JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions.
Nucleic Acids Res.
PUBLISHED: 11-14-2014
Show Abstract
Hide Abstract
Systematic interrogation of mutation or protein modification data is important to identify sites with functional consequences and to deduce global consequences from large data sets. Mechismo (mechismo.russellab.org) enables simultaneous consideration of thousands of 3D structures and biomolecular interactions to predict rapidly mechanistic consequences for mutations and modifications. As useful functional information often only comes from homologous proteins, we benchmarked the accuracy of predictions as a function of protein/structure sequence similarity, which permits the use of relatively weak sequence similarities with an appropriate confidence measure. For protein-protein, protein-nucleic acid and a subset of protein-chemical interactions, we also developed and benchmarked a measure of whether modifications are likely to enhance or diminish the interactions, which can assist the detection of modifications with specific effects. Analysis of high-throughput sequencing data shows that the approach can identify interesting differences between cancers, and application to proteomics data finds potential mechanistic insights for how post-translational modifications can alter biomolecular interactions.
Related JoVE Video
The tissue is the issue: improved methylome analysis from paraffin-embedded tissues by application of the HOPE technique.
Lab. Invest.
PUBLISHED: 11-04-2014
Show Abstract
Hide Abstract
Alterations in the DNA methylome are characteristic for numerous diseases and a typical hallmark of cancer. Therefore, DNA methylation is currently under investigation in research labs and has also entered diagnostics. Recently, protocols like the BeadChip technology have become commercially available to study DNA methylation in an array format and semiquantitative fashion. However, it is known that fixation of the sample material with formalin prior to BeadChip analysis can affect the results. In this study we compared the influence of fixation on the outcome of BeadChip analysis. From six patients each a lung cancer tissue sample and a corresponding tumor-free lung tissue sample were collected. The samples were separated into three pieces. One piece of each sample was fixed with formalin, another one by the non-cross-linking HOPE technique (Hepes-glutamic acid buffer mediated Organic solvent Protection Effect). Subsequently, both became paraffin embedded. As a reference, the remaining third piece was cryopreserved. In addition we used three adenocarcinoma cell lines (H838, A549, and H1650) to validate the results from patient tissues. We show that using the HOPE technique instead of formalin largely prevents the introduction of formalin-fixation related artifacts. An ANOVA analysis significantly separated HOPE- and cryopreserved from formalin-fixed samples (FDR<0.05), while differences in the methylation data obtained from HOPE-fixed and cryopreserved material were minor. Consequently, HOPE fixation is superior to formalin fixation if a subsequent BeadChip analysis of paraffin-embedded sample material is intended.
Related JoVE Video
Obesity accelerates epigenetic aging of human liver.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-13-2014
Show Abstract
Hide Abstract
Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.
Related JoVE Video
Mapping of transcription factor motifs in active chromatin identifies IRF5 as key regulator in classical Hodgkin lymphoma.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-06-2014
Show Abstract
Hide Abstract
Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-?B to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.
Related JoVE Video
A Double Hit CD10-Negative B-Cell Lymphoma with t(3;8)(q27;q24) Leading to Juxtaposition of the BCL6 and MYC Loci Associated with Good Clinical Outcome.
Case Rep Hematol
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
The WHO classification of lymphomas allows for a group of diseases that have features intermediate between those of Burkitt lymphoma and diffuse large B-cell lymphoma. These are a diverse group of diseases whose genetics and clinical course are yet to be fully described. We report an unusual case of high grade B-cell lymphoma, intermediate between DLBCL and BL, lacking CD10 expression in which the chromosomal translocation t(3;8)(q27;q24) was found to be the sole chromosomal abnormality. FISH analysis demonstrated juxtaposition of the BCL6 and MYC loci without obvious involvement of the IGH locus, suggesting constitutive MYC expression due to promoter substitution. The patient responded to intensive chemotherapy and remains in remission two years after finishing therapy.
Related JoVE Video
Cancer initiation with epistatic interactions between driver and passenger mutations.
