JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exploring a 2-Naphthoic Acid Template for the Structure-Based Design of P2Y14 Receptor Antagonist Molecular Probes.
ACS Chem. Biol.
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
The P2Y14 receptor (P2Y14R), one of eight P2Y G protein-coupled receptors (GPCR), is involved in inflammatory, endocrine, and hypoxic processes and is an attractive pharmaceutical target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (6, PPTN). A model of hP2Y14R based on recent hP2Y12R X-ray structures together with simulated antagonist docking suggested that the piperidine ring is suitable for fluorophore conjugation while preserving affinity. Chain-elongated alkynyl or amino derivatives of 6 for click or amide coupling were synthesized, and their antagonist activities were measured in hP2Y14R-expressing CHO cells. Moreover, a new Alexa Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity, as compared to 13 nM for the alkyne precursor 22. A flow cytometry assay employing 30 as a fluorescent probe was used to quantify specific binding to P2Y14R. Known P2Y receptor ligands inhibited binding of 30 with properties consistent with their previously established receptor selectivities and affinities. These results illustrate that potency in this series of 2-naphthoic acid derivatives can be preserved by chain functionalization, leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. This approach demonstrates the predictive power of GPCR homology modeling and the relevance of newly determined X-ray structures to GPCR medicinal chemistry.
Related JoVE Video
Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs.
Nat Commun
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumours; however, mutations at SMO have been found to abolish their antitumour effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6-2.8?Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbours multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D473(6.54f) elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules.
Related JoVE Video
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator.
Science
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.
Related JoVE Video
Constitutive phospholipid scramblase activity of a G protein-coupled receptor.
Nat Commun
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Opsin, the rhodopsin apoprotein, was recently shown to be an ATP-independent flippase (or scramblase) that equilibrates phospholipids across photoreceptor disc membranes in mammalian retina, a process required for disc homoeostasis. Here we show that scrambling is a constitutive activity of rhodopsin, distinct from its light-sensing function. Upon reconstitution into vesicles, discrete conformational states of the protein (rhodopsin, a metarhodopsin II-mimic, and two forms of opsin) facilitated rapid (>10,000 phospholipids per protein per second) scrambling of phospholipid probes. Our results indicate that the large conformational changes involved in converting rhodopsin to metarhodopsin II are not required for scrambling, and that the lipid translocation pathway either lies near the protein surface or involves membrane packing defects in the vicinity of the protein. In addition, we demonstrate that ?2-adrenergic and adenosine A2A receptors scramble lipids, suggesting that rhodopsin-like G protein-coupled receptors may play an unexpected moonlighting role in re-modelling cell membranes.
Related JoVE Video
Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges.
Structure
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock assessment was established to stimulate and monitor the progress in molecular modeling and ligand docking for GPCRs. The four targets in the present third assessment round presented new and diverse challenges for modelers, including prediction of allosteric ligand interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by extremely distant homology for smoothened receptor. Forty-four modeling groups participated in the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for small rigid orthosteric ligands and models built by close homology, and they correctly predicted protein fold for distant homology targets. Predictions of long loops and GPCR activation states remain unsolved problems.
Related JoVE Video
Allosteric sodium in class A GPCR signaling.
Trends Biochem. Sci.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Despite their functional and structural diversity, G-protein-coupled receptors (GPCRs) share a common mechanism of signal transduction via conformational changes in the seven-transmembrane (7TM) helical domain. New major insights into this mechanism come from the recent crystallographic discoveries of a partially hydrated sodium ion that is specifically bound in the middle of the 7TM bundle of multiple class A GPCRs. This review discusses the remarkable structural conservation and distinct features of the Na(+) pocket in this most populous GPCR class, as well as the conformational collapse of the pocket upon receptor activation. New insights help to explain allosteric effects of sodium on GPCR agonist binding and activation, and sodium's role as a potential co-factor in class A GPCR function.
Related JoVE Video
Structure of the human P2Y12 receptor in complex with an antithrombotic drug.
Nature
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R--including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor--have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6?Å resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.
Related JoVE Video
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Nat Commun
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-?m-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.
Related JoVE Video
Agonist-bound structure of the human P2Y12 receptor.
Nature
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5?Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1?Å resolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the ?-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.
Related JoVE Video
Molecular control of ?-opioid receptor signalling.
Nature
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8?Å high-resolution crystal structure of the human ?-opioid receptor (?-OR), revealing the presence and fundamental role of a sodium ion in mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive ?-OR sodium ion site architecture is centrally located in a polar interaction network in the seven-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn?131 to an alanine or a valine augments constitutive ?-arrestin-mediated signalling. Asp95Ala, Asn310Ala and Asn314Ala mutations transform classical ?-opioid antagonists such as naltrindole into potent ?-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signalling, revealing that sodium-coordinating residues act as 'efficacy switches' at a prototypic G-protein-coupled receptor.
Related JoVE Video
Serial femtosecond crystallography of G protein-coupled receptors.
Science
PUBLISHED: 12-21-2013
Show Abstract
Hide Abstract
X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.
Related JoVE Video
Chemotype-selective Modes of Action of ?-Opioid Receptor Agonists.
J. Biol. Chem.
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
The crystal structures of opioid receptors provide a novel platform for inquiry into opioid receptor function. The molecular determinants for activation of the ?-opioid receptor (KOR) were studied using a combination of agonist docking, functional assays, and site-directed mutagenesis. Eighteen positions in the putative agonist binding site of KOR were selected and evaluated for their effects on receptor binding and activation by ligands representing four distinct chemotypes: the peptide dynorphin A(1-17), the arylacetamide U-69593, and the non-charged ligands salvinorin A and the octahydroisoquinolinone carboxamide 1xx. Minimally biased docking of the tested ligands into the antagonist-bound KOR structure generated distinct binding modes, which were then evaluated biochemically and pharmacologically. Our analysis identified two types of mutations: those that affect receptor function primarily via ligand binding and those that primarily affect function. The shared and differential mechanisms of agonist binding and activation in KOR are further discussed. Usually, mutations affecting function more than binding were located at the periphery of the binding site and did not interact strongly with the various ligands. Analysis of the crystal structure along with the present results provide fundamental insights into the activation mechanism of the KOR and suggest that "functional" residues, along with water molecules detected in the crystal structure, may be directly involved in transduction of the agonist binding event into structural changes at the conserved rotamer switches, thus leading to receptor activation.
Related JoVE Video
Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex.
Science
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom-resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor-gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.
Related JoVE Video
Structure-based ligand discovery targeting orthosteric and allosteric pockets of dopamine receptors.
Mol. Pharmacol.
