RT-PCR-negative water voles. Phylogenetic analyses revealed a geographical clustering of the novel S-, M-, and L-segment sequences from A. amphibius with those of M. arvalis- and M. agrestis-derived TULV lineages, and may suggest multiple TULV spillover or a potential host switch to A. amphibius. Future longitudinal studies of sympatric Microtus and Arvicola populations and experimental infection studies have to prove the potential of A. amphibius as an additional TULV reservoir host.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.