J. Theor. Biol.
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
We investigate the dynamics of cancer initiation in a mathematical model with one driver mutation and several passenger mutations. Our analysis is based on a multi-type branching process: we model individual cells which can either divide or undergo apoptosis. In the case of a cell division, the two daughter cells can mutate, which potentially confers a change in fitness to the cell. In contrast to previous models, the change in fitness induced by the driver mutation depends on the genetic context of the cell, in our case on the number of passenger mutations. The passenger mutations themselves have no or only a very small impact on the cell's fitness. While our model is not designed as a specific model for a particular cancer, the underlying idea is motivated by clinical and experimental observations in Burkitt Lymphoma. In this tumor, the hallmark mutation leads to deregulation of the MYC oncogene which increases the rate of apoptosis, but also the proliferation rate of cells. This increase in the rate of apoptosis hence needs to be overcome by mutations affecting apoptotic pathways, naturally leading to an epistatic fitness landscape. This model shows a very interesting dynamical behavior which is distinct from the dynamics of cancer initiation in the absence of epistasis. Since the driver mutation is deleterious to a cell with only a few passenger mutations, there is a period of stasis in the number of cells until a clone of cells with enough passenger mutations emerges. Only when the driver mutation occurs in one of those cells, the cell population starts to grow rapidly.
Related JoVE Video
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Int. J. Cancer
PUBLISHED: 04-16-2014
Show Abstract
Hide Abstract
The pathogenesis of diffuse large B-cell lymphomas (DLBCL) is only partly understood. We analyzed 148 DLBCL by single nucleotide polymorphism (SNP)-chips to characterize genomic imbalances. Seventy-nine cases were of the germinal center B-cell like (GCB) type of DLBCL, 49 of the activated B-cell like (ABC) subtype and 20 were unclassified DLBCL. Twenty-four regions of recurrent genomic gains and 38 regions of recurrent genomic losses were identified over the whole cohort, with a median of 25 imbalances per case for ABC-DLBCL and 19 per case for GCB-DLBCL. Several recurrent copy number changes showed differential frequencies in the GCB- and ABC-DLBCL subgroups, including gains of HDAC7A predominantly in GCB-DLBCL (38% of cases) and losses of BACH2 and CASP8AP2 predominantly in ABC-DLBCL (35%), hinting at disparate pathogenetic mechanisms in these entities. Correlating gene expression and copy number revealed a strong gene dosage effect in all tumors, with 34% of probesets showing a concordant expression change in affected regions. Two new potential tumor suppressor genes emerging from the analysis, CASP3 and IL5RA, were sequenced in ten and 16 candidate cases, respectively. However, no mutations were found, pointing to a potential haploinsufficiency effect of these genes, considering their reduced expression in cases with deletions. Our study thus describes differences and similarities in the landscape of genomic aberrations in the DLBCL subgroups in a large collection of cases, confirming already known targets, but also discovering novel copy number changes with possible pathogenetic relevance.
Related JoVE Video
Recurrent RHOA mutations in pediatric Burkitt lymphoma treated according to the NHL-BFM protocols.
Genes Chromosomes Cancer
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
Burkitt lymphoma (BL) is the most frequent B-cell lymphoma in childhood. Genetically, it is characterized by the presence of an IG-MYC translocation which is supposed to be an initiating but not sufficient event in Burkitt lymphomagenesis. In a recent whole-genome sequencing study of four cases, we showed that the gene encoding the ras homolog family member A (RHOA) is recurrently mutated in pediatric BL. Here, we analyzed RHOA by Sanger sequencing in a cohort of 101 pediatric B-cell lymphoma patients treated according to Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) study protocols. Among the 78 BLs in this series, an additional five had RHOA mutations resulting in a total incidence of 7/82 (8.5%) with c.14G>A (p.R5Q) being present in three cases. Modeling the mutational effect suggests that most of them inactivate the RHOA protein. Thus, deregulation of RHOA by mutation is a recurrent event in Burkitt lymphomagenesis in children.
Related JoVE Video
A familial disorder of altered DNA-methylation.
J. Med. Genet.
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
In a subset of imprinting disorders caused by epimutations, multiple imprinted loci are affected. Familial occurrence of multilocus imprinting disorders is rare.
Related JoVE Video
Rare variants in NR2F2 cause congenital heart defects in humans.