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
Small molecules targeting allosteric pockets of G protein-coupled receptors (GPCRs) have a great therapeutic potential for the treatment of neurologic and other chronic disorders. Here we performed virtual screening for orthosteric and putative allosteric ligands of the human dopamine D3 receptor (D3R) using two optimized crystal-structure-based models: the receptor with an empty binding pocket (D3R(APO)), and the receptor complex with dopamine (D3R(Dopa)). Subsequent biochemical and functional characterization revealed 14 novel ligands with a binding affinity of better than 10 ?M in the D3R(APO) candidate list (56% hit rate), and 8 novel ligands in the D3R(Dopa) list (32% hit rate). Most ligands in the D3R(APO) model span both orthosteric and extended pockets and behave as antagonists at D3R, with compound 7 showing the highest potency of dopamine inhibition (IC?? = 7 nM). In contrast, compounds identified by the D3R(Dopa) model are predicted to occupy an allosteric site at the extracellular extension of the pocket, and they all lack the anchoring amino group. Compounds targeting the allosteric site display a variety of functional activity profiles, where behavior of at least two compounds (23 and 26) is consistent with noncompetitive allosteric modulation of dopamine signaling in the extracellular signal-regulated kinase 1 and 2 phosphorylation and ?-arrestin recruitment assays. The high affinity and ligand efficiency of the chemically diverse hits identified in this study suggest utility of structure-based screening targeting allosteric sites of GPCRs.
Related JoVE Video
Insights into the structure of class B GPCRs.
Trends Pharmacol. Sci.
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
The secretin-like (class B) family of G protein-coupled receptors (GPCRs) are key players in hormonal homeostasis and are interesting drug targets for the treatment of several metabolic disorders (such as type 2 diabetes, osteoporosis, and obesity) and nervous system diseases (such as migraine, anxiety, and depression). The recently solved crystal structures of the transmembrane domains of the human glucagon receptor and human corticotropin-releasing factor receptor 1 have opened up new opportunities to study the structure and function of class B GPCRs. The current review shows how these structures offer more detailed explanations to previous biochemical and pharmacological studies of class B GPCRs, and provides new insights into their interactions with ligands.
Related JoVE Video
The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes.
J. Mol. Biol.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of catecholamine neurotransmitters, and a reduction in TH activity is associated with several neurological diseases. Human TH is regulated, among other mechanisms, by Ser19-phosphorylation-dependent interaction with 14-3-3 proteins. The N-terminal sequence (residues 1-43), which corresponds to an extension to the TH regulatory domain, also interacts with negatively charged membranes. By using X-ray crystallography together with molecular dynamics simulations and structural bioinformatics analysis, we have probed the conformations of the Ser19-phosphorylated N-terminal peptide [THp-(1-43)] bound to 14-3-3?, free in solution and bound to a phospholipid bilayer, and of the unphosphorylated peptide TH-(1-43) both free and bilayer bound. As seen in the crystal structure of THp-(1-43) complexed with 14-3-3?, the region surrounding pSer19 adopts an extended conformation in the bound state, whereas THp-(1-43) adopts a bent conformation when free in solution, with higher content of secondary structure and higher number of internal hydrogen bonds. TH-(1-43) in solution presents the highest mobility and least defined structure of all forms studied, and it shows an energetically more favorable interaction with membranes relative to THp-(1-43). Cationic residues, notably Arg15 and Arg16, which are the recognition sites of the kinases phosphorylating at Ser19, are also contributing to the interaction with the membrane. Our results reveal the structural flexibility of this region of TH, in accordance with the functional versatility and conformational adaptation to different partners. Furthermore, this structural information has potential relevance for the development of therapeutics for neurodegenerative disorders, through modulation of TH-partner interactions.
Related JoVE Video
Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs.
Curr. Opin. Struct. Biol.
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
Fluorine-19 is a spin-½ NMR isotope with high sensitivity and large chemical shift dispersion, which makes it attractive for high resolution NMR spectroscopy in solution. For studies of membrane proteins it is further of interest that (19)F is rarely found in biological materials, which enables observation of extrinsic (19)F labels with minimal interference from background signals. Today, after a period with rather limited use of (19)F NMR in structural biology, we witness renewed interest in this technology for studies of complex supramolecular systems. Here we report on recent (19)F NMR studies with the G protein-coupled receptor family of membrane proteins.
Related JoVE Video
?2 -Adrenergic Receptor Activation by Agonists Studied with (19) F NMR Spectroscopy.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Proteins in slow motion: (19) F NMR studies indicate that equilibria between active and inactive states of the human ?2 -adrenergic receptor require extensive structural rearrangements (arrows in picture). This was shown by an enthalpy difference of ?Ho ?40 kJ?mol(-1) and a slow exchange rate, with kex ?10 s(-1) .
Related JoVE Video
Genetically Encoded Chemical Probes in Cells Reveal the Binding Path of Urocortin-I to CRF Class B GPCR.
Cell
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Molecular determinants regulating the activation of class B G-protein-coupled receptors (GPCRs) by native peptide agonists are largely unknown. We have investigated here the interaction between the corticotropin releasing factor receptor type 1 (CRF1R) and its native 40-mer peptide ligand Urocortin-I directly in mammalian cells. By incorporating unnatural amino acid photochemical and new click-chemical probes into the intact receptor expressed in the native membrane of live cells, 44 intermolecular spatial constraints have been derived for the ligand-receptor interaction. The data were analyzed in the context of the recently resolved crystal structure of CRF1R transmembrane domain and existing extracellular domain structures, yielding a complete conformational model for the peptide-receptor complex. Structural features of the receptor-ligand complex yield molecular insights on the mechanism of receptor activation and the basis for discrimination between agonist and antagonist function.
Related JoVE Video
The Role of a Sodium Ion Binding Site in the Allosteric Modulation of the A2A Adenosine G Protein-Coupled Receptor.
Structure
PUBLISHED: 05-28-2013
Show Abstract
Hide Abstract
The function of G protein-coupled receptors (GPCRs) can be modulated by a number of endogenous allosteric molecules. In this study, we used molecular dynamics, radioligand binding, and thermostability experiments to elucidate the role of the recently discovered sodium ion binding site in the allosteric modulation of the human A2A adenosine receptor, conserved among class A GPCRs. While the binding of antagonists and sodium ions to the receptor was noncompetitive in nature, the binding of agonists and sodium ions appears to require mutually exclusive conformational states of the receptor. Amiloride analogs can also bind to the sodium binding pocket, showing distinct patterns of agonist and antagonist modulation. These findings suggest that physiological concentrations of sodium ions affect functionally relevant conformational states of GPCRs and can help to design novel synthetic allosteric modulators or bitopic ligands exploiting the sodium ion binding pocket.
Related JoVE Video
Engineered nanostructured ?-sheet peptides protect membrane proteins.
Nat. Methods
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
We designed ?-strand peptides that stabilize integral membrane proteins (IMPs). ?-strand peptides self-assemble in solution as filaments and become restructured upon association with IMPs; resulting IMP-?-strand peptide complexes resisted aggregation when diluted in detergent-free buffer and were visible as stable, single particles with low detergent background in electron micrographs. ?-strand peptides enabled clear visualization of flexible conformations in the highly dynamic ATP-binding cassette (ABC) transporter MsbA.
Related JoVE Video
Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A).
PLoS Pathog.
