JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors.
Mol Pain
PUBLISHED: 06-09-2014
Show Abstract
Hide Abstract
Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways.
Related JoVE Video
Increased mucosal CD4+ T cell activation in rhesus macaques following vaccination with an adenoviral vector.
J. Virol.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
The possibility that vaccination with adenovirus (AdV) vectors increased mucosal T cell activation remains a central hypothesis to explain the potential enhancement of HIV acquisition within the Step trial. Modeling this within rhesus macaques is complicated because human adenoviruses, including human adenovirus type 5 (HAdV-5), are not endogenous to macaques. Here, we tested whether vaccination with a rhesus macaque-derived adenoviral vector (simian adenovirus 7 [SAdV-7]) enhances mucosal T cell activation within rhesus macaques. Following intramuscular SAdV-7 vaccination, we observed a pronounced increase in SAdV-7-specific CD4(+) T cell responses in peripheral blood and, more dramatically, in rectal mucosa tissue. Vaccination also induced a significant increase in the frequency of activated memory CD4(+) T cells in SAdV-7- and HAdV-5-vaccinated animals in the rectal mucosa but not in peripheral blood. These fluctuations within the rectal mucosa were also associated with a pronounced decrease in the relative frequency of naive resting CD4(+) T cells. Together, these results indicate that peripheral vaccination with an AdV vector can increase the activation of mucosal CD4(+) T cells, potentially providing an experimental model to further evaluate the role of host-vector interactions in increased HIV acquisition after AdV vector vaccination.
Related JoVE Video
Intramuscular Injection of AAV8 in Mice and Macaques Is Associated with Substantial Hepatic Targeting and Transgene Expression.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Intramuscular (IM) administration of adeno-associated viral (AAV) vectors has entered the early stages of clinical development with some success, including the first approved gene therapy product in the West called Glybera. In preparation for broader clinical development of IM AAV vector gene therapy, we conducted detailed pre-clinical studies in mice and macaques evaluating aspects of delivery that could affect performance. We found that following IM administration of AAV8 vectors in mice, a portion of the vector reached the liver and hepatic gene expression contributed significantly to total expression of secreted transgenes. The contribution from liver could be controlled by altering injection volume and by the use of traditional (promoter) and non-traditional (tissue-specific microRNA target sites) expression control elements. Hepatic distribution of vector following IM injection was also noted in rhesus macaques. These pre-clinical data on AAV delivery should inform safe and efficient development of future AAV products.
Related JoVE Video
A fusion-inhibiting peptide against Rift Valley fever virus inhibits multiple, diverse viruses.
PLoS Negl Trop Dis
PUBLISHED: 09-01-2013
Show Abstract
Hide Abstract
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.
Related JoVE Video
AAV9 targets cone photoreceptors in the nonhuman primate retina.
PLoS ONE
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Transduction of retinal pigment epithelial cells with an adeno-associated viral vector (AAV) based on serotype 2 has partially corrected retinal blindness in Leber congenital amaurosis type 2. However, many applications of gene therapy for retinal blindness rely on the efficient transduction of rod and cone photoreceptor which is difficult to achieve with first generation vector technology. To address this translational need, we evaluated rod and cone photoreceptor targeting of 4 novel AAV capsids (AAV7, AAV9, rh.64R1 and rh.8R) versus AAV2 and AAV8 in a foveated retina. Eyes of 20 nonhuman primates were injected subretinally in the proximity of the fovea. While numerous vectors efficiently transduced rods, only AAV9 targeted cones both centrally and peripherally efficiently at low doses, likely due to the abundance of galactosylated glycans, the primary receptor for AAV9, on cone photoreceptors. We conclude AAV9 is an ideal candidate for strategies that require restoration of cone photoreceptor function.
Related JoVE Video
Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses.
Virus Res.
PUBLISHED: 08-10-2011
Show Abstract
Hide Abstract
Developing vaccines for highly pathogenic viruses such as those causing Lassa, Ebola, and Marburg hemorrhagic fevers is a daunting task due to both scientific and logistical constraints. Scientific hurdles to overcome include poorly defined relationships between pathogenicity and protective immune responses, genetic diversity of viruses, and safety in a target population that includes a large number of individuals with compromised immune systems. Logistical obstacles include the requirement for biosafety level-4 containment to study the authentic viruses, the poor public health infrastructure of the endemic disease areas, and the cost of developing these vaccines for use in non-lucrative markets. Recombinant DNA-based vaccine approaches offer promise of overcoming some of these issues. In this review, we consider the status of various recombinant DNA candidate vaccines against Lassa virus and filoviruses which have been tested in animals.
Related JoVE Video
Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey.