Am. J. Hum. Genet.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.
Related JoVE Video
Identifying molecular markers for the sensitive detection of residual atypical teratoid rhabdoid tumor cells.
Cancer Genet
PUBLISHED: 03-01-2014
Show Abstract
Hide Abstract
Atypical teratoid rhabdoid tumor (AT/RT), a rare and highly malignant tumor entity of the central nervous system that presents in early childhood, has a poor prognosis. AT/RTs are characterized by biallelic inactivating mutations of the gene SMARCB1 in 98% of patients; these mutations may serve as molecular markers for residual tumor cell detection in liquid biopsies. We developed a marker-specific method to detect residual AT/RT cells. Seven of 150 patient samples were selected, each with a histological and genetically ascertained diagnosis of AT/RT. Tumor tissue was either formalin fixed or fresh frozen. DNA was extracted from the patients' peripheral blood leukocytes (PBL) and cerebrospinal fluid (CSF). Multiplex ligation-dependent probe amplification, DNA sequencing, and fluorescence in situ hybridization were used to characterize the tumors' mutations. Residual tumor cell detection used mutation-specific primers and real-time PCR. The detection limit for the residual tumor cell search was 1-18%, depending on the quality of the template provided. The residual tumor cell search in PBL and CSF was negative for all seven patients. The SMARCB1 region of chromosome 22 is prone to DNA double-strand breaks. The individual breakpoints and breakpoint-specific PCR offer the option to detect minimal residual tumor cells in CSF or blood. Even if we did not detect minimal residual tumor cells in the investigated material, proof of principle for this method was confirmed.
Related JoVE Video
Synchronous congenital malignant rhabdoid tumor of the orbit and atypical teratoid/rhabdoid tumor-feasibility and efficacy of multimodal therapy in a long-term survivor.
Cancer Genet
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Among infant malignancies, congenital tumors, especially those of the central nervous system (CNS), constitute a rather unique subgroup. Poor survival rates (28% in CNS tumors) may be attributed to the aggressive biology as well as specific therapeutic limitations innate to the young age of affected patients. Our patient developed synchronous congenital tumors: an atypical teratoid/rhabdoid tumor (AT/RT) localized in the right lateral ventricle of the brain and a malignant rhabdoid tumor (MRT) in the soft tissue of the right orbit. A de novo germline chromosomal deletion in 22q encompassing the SMARCB1 gene was detected, prompting the diagnosis of a de novo rhabdoid tumor predisposition syndrome 1 (RTPS1). The patient was reported to the European Rhabdoid Registry (EU-RHAB) and treated according to the Rhabdoid 2007 recommendation. Despite the very young age of the patient, the initially desperate situation of RTPS1, and the synchronous localization of congenital rhabdoid tumors, intensive chemotherapy was well tolerated; the child is still in complete remission 5 years following diagnosis. In conclusion, RTPS1 with congenital synchronous MRTs is not necessarily associated with a detrimental outcome. Intensive multidrug chemotherapy, including high dose chemotherapy, may be feasible and justified.
Related JoVE Video
Clinical and genetic features of rhabdoid tumors of the heart registered with the European Rhabdoid Registry (EU-RHAB).
Cancer Genet
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Rhabdoid tumors are rare but highly aggressive malignancies of infancy and early childhood with a generally unfavorable prognosis. Despite a wide variety of anatomic locations rhabdoid tumors share mutational inactivation of the SWI/SNF (SWItch/Sucrose NonFermentable) core component gene SMARCB1 (also known as INI1, hSNF5 or BAF47) in chromosome 22. As this inactivation usually results in loss of SMARCB1 expression, detectable by an antibody against the SMARCB1 protein, the accurate diagnosis of a rhabdoid tumor may be more distinctly and frequently made. Several reports on rhabdoid tumors presenting in various anatomic sites outside the kidneys and CNS are on record. We report two cases of rhabdoid tumors originating in the heart (cardiac tissue), which were entered into the European Rhabdoid Registry (EU-RHAB). The first case presented with intracardial and -cranial lesions as well as malignant ascites, while the second patient demonstrated an isolated cardiac tumor. This induced a different therapeutic approach and subsequently different clinical course (death 7 weeks after diagnosis in patient 1). Patient 2 presented with a bifocal intracardial tumor without metastases and remains in complete remission for 46 months since diagnosis following multimodal therapy. The second case demonstrates that even in a potentially futile clinical situation early and accurate diagnosis followed by prompt and intensive multimodal therapy may offer prolonged survival, potential cure and improved quality of life.