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
Botulinum neurotoxin serotype A (BoNT/A) causes transient muscle paralysis by entering motor nerve terminals (MNTs) where it cleaves the SNARE protein Synaptosomal-associated protein 25 (SNAP25206) to yield SNAP25197. Cleavage of SNAP25 results in blockage of synaptic vesicle fusion and inhibition of the release of acetylcholine. The specific uptake of BoNT/A into pre-synaptic nerve terminals is a tightly controlled multistep process, involving a combination of high and low affinity receptors. Interestingly, the C-terminal binding domain region of BoNT/A, HC/A, is homologous to fibroblast growth factors (FGFs), making it a possible ligand for Fibroblast Growth Factor Receptors (FGFRs). Here we present data supporting the identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a high affinity receptor for BoNT/A in neuronal cells. HC/A binds with high affinity to the two extra-cellular loops of FGFR3 and acts similar to an agonist ligand for FGFR3, resulting in phosphorylation of the receptor. Native ligands for FGFR3; FGF1, FGF2, and FGF9 compete for binding to FGFR3 and block BoNT/A cellular uptake. These findings show that FGFR3 plays a pivotal role in the specific uptake of BoNT/A across the cell membrane being part of a larger receptor complex involving ganglioside- and protein-protein interactions.
Related JoVE Video
A novel approach to quantify G-protein-coupled receptor dimerization equilibrium using bioluminescence resonance energy transfer.
Methods Mol. Biol.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Along with other resonance energy transfer techniques, bioluminescence resonance energy transfer (BRET) has emerged as an important method for demonstrating protein-protein interactions in cells. In the field of G-protein-coupled receptors, including chemokine receptors, BRET has been widely used to investigate homo- and heterodimerization, a feature of their interactions that is emerging as integral to function and regulation. While demonstrating the existence of dimers for a given receptor proved to be fairly straightforward, quantitative comparisons of different receptors or mutants are nontrivial because of inevitable variations in the expression of receptor constructs. The uncontrollable parameters of the cellular expression machinery make amounts of transfected DNA extremely poor predictors for the expression levels of BRET donor and acceptor receptor constructs, even in relative terms. In this chapter, we show that properly accounting for receptor expression levels is critical for quantitative interpretation of BRET data. We also provide a comprehensive account of expected responses in all types of BRET experiments and propose a framework for uniform and accurate quantitative treatment of these responses. The framework allows analysis of both homodimer and heterodimer BRET data. The important caveats and obstacles for quantitative treatment are outlined, and the utility of the approach is illustrated by its application to the homodimerization of wild-type (WT) and mutant forms of the chemokine receptor CXCR4.
Related JoVE Video
Rational design of fatty acid amide hydrolase inhibitors that act by covalently bonding to two active site residues.
J. Am. Chem. Soc.
PUBLISHED: 04-12-2013
Show Abstract
Hide Abstract
The design and characterization of ?-ketoheterocycle fatty acid amide hydrolase (FAAH) inhibitors are disclosed that additionally and irreversibly target a cysteine (Cys269) found in the enzyme cytosolic port while maintaining the reversible covalent Ser241 attachment responsible for their rapid and initially reversible enzyme inhibition. Two ?-ketooxazoles (3 and 4) containing strategically placed electrophiles at the C5 position of the pyridyl substituent of 2 (OL-135) were prepared and examined as inhibitors of FAAH. Consistent with the observed time-dependent noncompetitive inhibition, the cocrystal X-ray structure of 3 bound to a humanized variant of rat FAAH revealed that 3 was not only covalently bound to the active site catalytic nucleophile Ser241 as a deprotonated hemiketal, but also to Cys269 through the pyridyl C5-substituent, thus providing an inhibitor with dual covalent attachment in the enzyme active site. In vivo characterization of the prototypical inhibitors in mice demonstrates that they raise endogenous brain levels of FAAH substrates to a greater extent and for a much longer duration (>6 h) than the reversible inhibitor 2, indicating that the inhibitors accumulate and persist in the brain to completely inhibit FAAH for a prolonged period. Consistent with this behavior and the targeted irreversible enzyme inhibition, 3 reversed cold allodynia in the chronic constriction injury model of neuropathic pain in mice for a sustained period (>6 h) beyond that observed with the reversible inhibitor 2, providing effects that were unchanged over the 1-6 h time course monitored.
Related JoVE Video
Structural features for functional selectivity at serotonin receptors.
Science
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for ?-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.
Related JoVE Video
Structural basis for molecular recognition at serotonin receptors.
Science
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
Related JoVE Video
Sphingosine-1-phosphate and its receptors: structure, signaling, and influence.
Annu. Rev. Biochem.
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
The sphingosine-1-phosphate (S1P) receptor signaling system has biological and medical importance and is the first lipid G protein-coupled receptor (GPCR) structure to be solved to 2.8-Å resolution. S1P binds to five high-affinity GPCRs generating multiple downstream signals that play essential roles in vascular development and endothelial integrity, control of cardiac rhythm, and routine oral treatment of multiple sclerosis. Genetics, chemistry, and now structural biology have advanced this integrated biochemical system. The S1P receptors have a novel N-terminal fold that occludes access to the binding pocket from the extracellular environment as well as orthosteric and bitopic ligands with very different physicochemical properties. S1P receptors and metabolizing enzymes have been deleted, inducibly deleted, and knocked in as tagged or altered receptors in mice. An array of genetic models allows analysis of integrated receptor function in vivo. We can now directly understand causal relationships among protein expression, signal, and control points in physiology and pathology.
Related JoVE Video
Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Amphiphile selection is a critical step for structural studies of membrane proteins (MPs). We have developed a family of steroid-based facial amphiphiles (FAs) that are structurally distinct from conventional detergents and previously developed FAs. The unique FAs stabilize MPs and form relatively small protein-detergent complexes (PDCs), a property considered favorable for MP crystallization. We attempted to crystallize several MPs belonging to different protein families, including the human gap junction channel protein connexin 26, the ATP binding cassette transporter MsbA, the seven-transmembrane G protein-coupled receptor-like bacteriorhodopsin, and cytochrome P450s (peripheral MPs). Using FAs alone or mixed with other detergents or lipids, we obtained 3D crystals of the above proteins suitable for X-ray crystallographic analysis. The fact that FAs enhance MP crystallizability compared with traditional detergents can be attributed to several properties, including increased protein stability, formation of small PDCs, decreased PDC surface flexibility, and potential to mediate crystal lattice contacts.
Related JoVE Video
Structure of the human glucagon class B G-protein-coupled receptor.
Nature
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a stalk region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (~12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagons amino terminus into the seven transmembrane domain.
Related JoVE Video
Structure of the human smoothened receptor bound to an antitumour agent.
Nature
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.
Related JoVE Video
Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A?A adenosine receptor.
J. Med. Chem.
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
Molecular modeling of agonist binding to the human A(2A) adenosine receptor (AR) was assessed and extended in light of crystallographic structures. Heterocyclic adenine nitrogens of cocrystallized agonist overlaid corresponding positions of the heterocyclic base of a bound triazolotriazine antagonist, and ribose moiety was coordinated in a hydrophilic region, as previously predicted based on modeling using the inactive receptor. Automatic agonist docking of 20 known potent nucleoside agonists to agonist-bound A(2A)AR crystallographic structures predicted new stabilizing protein interactions to provide a structural basis for previous empirical structure activity relationships consistent with previous mutagenesis results. We predicted binding of novel C2 terminal amino acid conjugates of A(2A)AR agonist CGS21680 and used these models to interpret effects on binding affinity of newly synthesized agonists. d-Amino acid conjugates were generally more potent than l-stereoisomers and free terminal carboxylates more potent than corresponding methyl esters. Amino acid moieties were coordinated close to extracellular loops 2 and 3. Thus, molecular modeling is useful in probing ligand recognition and rational design of GPCR-targeting compounds with specific pharmacological profiles.