Sci Transl Med
PUBLISHED: 06-24-2011
Show Abstract
Hide Abstract
Gene therapy is emerging as a therapeutic modality for treating disorders of the retina. Photoreceptor cells are the primary cell type affected in many inherited diseases of retinal degeneration. Successfully treating these diseases with gene therapy requires the identification of efficient and safe targeting vectors that can transduce photoreceptor cells. One serotype of adeno-associated virus, AAV2, has been used successfully in clinical trials to treat a form of congenital blindness that requires transduction of the supporting cells of the retina in the retinal pigment epithelium (RPE). Here, we determined the dose required to achieve targeting of AAV2 and AAV8 vectors to photoreceptors in nonhuman primates. Transgene expression in animals injected subretinally with various doses of AAV2 or AAV8 vectors carrying a green fluorescent protein transgene was correlated with surgical, clinical, and immunological observations. Both AAV2 and AAV8 demonstrated efficient transduction of RPE, but AAV8 was markedly better at targeting photoreceptor cells. These preclinical results provide guidance for optimal vector and dose selection in future human gene therapy trials to treat retinal diseases caused by loss of photoreceptors.
Related JoVE Video
Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors.
Hum. Gene Ther.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Vectors based on the primate-derived adeno-associated virus serotype 8 (AAV8) are being evaluated in preclinical and clinical models. Natural infections with related AAVs activate memory B cells that produce antibodies capable of modulating the efficacy and safety of the vector. We have evaluated the biology of AAV8 gene transfer in macaque liver, with a focus on assessing the impact of pre-existing humoral immunity. Twenty-one macaques with various levels of AAV neutralizing antibody (NAb) were injected intravenously with AAV8 vector expressing green fluorescent protein. Pre-existing antibody titers in excess of 1:10 substantially diminished hepatocyte transduction that, in the absence of NAbs, was highly efficient. Vector-specific NAb diminished liver deposition of genomes and unexpectedly increased genome distribution to the spleen. The majority of animals showed high-level and stable sequestration of vector capsid protein by follicular dendritic cells of splenic germinal centers. These studies illustrate how natural immunity to a virus that is related to a vector can impact the efficacy and potential safety of in vivo gene therapy. We propose to use the in vitro transduction inhibition assay to evaluate research subjects before gene therapy and to preclude from systemic AAV8 trials those that have titers in excess of 1:10.
Related JoVE Video
Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells.
J. Neurosci.
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
The heat and capsaicin receptor, TRPV1, is required for the detection of painful heat by primary afferent pain fibers (nociceptors), but the extent to which functional TRPV1 channels are expressed in the CNS is debated. Because previous evidence is based primarily on indirect physiological responses to capsaicin, here we genetically modified the Trpv1 locus to reveal, with excellent sensitivity and specificity, the distribution of TRPV1 in all neuronal and non-neuronal tissues. In contrast to reports of widespread and robust expression in the CNS, we find that neuronal TRPV1 is primarily restricted to nociceptors in primary sensory ganglia, with minimal expression in a few discrete brain regions, most notably in a contiguous band of cells within and adjacent to the caudal hypothalamus. We confirm hypothalamic expression in the mouse using several complementary approaches, including in situ hybridization, calcium imaging, and electrophysiological recordings. Additional in situ hybridization experiments in rat, monkey, and human brain demonstrate that the restricted expression of TRPV1 in the CNS is conserved across species. Outside of the CNS, we find TRPV1 expression in a subset of arteriolar smooth muscle cells within thermoregulatory tissues. Here, capsaicin increases calcium uptake and induces vasoconstriction, an effect that likely counteracts the vasodilation produced by activation of neuronal TRPV1.
Related JoVE Video
Neuropathic Nav1.3-mediated sensitization to P2X activation is regulated by protein kinase C.
Mol Pain
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Increased neuronal excitability and spontaneous firing are hallmark characteristics of injured sensory neurons. Changes in expression of various voltage-gated Na+ channels (VGSCs) have been observed under neuropathic conditions and there is evidence for the involvement of protein kinase C (PKC) in sensory hyperexcitability. Here we demonstrate the contribution of PKC to P2X-evoked VGSC activation in dorsal root ganglion (DRG) neurons in neuropathic conditions.
Related JoVE Video
Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness.