Related JoVE Video
Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type.
Nat. Genet.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy in women under 40 years of age. We sequenced the exomes of six individuals from three families with SCCOHT. After discovering segregating deleterious germline mutations in SMARCA4 in all three families, we tested DNA from a fourth affected family, which also carried a segregating SMARCA4 germline mutation. All the familial tumors sequenced harbored either a somatic mutation or loss of the wild-type allele. Immunohistochemical analysis of these cases and additional familial and non-familial cases showed loss of SMARCA4 (BRG1) protein in 38 of 40 tumors overall. Sequencing of cases with available DNA identified at least one germline or somatic deleterious SMARCA4 mutation in 30 of 32 cases. Additionally, the SCCOHT cell line BIN-67 had biallelic deleterious mutations in SMARCA4. Our findings identify alterations in SMARCA4 as the major cause of SCCOHT, which could lead to improvements in genetic counseling and new treatment approaches.
Related JoVE Video
Peripheral T-cell lymphoma with t(6;14)(p25;q11.2) translocation presenting with massive splenomegaly.
Virchows Arch.
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
Recurrent chromosomal translocations associated to peripheral T-cell lymphomas (PTCL) are rare. Here, we report a case of PTCL, not otherwise specified (NOS) with the karyotype 46,Y,add(X)(p22),t(6;14)(p25;q11) and FISH-proved breakpoints in the IRF4 and TCRAD loci, leading to juxtaposition of both genes. A 64-year-old male patient presented with mild cytopenias and massive splenomegaly. Splenectomy showed diffuse red pulp involvement by a pleomorphic medium- to large-cell T-cell lymphoma with a CD2+ CD3+ CD5- CD7- CD4+ CD8+/- CD30- TCRbeta-F1+ immunophenotype, an activated cytotoxic profile, and strong MUM1 expression. The clinical course was marked by disease progression in the bone marrow under treatment and death at 4 months. In contrast with two t(6;14)(p25;q11.2)-positive lymphomas previously reported to be cytotoxic PTCL, NOS with bone marrow and skin involvement, this case was manifested by massive splenomegaly, expanding the clinical spectrum of PTCLs harboring t(6;14)(p25;q11.2) and supporting consideration of this translocation as a marker of biological aggressiveness.
Related JoVE Video
Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2.
Fertil. Steril.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
To identify CpG sites differentially methylated in peripheral blood of men with idiopathic infertility due to impaired spermatogenesis as compared with fertile controls.
Related JoVE Video
Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia.
Genes Chromosomes Cancer
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
T-cell prolymphocytic leukemia (T-PLL) is an aggressive post-thymic T-cell malignancy characterized by the recurrent inv(14)(q11q32)/t(14;14)(q11;q32) or t(X;14)(q28;q11) leading to activation of either the TCL1 or MTCP1 gene, respectively. However, these primary genetic events are insufficient to drive leukemogenesis. Recently, activating mutations in JAK3 have been identified in other T-cell malignancies. Since JAK3 is essential for T-cell maturation, we analyzed a cohort of 32 T-PLL patients for mutational hot spots in the JAK3 gene using a step-wise screening approach. We identified 14 mutations in 11 of 32 patients (34%). The most frequently detected mutation in our cohort was M511I (seen in 57% of cases) previously described as an activating change in other T-cell malignancies. Three patients carried two mutations in JAK3. In two patients M511I and R657Q were simultaneously detected and in another patient V674F and V678L. In the latter case we could demonstrate that the mutations were on the same allele in cis. Protein modeling and homology analyses of mutations present in other members of the JAK family suggested that these mutations likely activate JAK3, possibly by disrupting the activation loop and the interface between N and C lobes, increasing the accessibility of the catalytic loop. In addition, four of the 21 patients lacking a JAK3 point mutation presented an aberrant karyotype involving the chromosomal band 19p13 harboring the JAK3 locus. The finding of recurrent activating JAK3 mutations in patients with T-PLL could enable the use of JAK3 inhibitors to treat patients with this unfavorable malignancy who otherwise have a very poor prognosis.