Related JoVE Video
Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor.
J. Med. Chem.
PUBLISHED: 11-07-2011
Show Abstract
Hide Abstract
The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual fragment screening protocol against the recently determined human histamine H(1) receptor (H(1)R) crystal structure. The method combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. The optimized in silico screening approach was successfully applied to identify a chemically diverse set of novel fragment-like (?22 heavy atoms) H(1)R ligands with an exceptionally high hit rate of 73%. Of the 26 tested fragments, 19 compounds had affinities ranging from 10 ?M to 6 nM. The current study shows the potential of in silico screening against GPCR crystal structures to explore novel, fragment-like GPCR ligand space.
Related JoVE Video
Chaperone-like therapy with tetrahydrobiopterin in clinical trials for phenylketonuria: is genotype a predictor of response?
JIMD Rep
PUBLISHED: 09-20-2011
Show Abstract
Hide Abstract
Prospectively enrolled phenylketonuria patients (n=485) participated in an international Phase II clinical trial to identify the prevalence of a therapeutic response to daily doses of sapropterin dihydrochloride (sapropterin, KUVAN(®)). Responsive patients were then enrolled in two subsequent Phase III clinical trials to examine safety, ability to reduce blood Phenylalanine levels, dosage (5-20 mg/kg/day) and response, and bioavailability of sapropterin. We combined phenotypic findings in the Phase II and III clinical trials to classify study-related responsiveness associated with specific alleles and genotypes identified in the patients. We found that 17% of patients showed a response to sapropterin. The patients harbored 245 different genotypes derived from 122 different alleles, among which ten alleles were newly discovered. Only 16.3% of the genotypes clearly conferred a sapropterin-responsive phenotype. Among the different PAH alleles, only 5% conferred a responsive phenotype. The responsive alleles were largely but not solely missense mutations known to or likely to cause misfolding of the PAH subunit. However, the metabolic response was not robustly predictable from the PAH genotypes, based on the study design adopted for these clinical trials, and accordingly it seems prudent to test each person for this phenotype with a standardized protocol.
Related JoVE Video
GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles.
Methods
PUBLISHED: 08-16-2011
Show Abstract
Hide Abstract
The biophysical characterization of purified membrane proteins typically requires detergent mediated extraction from native lipid membrane environments. In the case of human G protein-coupled receptors (GPCRs), this process has been complicated by their conformational heterogeneity and the general lack of understanding the composition and interactions within the diverse human cellular membrane environment. Several successful GPCR structure determination efforts have shown that the addition of cholesterol analogs is often critical for maintaining protein stability. We have identified sterols that substantially increase the stability of the NOP receptor (ORL-1), a member of the opioid GPCR family, in a mixed micelle environment. Using dynamic light scattering and small-angle X-ray scattering, we have determined that the most thermal stabilizing sterol, cholesteryl hemisuccinate, induces the formation of a bicelle-like micelle architecture when mixed with dodecyl maltoside detergent. Together with mutagenesis studies and recent GPCR structures, our results provide indications that stabilization is attained through a combination of specific sterol binding to GPCRs and modulation of micelle morphology.
Related JoVE Video
Diversity and modularity of G protein-coupled receptor structures.
Trends Pharmacol. Sci.
PUBLISHED: 08-01-2011
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) comprise the most prolific family of cell membrane proteins, which share a general mechanism of signal transduction, but greatly vary in ligand recognition and function. Crystal structures are now available for rhodopsin, adrenergic, and adenosine receptors in both inactive and activated forms, as well as for chemokine, dopamine, and histamine receptors in inactive conformations. Here we review common structural features, outline the scope of structural diversity of GPCRs at different levels of homology, and briefly discuss the impact of the structures on drug discovery. Given the current set of GPCR crystal structures, a distinct modularity is now being observed between the extracellular (ligand-binding) and intracellular (signaling) regions. The rapidly expanding repertoire of GPCR structures provides a solid framework for experimental and molecular modeling studies, and helps to chart a roadmap for comprehensive structural coverage of the whole superfamily and an understanding of GPCR biological and therapeutic mechanisms.
Related JoVE Video
Ligand-dependent perturbation of the conformational ensemble for the GPCR ?2 adrenergic receptor revealed by HDX.
Structure
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
Mechanism of G protein-coupled receptor (GPCR) activation and their modulation by functionally distinct ligands remains elusive. Using the technique of amide hydrogen/deuterium exchange coupled with mass spectrometry, we examined the ligand-induced changes in conformational states and stability within the beta-2-adrenergic receptor (?(2)AR). Differential HDX reveals ligand-specific alterations in the energy landscape of the receptors conformational ensemble. The inverse agonists timolol and carazolol were found to be most stabilizing even compared with the antagonist alprenolol, notably in intracellular regions where G proteins are proposed to bind, while the agonist isoproterenol induced the largest degree of conformational mobility. The partial agonist clenbuterol displayed conformational effects found in both the inverse agonists and the agonist. This study highlights the regional plasticity of the receptor and characterizes unique conformations spanning the entire receptor sequence stabilized by functionally selective ligands, all of which differ from the profile for the apo receptor.
Related JoVE Video
Development of an Automated High Throughput LCP-FRAP Assay to Guide Membrane Protein Crystallization in Lipid Mesophases.
Cryst Growth Des
PUBLISHED: 06-11-2011
Show Abstract
Hide Abstract
Crystallization in lipidic mesophases (in meso) has been successfully used to obtain a number of high-resolution membrane protein structures including challenging members of the human G protein-coupled receptor (GPCR) family. Crystallogenesis in arguably the most successful mesophase, lipidic cubic phase (LCP), critically depends on the ability of protein to diffuse in the LCP matrix and to form specific protein-protein contacts to support crystal nucleation and growth. The ability of an integral membrane protein to diffuse in LCP is strongly affected by the protein aggregation state, the structural parameters of LCP, and the chemical environment. In order to satisfy both requirements of diffusion and specific interactions, one must balance multiple parameters, such as identity of LCP host lipid, composition of precipitant solution, identity of ligand, and protein modifications. Screening within such multi-dimensional crystallization space presents a significant bottleneck in obtaining initial crystal leads. To reduce this combinatorial challenge, we developed a pre-crystallization screening assay to measure the diffusion characteristics of a protein target in LCP. Utilizing the Fluorescence Recovery After Photobleaching (FRAP) technique in an automated and high throughput manner, we were able to map conditions that support adequate diffusion in LCP using a minimal amount of protein. Data collection and processing protocols were validated using two model GPCR targets: the ?(2)-adrenergic receptor and the A(2A) adenosine receptor.
Related JoVE Video
Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of Phenylketonuria.
Mol. Genet. Metab.