Sci Transl Med
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Lebers congenital amaurosis (LCA) is a group of severe inherited retinal degenerations that are symptomatic in infancy and lead to total blindness in adulthood. Recent clinical trials using recombinant adeno-associated virus serotype 2 (rAAV2) successfully reversed blindness in patients with LCA caused by RPE65 mutations after one subretinal injection. However, it was unclear whether treatment of the second eye in the same manner would be safe and efficacious, given the potential for a complicating immune response after the first injection. Here, we evaluated the immunological and functional consequences of readministration of rAAV2-hRPE65v2 to the contralateral eye using large animal models. Neither RPE65-mutant (affected; RPE65(-/-)) nor unaffected animals developed antibodies against the transgene product, but all developed neutralizing antibodies against the AAV2 capsid in sera and intraocular fluid after subretinal injection. Cell-mediated immune responses were benign, with only 1 of 10 animals in the study developing a persistent T cell immune response to AAV2, a response that was mediated by CD4(+) T cells. Sequential bilateral injection caused minimal inflammation and improved visual function in affected animals. Thus, subretinal readministration of rAAV2 in animals is safe and effective, even in the setting of preexisting immunity to the vector, a parameter that has been used to exclude patients from gene therapy trials.
Related JoVE Video
Application of the Ibis-T5000 pan-Orthopoxvirus assay to quantitatively detect monkeypox viral loads in clinical specimens from macaques experimentally infected with aerosolized monkeypox virus.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-06-2010
Show Abstract
Hide Abstract
Monkeypox virus (MPXV), a member of the family Poxviridae and genus Orthopoxvirus, causes a smallpox-like disease in humans. A previously described pan-Orthopoxvirus assay, based on a broad-range polymerase chain reaction (PCR) coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), was evaluated for its ability to detect MPXV from spiked human and aerosol-infected cynomolgous macaque (Macaca fascicularis) samples. Detection of MPXV DNA from macaque tissue, blood, and spiked human blood by the PCR/ESI-MS pan-Orthopoxvirus assay was comparable, albeit at slightly higher levels, to the current gold standard method of real-time PCR with the pan-Orthopoxvirus assay and had a limit of detection of 200 plaque-forming units. Furthermore, the platform was able to distinguish MPXV and vaccinia viruses that were spiked into macaque blood samples at various concentrations. This platform provides a new tool for the diagnosis and monitoring of orthopoxviral loads during vaccine or antiviral studies, but also could provide rapid identification during natural outbreaks or bioterrorism attacks.
Related JoVE Video
Rapid identification of vector-borne flaviviruses by mass spectrometry.
Mol. Cell. Probes
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 x 10(6). Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.
Related JoVE Video
The pleiotropic effects of natural AAV infections on liver-directed gene transfer in macaques.
Mol. Ther.
PUBLISHED: 11-03-2009
Show Abstract
Hide Abstract
Adeno-associated viral (AAV) vectors hold great potential for liver-directed gene therapy. Stable and high levels of transgene expression have been achieved in many murine models. Systemic delivery of AAV vectors in nonhuman primates (NHPs) that are natural hosts of AAVs appear to be challenging due to the high prevalence of pre-existing neutralizing antibodies (NAbs). This study evaluates the performance of AAV8, hu.37, and rh.8 vectors expressing green fluorescent protein (GFP) from a liver-specific promoter in rhesus macaques. Two of the animals that received AAV8 showed transduction of 24 and 40% of hepatocytes 7 days after systemic vector delivery. Importantly, expression was detected in several animals after 35 days despite the elevation of liver enzymes and development of transgene-specific T cells in liver. Pre-existing low levels of NAbs profoundly impacted the outcome of gene transfer and redirected vector DNA to spleen. We developed a sensitive in vivo passive transfer assay to detect low levels of NAbs to these novel AAV serotypes. Other strategies need to be developed to reduce immune response to the transgene in order to maintain long-term gene expression.
Related JoVE Video
Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses.
Hum. Gene Ther.
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
Gene transfer to murine liver with vectors based on novel adeno-associated virus (AAV) serotypes is efficient, stable, and safe even in the setting of antigenic transgene products. We undertook a study in cynomolgus macaques to evaluate the relevance of these findings to primates. The vectors were based on AAV serotype 7 and expressed green fluorescence protein (GFP) from the cytomegalovirus enhanced beta-actin promoter in both single-stranded and self-complementary genomes. Transduction efficiencies from the single-stranded vectors were similar to those observed in mice, although there was no advantage in primates with the self-complementary vectors. Primates elicited vibrant cytotoxic T cell responses to GFP that correlated with hepatitis and loss of transgene expression. There was no evidence of T cell activation in response to the AAV capsid. These studies indicate that under some conditions primates may activate more robust T cell responses to transgene products than is observed in mice.
Related JoVE Video
Real-time RT-PCR assays for the rapid and differential detection of dolphin and porpoise morbilliviruses.
