JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Contact hypersensitivity to oxazolone provokes vulvar mechanical hyperalgesia in mice.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The interplay among pain, allergy and dysregulated inflammation promises to yield significant conceptual advances in immunology and chronic pain. Hapten-mediated contact hypersensitivity reactions are used to model skin allergies in rodents but have not been utilized to study associated changes in pain perception in the affected skin. Here we characterized changes in mechanical hyperalgesia in oxazolone-sensitized female mice challenged with single and repeated labiar skin exposure to oxazolone. Female mice were sensitized with topical oxazolone on their flanks and challenged 1-3 times on the labia. We then measured mechanical sensitivity of the vulvar region with an electronic pressure meter and evaluated expression of inflammatory genes, leukocyte influx and levels of innervation in the labiar tissue. Oxazolone-sensitized mice developed vulvar mechanical hyperalgesia after a single labiar oxazolone challenge. Hyperalgesia lasted up to 24 hours along with local influx of neutrophils, upregulation of inflammatory cytokine gene expression, and increased density of cutaneous labiar nerve fibers. Three daily oxazolone challenges produced vulvar mechanical hyperalgesic responses and increases in nerve density that were detectable up to 5 days post-challenge even after overt inflammation resolved. This persistent vulvar hyperalgesia is resonant with vulvodynia, an understudied chronic pain condition that is remarkably prevalent in 18-60 year-old women. An elevated risk for vulvodynia has been associated with a history of environmental allergies. Our pre-clinical model can be readily adapted to regimens of chronic exposures and long-term assessment of vulvar pain with and without concurrent inflammation to improve our understanding of mechanisms underlying subsets of vulvodynia and to develop new therapeutics for this condition.
Related JoVE Video
Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats.
PLoS ONE
PUBLISHED: 06-06-2009
Show Abstract
Hide Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by contractions of D4Z4 repeats at 4q35.2 thought to induce misregulation of nearby genes, one of which, DUX4, is actually localized within each repeat. A conserved ORF (mDUX), embedded within D4Z4-like repeats, encoding a double-homeodomain protein, was recently identified on mouse chromosome 10. We show here that high level mDUX expression induces myoblast death, while low non-toxic levels block myogenic differentiation by down-regulating MyoD and Myf5. Toxicity and MyoD/Myf5 expression changes were competitively reversed by overexpression of Pax3 or Pax7, implying mechanistic similarities with the anti-myogenic activity of human DUX4. We tested the effect of mDUX expression on Xenopus development, and found that global overexpression led to abnormalities in gastrulation. When targeted unilaterally into blastomeres fated to become tail muscle in 16-cell embryos, mDUX caused markedly reduced tail myogenesis on the injected side. These novel cell and animal models highlight the myopathic nature of sequences within the FSHD-related repeat array.
Related JoVE Video
RNA gain-of-function in spinocerebellar ataxia type 8.
PLoS Genet.
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Microsatellite expansions cause a number of dominantly-inherited neurological diseases. Expansions in coding-regions cause protein gain-of-function effects, while non-coding expansions produce toxic RNAs that alter RNA splicing activities of MBNL and CELF proteins. Bi-directional expression of the spinocerebellar ataxia type 8 (SCA8) CTG CAG expansion produces CUG expansion RNAs (CUG(exp)) from the ATXN8OS gene and a nearly pure polyglutamine expansion protein encoded by ATXN8 CAG(exp) transcripts expressed in the opposite direction. Here, we present three lines of evidence that RNA gain-of-function plays a significant role in SCA8: 1) CUG(exp) transcripts accumulate as ribonuclear inclusions that co-localize with MBNL1 in selected neurons in the brain; 2) loss of Mbnl1 enhances motor deficits in SCA8 mice; 3) SCA8 CUG(exp) transcripts trigger splicing changes and increased expression of the CUGBP1-MBNL1 regulated CNS target, GABA-A transporter 4 (GAT4/Gabt4). In vivo optical imaging studies in SCA8 mice confirm that Gabt4 upregulation is associated with the predicted loss of GABAergic inhibition within the granular cell layer. These data demonstrate that CUG(exp) transcripts dysregulate MBNL/CELF regulated pathways in the brain and provide mechanistic insight into the CNS effects of other CUG(exp) disorders. Moreover, our demonstration that relatively short CUG(exp) transcripts cause RNA gain-of-function effects and the growing number of antisense transcripts recently reported in mammalian genomes suggest unrecognized toxic RNAs contribute to the pathophysiology of polyglutamine CAG CTG disorders.
Related JoVE Video
Use of adenovirus for ectopic gene expression in Xenopus.
Dev. Dyn.
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
We show that replication defective adenovirus can be used for localized overexpression of a chosen gene in Xenopus tadpoles. Xenopus contains two homologs of the Coxsackie and Adenovirus Receptor (xCAR1 and 2), both of which can confer sensitivity for adenovirus infection. xCAR1 mRNA is present from the late gastrula stage and xCAR2 throughout development, both being widely expressed in the embryo and tadpole. Consistent with the expression of the receptors, adenovirus will infect a wide range of Xenopus tissues cultured in vitro. It will also infect early embryos when injected into the blastocoel or archenteron cavities. Furthermore, adenovirus can be delivered by localized injection to tadpoles and will infect a patch of cells around the injection site. The expression of green fluorescent protein in infected cells persists for several weeks. This new gene delivery method complements the others that are already available. Developmental Dynamics 238:1412-1421, 2009. (c) 2009 Wiley-Liss, Inc.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.