PUBLISHED: 05-24-2011
Show Abstract
Hide Abstract
Phenylketonuria (PKU), a Mendelian autosomal recessive phenotype (OMIM 261600), is an inborn error of metabolism causing impaired postnatal cognitive development in the absence of treatment. We used the Pah(enu2/enu2) PKU mouse model to study oral enzyme substitution therapy with various chemically modified formulations of phenylalanine ammonia lyase (Av-p.C503S/p.C565S/p.F18A PAL). In vivo studies with the most therapeutically effective formulation (5kDa PEG-Av-p.C503S/p.C565S/p.F18A PAL) revealed that this conjugate, given orally, yielded statistically significant (p=0.0029) and therapeutically relevant reduction (~40%) in plasma phenylalanine (Phe) levels. Phe reduction occurred in a dose- and loading-dependent manner; sustained clinically and statistically significant reduction of plasma Phe levels was observed with treatment ranging between 0.3 IU and 9 IU and with more frequent and smaller dosings. Oral PAL therapy could potentially serve as an adjunct therapy, perhaps with dietary treatment, and will work independently of phenylalanine hydroxylase (PAH), correcting such forms of hyperphenylalaninemias regardless of the PAH mutations carried by the patient.
Related JoVE Video
Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from Clostridium botulinum strain A661222.
Appl. Environ. Microbiol.
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
A Clostridium botulinum type A strain (A661222) in our culture collection was found to produce the botulinum neurotoxin subtype A5 (BoNT/A5). Its neurotoxin gene was sequenced to determine its degree of similarity to available sequences of BoNT/A5 and the well-studied BoNT/A1. Thirty-six amino acid differences were observed between BoNT/A5 and BoNT/A1, with the predominant number being located in the heavy chain. The amino acid chain of the BoNT/A from the A661222 strain was superimposed over the crystal structure of the known structure of BoNT/A1 to assess the potential significance of these differences--specifically how they would affect antibody neutralization. The BoNT/A5 neurotoxin was purified to homogeneity and evaluated for certain properties, including specific toxicity and antibody neutralization. This study reports the first purification of BoNTA5 and describes distinct differences in properties between BoNT/A5 and BoNT/A1.
Related JoVE Video
Structural characterization of three novel hydroxamate-based zinc chelating inhibitors of the Clostridium botulinum serotype A neurotoxin light chain metalloprotease reveals a compact binding site resulting from 60/70 loop flexibility.
Biochemistry
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
Neurotoxins synthesized by Clostridium botulinum bacteria (BoNT), the etiological agent of human botulism, are extremely toxic proteins making them high-risk agents for bioterrorism. Small molecule inhibitor development has been focused on the light chain zinc-dependent metalloprotease domain of the neurotoxin, an effort that has been hampered by its relatively flexible active site. Developed in concert with structure--activity relationship studies, the X-ray crystal structures of the complex of BoNT serotype A light chain (BoNT/A LC) with three different micromolar-potency hydroxamate-based inhibitors are reported here. Comparison with an unliganded BoNT/A LC structure reveals significant changes in the active site as a result of binding by the unique inhibitor scaffolds. The 60/70 loop at the opening of the active site pocket undergoes the largest conformational change, presumably through an induced-fit mechanism, resulting in the most compact catalytic pocket observed in all known BoNT/A LC structures.
Related JoVE Video
Reversible competitive ?-ketoheterocycle inhibitors of fatty acid amide hydrolase containing additional conformational constraints in the acyl side chain: orally active, long-acting analgesics.
J. Med. Chem.
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
A series of ?-ketooxazoles containing conformational constraints in the C2 acyl side chain of 2 (OL-135) were examined as inhibitors of fatty acid amide hydrolase (FAAH). Only one of the two possible enantiomers displayed potent FAAH inhibition (S vs R enantiomer), and their potency is comparable or improved relative to 2, indicating that the conformational restriction in the C2 acyl side chain is achievable. A cocrystal X-ray structure of the ?-ketoheterocycle 12 bound to a humanized variant of rat FAAH revealed its binding details, confirmed that the (S)-enantiomer is the bound active inhibitor, shed light on the origin of the enantiomeric selectivity, and confirmed that the catalytic Ser241 is covalently bound to the electrophilic carbonyl as a deprotonated hemiketal. Preliminary in vivo characterization of the inhibitors 12 and 14 is reported demonstrating that they raise brain anandamide levels following either intraperitoneal (ip) or oral (po) administration indicative of effective in vivo FAAH inhibition. Significantly, the oral administration of 12 caused dramatic accumulation of anandamide in the brain, with peak levels achieved between 1.5 and 3 h, and these elevations were maintained over 9 h. Additional studies of these two representative members of the series (12 and 14) in models of thermal hyperalgesia and neuropathic pain are reported, including the demonstration that 12 administered orally significantly attenuated mechanical (>6 h) and cold (>9 h) allodynia for sustained periods consistent with its long-acting effects in raising the endogenous concentration of anandamide.
Related JoVE Video
Structure of the human histamine H1 receptor complex with doxepin.
Nature
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
The biogenic amine histamine is an important pharmacological mediator involved in pathophysiological processes such as allergies and inflammations. Histamine H(1) receptor (H(1)R) antagonists are very effective drugs alleviating the symptoms of allergic reactions. Here we show the crystal structure of the H(1)R complex with doxepin, a first-generation H(1)R antagonist. Doxepin sits deep in the ligand-binding pocket and directly interacts with Trp?428(6.48), a highly conserved key residue in G-protein-coupled-receptor activation. This well-conserved pocket with mostly hydrophobic nature contributes to the low selectivity of the first-generation compounds. The pocket is associated with an anion-binding region occupied by a phosphate ion. Docking of various second-generation H(1)R antagonists reveals that the unique carboxyl group present in this class of compounds interacts with Lys?191(5.39) and/or Lys?179(ECL2), both of which form part of the anion-binding region. This region is not conserved in other aminergic receptors, demonstrating how minor differences in receptors lead to pronounced selectivity differences with small molecules. Our study sheds light on the molecular basis of H(1)R antagonist specificity against H(1)R.
Related JoVE Video
Structure of an agonist-bound human A2A adenosine receptor.
Science
PUBLISHED: 03-10-2011
Show Abstract
Hide Abstract
Activation of G protein-coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A(2A) adenosine receptor (A(2A)AR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A(2A)AR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A(2A)AR and its ligand. The results define the molecule UK-432097 as a "conformationally selective agonist" capable of receptor stabilization in a specific active-state configuration.
Related JoVE Video
Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment.
Structure
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
The community-wide GPCR Dock assessment is conducted to evaluate the status of molecular modeling and ligand docking for human G protein-coupled receptors. The present round of the assessment was based on the recent structures of dopamine D3 and CXCR4 chemokine receptors bound to small molecule antagonists and CXCR4 with a synthetic cyclopeptide. Thirty-five groups submitted their receptor-ligand complex structure predictions prior to the release of the crystallographic coordinates. With closely related homology modeling templates, as for dopamine D3 receptor, and with incorporation of biochemical and QSAR data, modern computational techniques predicted complex details with accuracy approaching experimental. In contrast, CXCR4 complexes that had less-characterized interactions and only distant homology to the known GPCR structures still remained very challenging. The assessment results provide guidance for modeling and crystallographic communities in method development and target selection for further expansion of the structural coverage of the GPCR universe.