J. Virol. Methods
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
Real-time RT-PCR (rtRT-PCR) assays for identifying and differentiating infections caused by dolphin morbillivirus (DMV) and porpoise morbillivirus (PMV) were developed by targeting the hypervariable C-terminal domain of the nucleocapsid (N) gene. Total DMV and PMV RNA extracted from infected Vero cells expressing the canine signaling lymphocyte-activation molecule (SLAM) produced positive cycle threshold (C(T)) values after the 17th and 25th cycles, respectively. The assays were then validated using infected cetacean tissue RNA. The assays were specific for either DMV or PMV and did not cross-react with canine distemper virus (CDV), phocid distemper virus (PDV), rinderpest virus (RPV), peste des petits ruminants virus (PPRV) and measles virus (MV). The glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene was targeted as control for RNA quality, and a consensus GAPDH probe that reacted with 11 different marine mammal species, generating positive C(T) values ranging from the 21st to the 37th cycle was used. The rtRT-PCR assays have advantages over conventional assays in that they are rapid, easier to scale up, and are less prone to cross-contamination and have improved the limit of detection and specificity.
Related JoVE Video
Expression from baculovirus and serological reactivity of the nucleocapsid protein of dolphin morbillivirus.
Vet. Microbiol.
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
The nucleocapsid (N) protein of dolphin morbillivirus (DMV) was expressed from a baculovirus (Autographa californica nuclear polyhedrosis virus) vector and shown by SDS-PAGE and Western blot analysis to be about 57 kDa. Transmission electron microscopy revealed fully assembled nucleocapsid-like particles (NLPs) exhibiting the typical helical herringbone morphology. These NLPs were approximately 20-22 nm in diameter and varied in length from 50 to 100 nm. Purified DMV-N protein was used as antigen in an indirect ELISA (iELISA) and shown to react with rabbit and human antisera to measles virus (MV) and dog sera with antibodies to canine distemper virus (CDV). The iELISA was used for the demonstration of morbillivirus antibodies in the serum of cetaceans and manatees, showing potential as a serological tool for the mass screening of morbillivirus antibodies in marine mammals.
Related JoVE Video
Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates.
PLoS Pathog.
PUBLISHED: 01-09-2009
Show Abstract
Hide Abstract
Adenoviruses are important human pathogens that have been developed as vectors for gene therapies and genetic vaccines. Previous studies indicated that human infections with adenoviruses are self-limiting in immunocompetent hosts with evidence of some persistence in adenoid tissue. We sought to better understand the natural history of adenovirus infections in various non-human primates and discovered that healthy populations of great apes (chimpanzees, bonobos, gorillas, and orangutans) and macaques shed substantial quantities of infectious adenoviruses in stool. Shedding in stools from asymptomatic humans was found to be much less frequent, comparable to frequencies reported before. We purified and fully sequenced 30 novel adenoviruses from apes and 3 novel adenoviruses from macaques. Analyses of the new ape adenovirus sequences (as well as the 4 chimpanzee adenovirus sequences we have previously reported) together with 22 complete adenovirus genomes available from GenBank revealed that (a) the ape adenoviruses could clearly be classified into species corresponding to human adenovirus species B, C, and E, (b) there was evidence for intraspecies recombination between adenoviruses, and (c) the high degree of phylogenetic relatedness of adenoviruses across their various primate hosts provided evidence for cross species transmission events to have occurred in the natural history of B and E viruses. The high degree of asymptomatic shedding of live adenovirus in non-human primates and evidence for zoonotic transmissions warrants caution for primate handling and housing. Furthermore, the presence of persistent and/or latent adenovirus infections in the gut should be considered in the design and interpretation of human and non-human primate studies with adenovirus vectors.
Related JoVE Video
A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge.
Hum Vaccin Immunother
Show Abstract
Hide Abstract
We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.
Related JoVE Video
Differential expression and pharmacology of native P2X receptors in rat and primate sensory neurons.
J. Neurosci.
Show Abstract
Hide Abstract
Evidence suggesting the involvement of P2X2 and P2X3 in chronic pain has been obtained mostly from rodent models. Here we show that rodents may be poor predictors of P2X3 pharmacology in human. We demonstrate that monkey and human dorsal root ganglion (DRG) neurons do not express appreciable levels of P2X2 subunit, contrary to rat sensory neurons. Additionally, we report functional P2X3 activity in monkey DRG neurons and confirm the absence of functional P2X2/3 receptors. Interestingly, native P2X3 receptors in rat and monkey DRGs show similar agonist potency, but different antagonist potencies for TNP-ATP [2-O-(2,4,6-trinitrophenyl)-ATP] and RO51. This unexpected difference in antagonist potency was confirmed by comparing rat and human P2X3 receptors in HEK293 cells. Mutagenesis studies reveal that two extracellular residues, A197 and T202, are synergistically responsible for the potency drop in primate P2X3 receptors. These results uncover species-specific P2X3 pharmacology and identify key mechanisms impacting the translatability of potential analgesics targeting P2X3 receptors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.