Related JoVE Video
Fluoride-mediated capture of a noncovalent bound state of a reversible covalent enzyme inhibitor: X-ray crystallographic analysis of an exceptionally potent ?-ketoheterocycle inhibitor of fatty acid amide hydrolase.
J. Am. Chem. Soc.
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Two cocrystal X-ray structures of the exceptionally potent ?-ketoheterocycle inhibitor 1 (K(i) = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitor within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same "in action" state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of ?-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.
Related JoVE Video
The crystal structure of the ?-neurexin-1 extracellular region reveals a hinge point for mediating synaptic adhesion and function.
Structure
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
?- and ?-neurexins (NRXNs) are transmembrane cell adhesion proteins that localize to presynaptic membranes in neurons and interact with the postsynaptic neuroligins (NLGNs). Their gene mutations are associated with the autism spectrum disorders. The extracellular region of ?-NRXNs, containing nine independently folded domains, has structural complexity and unique functional characteristics, distinguishing it from the smaller ?-NRXNs. We have solved the X-ray crystal structure of seven contiguous domains of the ?-NRXN-1 extracellular region at 3.0 Å resolution. The structure reveals an arrangement where the N-terminal five domains adopt a more rigid linear conformation and the two C-terminal domains form a separate arm connected by a flexible hinge. In an extended conformation the molecule is suitably configured to accommodate a bound NLGN molecule, as supported by structural comparison and surface plasmon resonance. These studies provide the structural basis for a multifunctional synaptic adhesion complex mediated by ?-NRXN-1.
Related JoVE Video
Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist.
Science
PUBLISHED: 11-25-2010
Show Abstract
Hide Abstract
Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.
Related JoVE Video
Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.
Science
PUBLISHED: 10-07-2010
Show Abstract
Hide Abstract
Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein-coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein-coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.
Related JoVE Video
Rescue of misfolded proteins and stabilization by small molecules.
Methods Mol. Biol.
PUBLISHED: 08-12-2010
Show Abstract
Hide Abstract
Increasing stability of functional proteins by binding small compounds and ions has long been used to extend shelf-life of protein formulations in the pharmacological and biotechnological industry. Likewise, the therapeutic application of small molecules for in vivo recovery and maintenance of structure and function of proteins is steadily increasing. Compounds that can rescue misfolded proteins by stimulating their correct folding and/or the stabilization of native-like conformations in vivo are referred to as pharmacological chaperones. Here we present thermal-shift and isothermal methods for the high-throughput screening of stabilizing pharmacological chaperones for soluble and membrane proteins. The effect of selected hit compounds on the kinetics of protein synthesis is further evaluated by an in vitro transcription-translation rapid translation system. These procedures can be integrated in an interdisciplinary and translational approach for the search of personalized pharmacological chaperones in genetic misfolding diseases.
Related JoVE Video
Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography.
J. Am. Chem. Soc.
PUBLISHED: 07-31-2010
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the beta(2) adrenergic receptor (beta(2)AR) is one of the most extensively studied. Previously, the X-ray crystal structure of beta(2)AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered beta(2)AR construct in complex with two inverse agonists: ICI 118,551 (2.8 A), a recently described compound (2.8 A) (Kolb et al, 2009), and the antagonist alprenolol (3.1 A). The structures show the same overall fold observed for the previous beta(2)AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with beta(2)AR. Furthermore, receptor ligand cross-docking experiments revealed that a single beta(2)AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.
Related JoVE Video
Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets.
Methods Mol. Biol.
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) constitute a highly diverse and ubiquitous family of integral membrane proteins, transmitting signals inside the cells in response to an assortment of disparate extracellular stimuli. Their strategic location on the cell surface and their involvement in crucial cellular and physiological processes turn these receptors into highly important pharmaceutical targets. Recent technological developments aimed at stabilization and crystallization of these receptors have led to significant breakthroughs in GPCR structure determination efforts. One of the successful approaches involved receptor stabilization with the help of a fusion partner combined with crystallization in lipidic cubic phase (LCP). The success of using an LCP matrix for crystallization is generally attributed to the creation of a more native, membrane-like stabilizing environment for GPCRs just prior to nucleation and to the formation of type I crystal lattices, thus generating highly ordered and strongly diffracting crystals. Here we describe protocols for reconstituting purified GPCRs in LCP, performing pre-crystallization assays, setting up crystallization trials in manual mode, detecting crystallization hits, optimizing crystallization conditions, harvesting, and collecting crystallographic data The protocols provide a sensible framework for approaching crystallization of stabilized GPCRs in LCP, however, as in any crystallization experiment, extensive screening and optimization of crystallization conditions as well as optimization of protein construct and purification steps are required. The process remains risky and these protocols do not necessarily guarantee success.
Related JoVE Video
FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A.
Proteins
PUBLISHED: 06-15-2010
Show Abstract
Hide Abstract
Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1-3 A C alpha RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human beta(2)-adrenergic receptor (beta(2)AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the beta(2)AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from beta(2)AR.
Related JoVE Video
LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment.
Biophys. J.
PUBLISHED: 04-23-2010
Show Abstract
Hide Abstract
Structural and functional studies of membrane proteins are limited by their poor stability outside the native membrane environment. The development of novel methods to efficiently stabilize membrane proteins immediately after purification is important for biophysical studies, and is likely to be critical for studying the more challenging human targets. Lipidic cubic phase (LCP) provides a suitable stabilizing matrix for studying membrane proteins by spectroscopic and other biophysical techniques, including obtaining highly ordered membrane protein crystals for structural studies. We have developed a robust and accurate assay, LCP-Tm, for measuring the thermal stability of membrane proteins embedded in an LCP matrix. In its two implementations, protein denaturation is followed either by a change in the intrinsic protein fluorescence on ligand release, or by an increase in the fluorescence of a thiol-binding reporter dye that measures exposure of cysteines buried in the native structure. Application of the LCP-Tm assay to an engineered human beta2-adrenergic receptor and bacteriorhodopsin revealed a number of factors that increased protein stability in LCP. This assay has the potential to guide protein engineering efforts and identify stabilizing conditions that may improve the chances of obtaining high-resolution structures of intrinsically unstable membrane proteins.
Related JoVE Video
Design, synthesis, and properties of branch-chained maltoside detergents for stabilization and crystallization of integral membrane proteins: human connexin 26.
Langmuir
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
A challenging requirement for structural studies of integral membrane proteins (IMPs) is the use of amphiphiles that replicate the hydrophobic environment of membranes. Progress has been impeded by the limited number of useful detergents and the need for a deeper understanding of their structure-activity relationships. To this end, we designed a family of detergents containing short, branched alkyl chains at the interface between the polar head and the apolar tail. This design mimics the second aliphatic chain of lipid molecules and reduces water penetration, thereby increasing the hydrophobicity within the interior of the micelle. To compare with the popular straight-chained maltoside detergents, the branch-chained beta-D-maltosides were synthesized efficiently in pure anomeric form. The branch-chained maltosides form smaller micelles by having shorter main chains, while having comparable hydrophobicity to the detergents with only straight chains. Selected branch-chained and straight-chained maltoside detergents were examined for their ability to solubilize, stabilize, and aid the crystallization of human connexin 26, an alpha-helical IMP that forms hexamers. We showed that the branch-chained maltosides with optimized micellar properties performed as well as or better than the straight-chained analogues and enabled crystallization in different space groups.
Related JoVE Video
Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: discovery of a deacylating water molecule and insight into enzyme inactivation.
J. Mol. Biol.
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
The endocannabinoid system regulates a wide range of physiological processes including pain, inflammation, and cognitive/emotional states. URB597 is one of the best characterized covalent inhibitors of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH). Here, we report the structure of the FAAH-URB597 complex at 2.3 A resolution. The structure provides insights into mechanistic details of enzyme inactivation and experimental evidence of a previously uncharacterized active site water molecule that likely is involved in substrate deacylation. This water molecule is part of an extensive hydrogen-bonding network and is coordinated indirectly to residues lining the cytosolic port of the enzyme. In order to corroborate our hypothesis concerning the role of this water molecule in FAAHs catalytic mechanism, we determined the structure of FAAH conjugated to a urea-based inhibitor, PF-3845, to a higher resolution (2.4 A) than previously reported. The higher-resolution structure confirms the presence of the water molecule in a virtually identical location in the active site. Examination of the structures of serine hydrolases that are non-homologous to FAAH, such as elastase, trypsin, or chymotrypsin, shows a similarly positioned hydrolytic water molecule and suggests a functional convergence between the amidase signature enzymes and serine proteases.
Related JoVE Video
Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding.
J. Mol. Biol.
PUBLISHED: 02-22-2010
Show Abstract
Hide Abstract
Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-A X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.
Related JoVE Video
Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues.
J. Biol. Chem.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
The crystal structure of the human A(2A) adenosine receptor bound to the A(2A) receptor-specific antagonist, ZM241385, was recently determined at 2.6-A resolution. Surprisingly, the antagonist binds in an extended conformation, perpendicular to the plane of the membrane, and indicates a number of interactions unidentified before in ZM241385 recognition. To further understand the selectivity of ZM241385 for the human A(2A) adenosine receptor, we examined the effect of mutating amino acid residues within the binding cavity likely to have key interactions and that have not been previously examined. Mutation of Phe-168 to Ala abolishes both agonist and antagonist binding as well as receptor activity, whereas mutation of this residue to Trp or Tyr had only moderate effects. The Met-177 --> Ala mutation impeded antagonist but not agonist binding. Finally, the Leu-249 --> Ala mutant showed neither agonist nor antagonist binding affinity. From our results and previously published mutagenesis data, we conclude that conserved residues Phe-168(5.29), Glu-169(5.30), Asn-253(6.55), and Leu-249(6.51) play a central role in coordinating the bicyclic core present in both agonists and antagonists. By combining the analysis of the mutagenesis data with a comparison of the sequences of different adenosine receptor subtypes from different species, we predict that the interactions that determine subtype selectivity reside in the more divergent "upper" region of the binding cavity while the "lower" part of the binding cavity is conserved across adenosine receptor subtypes.
Related JoVE Video
A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region.
J. Mol. Biol.
PUBLISHED: 01-27-2010
Show Abstract
Hide Abstract
Ingestion or inhalation of botulinum neurotoxin (BoNT) results in botulism, a severe and frequently fatal disease. Current treatments rely on antitoxins, which, while effective, cannot reverse symptoms once BoNT has entered the neuron. For treatments that can reverse intoxication, interest has focused on developing inhibitors of the enzymatic BoNT light chain (BoNT Lc). Such inhibitors typically mimic substrate and bind in or around the substrate cleavage pocket. To explore the full range of binding sites for serotype A light chain (BoNT/A Lc) inhibitors, we created a library of non-immune llama single-domain VHH (camelid heavy-chain variable region derived from heavy-chain-only antibody) antibodies displayed on the surface of the yeast Saccharomyces cerevisiae. Library selection on BoNT/A Lc yielded 15 yeast-displayed VHH with equilibrium dissociation constants (K(d)) from 230 to 0.03 nM measured by flow cytometry. Eight of 15 VHH inhibited the cleavage of substrate SNAP25 (synaptosome-associated protein of 25,000 Da) by BoNT/A Lc. The most potent VHH (Aa1) had a solution K(d) for BoNT/A Lc of 1.47 x 10(-)(10) M and an IC(50) (50% inhibitory concentration) of 4.7 x 10(-)(10) M and was resistant to heat denaturation and reducing conditions. To understand the mechanism by which Aa1 inhibited catalysis, we solved the X-ray crystal structure of the BoNT/A Lc-Aa1 VHH complex at 2.6 A resolution. The structure reveals that the Aa1 VHH binds in the alpha-exosite of the BoNT/A Lc, far from the active site for catalysis. The study validates the utility of non-immune llama VHH libraries as a source of enzyme inhibitors and identifies the BoNT/A Lc alpha-exosite as a target for inhibitor development.
Related JoVE Video
Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists.
J. Med. Chem.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
The recent progress in crystallography of G-protein coupled receptors opens an unprecedented venue for structure-based GPCR drug discovery. To test efficiency of the structure-based approach, we performed molecular docking and virtual ligand screening (VLS) of more than 4 million commercially available "drug-like" and lead-like compounds against the A(2A)AR 2.6 A resolution crystal structure. Out of 56 high ranking compounds tested in A(2A)AR binding assays, 23 showed affinities under 10 microM, 11 of those had sub-microM affinities and two compounds had affinities under 60 nM. The identified hits represent at least 9 different chemical scaffolds and are characterized by very high ligand efficiency (0.3-0.5 kcal/mol per heavy atom). Significant A(2A)AR antagonist activities were confirmed for 10 out of 13 ligands tested in functional assays. High success rate, novelty, and diversity of the chemical scaffolds and strong ligand efficiency of the A(2A)AR antagonists identified in this study suggest practical applicability of receptor-based VLS in GPCR drug discovery.
Related JoVE Video
Dynamics of the beta2-adrenergic G-protein coupled receptor revealed by hydrogen-deuterium exchange.
Anal. Chem.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
To examine the molecular details of ligand activation of G-protein coupled receptors (GPCRs), emphasis has been placed on structure determination of these receptors with stabilizing ligands. Here we present the methodology for receptor dynamics characterization of the GPCR human beta(2) adrenergic receptor bound to the inverse agonist carazolol using the technique of amide hydrogen/deuterium exchange coupled with mass spectrometry (HDX MS). The HDX MS profile of receptor bound to carazolol is consistent with thermal parameter observations in the crystal structure and provides additional information in highly dynamic regions of the receptor and chemical modifications demonstrating the highly complementary nature of the techniques. After optimization of HDX experimental conditions for this membrane protein, better than 89% sequence coverage was obtained for the receptor. The methodology presented paves the way for future analysis of beta(2)AR bound to pharmacologically distinct ligands as well as analysis of other GPCR family members.
Related JoVE Video
Structural aspects of therapeutic enzymes to treat metabolic disorders.
Hum. Mutat.
PUBLISHED: 10-01-2009
Show Abstract
Hide Abstract
Protein therapeutics represents a niche subset of pharmacological agents that is rapidly gaining importance in medicine. In addition to the exceptional specificity that is characteristic of protein therapeutics, several classes of proteins have also been effectively utilized for treatment of conditions that would otherwise lack effective pharmacotherapeutic options. A particularly striking class of protein therapeutics is exogenous enzymes administered for replacement therapy in patients afflicted with metabolic disorders. To date, at least 11 enzymes have either been approved for use, or are in clinical trials for the treatment of selected inherited metabolic disorders. With the recent advancement in structural biology, a significantly larger amount of structural information for several of these enzymes is now available. This article is an overview of the correlation between structural perturbations of these enzymes with the clinical presentation of the respective metabolic conditions, as well as a discussion of the relevant structural modification strategies engaged in improving these enzymes for replacement therapies.
Related JoVE Video
Binding and inactivation mechanism of a humanized fatty acid amide hydrolase by alpha-ketoheterocycle inhibitors revealed from cocrystal structures.
J. Am. Chem. Soc.
PUBLISHED: 09-03-2009
Show Abstract
Hide Abstract
The cocrystal X-ray structures of two isomeric alpha-ketooxazole inhibitors (1 (OL-135) and 2) bound to fatty acid amide hydrolase (FAAH), a key enzymatic regulator of endocannabinoid signaling, are disclosed. The active site catalytic Ser241 is covalently bound to the inhibitors electrophilic carbonyl groups, providing the first structures of FAAH bound to an inhibitor as a deprotonated hemiketal mimicking the enzymatic tetrahedral intermediate. The work also offers a detailed view of the oxyanion hole and an exceptional "in-action" depiction of the unusual Ser-Ser-Lys catalytic triad. These structures capture the first picture of inhibitors that span the active site into the cytosolic port providing new insights that help to explain FAAHs interaction with substrate leaving groups and their role in modulating inhibitor potency and selectivity. The role for the activating central heterocycle is clearly defined and distinguished from that observed in prior applications with serine proteases, reconciling the large electronic effect of attached substituents found unique to this class of inhibitors with FAAH. Additional striking active site flexibility is seen upon binding of the inhibitors, providing insights into the existence of a now well-defined membrane access channel with the disappearance of a spatially independent portion of the acyl chain-binding pocket. Finally, comparison of the structures of OL-135 (1) and its isomer 2 indicates that they bind identically to FAAH, albeit with reversed orientations of the central activating heterocycle, revealing that the terminal 2-pyridyl substituent and the acyl chain phenyl group provide key anchoring interactions and confirming the distinguishing role of the activating oxazole.
Related JoVE Video
Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam.
J R Soc Interface
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 microm minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets.
Related JoVE Video
Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008.
Nat Rev Drug Discov
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment - GPCR Dock 2008 - was conducted in coordination with the publication of the crystal structure of the human adenosine A(2A) receptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops.
Related JoVE Video
Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain.
Chem. Biol.
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
Endocannabinoids are lipid signaling molecules that regulate a wide range of mammalian behaviors, including pain, inflammation, and cognitive/emotional state. The endocannabinoid anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH), and there is currently much interest in developing FAAH inhibitors to augment endocannabinoid signaling in vivo. Here, we report the discovery and detailed characterization of a highly efficacious and selective FAAH inhibitor, PF-3845. Mechanistic and structural studies confirm that PF-3845 is a covalent inhibitor that carbamylates FAAHs serine nucleophile. PF-3845 selectively inhibits FAAH in vivo, as determined by activity-based protein profiling; raises brain anandamide levels for up to 24 hr; and produces significant cannabinoid receptor-dependent reductions in inflammatory pain. These data thus designate PF-3845 as a valuable pharmacological tool for in vivo characterization of the endocannabinoid system.
Related JoVE Video
Discovery of new GPCR biology: one receptor structure at a time.
Structure
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
G-protein-coupled receptors (GPCRs) are the largest family of proteins in the human genome. Within the last year, we have witnessed a relative explosion in the amount of structural information available for the GPCR family with two new structures of opsin in the presence and absence of transducin peptide, four new structures of beta-adrenergic receptors, and a recent structure of the human adenosine A2A receptor. The new biological insight being gained, such as the highly divergent extracellular loops and areas of structural convergence within the transmembrane helices, allows us to chart a course for further investigation into this important class of membrane proteins.
Related JoVE Video
The GPCR Network: a large-scale collaboration to determine human GPCR structure and function.
Nat Rev Drug Discov
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) are targeted by ?30-40% of marketed drugs, and their key roles in normal physiology and in disease demonstrate that an understanding of their structure and function is valuable to researchers in both basic science and drug discovery. However, until recently, detailed structural information on this protein family was limited by challenges in X-ray crystallographic analysis of such membrane proteins. The GPCR Network was created in 2010 with the goal of structurally characterizing 15-25 representative human GPCRs within 5 years, based on an active outreach programme addressing an interdisciplinary community of scientists interested in GPCR structure, chemistry and biology. Here, we provide an overview of how this collaborative effort has enabled the structural determination and characterization of eight human GPCRs so far, and discuss some of the challenges that remain in gaining more detailed insights into structure-function relationships in this receptor superfamily.
Related JoVE Video
Structure-function of the G protein-coupled receptor superfamily.
Annu. Rev. Pharmacol. Toxicol.
Show Abstract
Hide Abstract
During the past few years, crystallography of G protein-coupled receptors (GPCRs) has experienced exponential growth, resulting in the determination of the structures of 16 distinct receptors-9 of them in 2012 alone. Including closely related subtype homology models, this coverage amounts to approximately 12% of the human GPCR superfamily. The adrenergic, rhodopsin, and adenosine receptor systems are also described by agonist-bound active-state structures, including a structure of the receptor-G protein complex for the ?(2)-adrenergic receptor. Biochemical and biophysical techniques, such as nuclear magnetic resonance and hydrogen-deuterium exchange coupled with mass spectrometry, are providing complementary insights into ligand-dependent dynamic equilibrium between different functional states. Additional details revealed by high-resolution structures illustrate the receptors as allosteric machines that are controlled not only by ligands but also by ions, lipids, cholesterol, and water. This wealth of data is helping redefine our knowledge of how GPCRs recognize such a diverse array of ligands and how they transmit signals 30 angstroms across the cell membrane; it also is shedding light on a structural basis of GPCR allosteric modulation and biased signaling.
Related JoVE Video
?2-Adrenergic receptor solutions for structural biology analyzed with microscale NMR diffusion measurements.
Angew. Chem. Int. Ed. Engl.
Show Abstract
Hide Abstract
Microcoil NMR measurements were performed to determine the final composition of solutions of the ?(2)-adrenergic receptor (?(2)AR) reconstituted with a detergent and to study the hydrodynamic properties of the detergent micelles containing ?(2)AR. Standards are established for the reproducible preparation of G-protein-coupled receptor solutions for crystallization trials and solution NMR studies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.