Related JoVE Video
Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.
J. Mol. Med.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID loci because of the following: (a) Multi-locus tests increase the detection rates as they cover numerous loci. (b) Patients with unexpected molecular alterations are detected. (c) The testing of rare imprinting disorders becomes more efficient and quality of molecular diagnosis increases. (d) The tests identify MLMDs. In the future, the detailed characterization of clinical and molecular findings in ID patients will help us to decipher the complex regulation of imprinting and thereby providing the basis for more directed genetic counseling and therapeutic managements in IDs.
Related JoVE Video
Hypermethylation of the alternative AWT1 promoter in hematological malignancies is a highly specific marker for acute myeloid leukemias despite high expression levels.
J Hematol Oncol
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
Wilms tumor 1 (WT1) is over-expressed in numerous cancers with respect to normal cells, and has either a tumor suppressor or oncogenic role depending on cellular context. This gene is associated with numerous alternatively spliced transcripts, which initiate from two different unique first exons within the WT1 and the alternative (A)WT1 promoter intervals. Within the hematological system, WT1 expression is restricted to CD34+/CD38- cells and is undetectable after differentiation. Detectable expression of this gene is an excellent marker for minimal residual disease in acute myeloid leukemia (AML), but the underlying epigenetic alterations are unknown.
Related JoVE Video
A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma.
Blood
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.
Related JoVE Video
Biologic characterization of adult MYC-translocation positive mature B-cell lymphomas other than molecular Burkitt lymphoma.
Haematologica
PUBLISHED: 10-31-2013
Show Abstract
Hide Abstract
Chromosomal translocations affecting the MYC oncogene are the biologic hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation positive (MYC+) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biologic features of these MYC+ lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation positive lymphomas (31 single-hit, 46 double-hit & 3 MYC+-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas showed more frequent GCB-like gene expression profile and higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6+/MYC+ and BCL2+/MYC+ double-hit lymphomas. BCL2+/MYC+ double-hit lymphomas showed a more frequent GCB-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast with molecular Burkitt lymphoma and lymphomas without MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC+ lymphomas are biologically quite homogenous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC+ lymphomas sharing various molecular characteristics.
Related JoVE Video
Landscape of somatic mutations and clonal evolution in mantle cell lymphoma.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-21-2013
Show Abstract
Hide Abstract
Mantle cell lymphoma (MCL) is an aggressive tumor, but a subset of patients may follow an indolent clinical course. To understand the mechanisms underlying this biological heterogeneity, we performed whole-genome and/or whole-exome sequencing on 29 MCL cases and their respective matched normal DNA, as well as 6 MCL cell lines. Recurrently mutated genes were investigated by targeted sequencing in an independent cohort of 172 MCL patients. We identified 25 significantly mutated genes, including known drivers such as ataxia-telangectasia mutated (ATM), cyclin D1 (CCND1), and the tumor suppressor TP53; mutated genes encoding the anti-apoptotic protein BIRC3 and Toll-like receptor 2 (TLR2); and the chromatin modifiers WHSC1, MLL2, and MEF2B. We also found NOTCH2 mutations as an alternative phenomenon to NOTCH1 mutations in aggressive tumors with a dismal prognosis. Analysis of two simultaneous or subsequent MCL samples by whole-genome/whole-exome (n = 8) or targeted (n = 19) sequencing revealed subclonal heterogeneity at diagnosis in samples from different topographic sites and modulation of the initial mutational profile at the progression of the disease. Some mutations were predominantly clonal or subclonal, indicating an early or late event in tumor evolution, respectively. Our study identifies molecular mechanisms contributing to MCL pathogenesis and offers potential targets for therapeutic intervention.
Related JoVE Video
Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice.
Acta Neuropathol.
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
Primary lymphoma of the central nervous system (CNS, PCNSL) is a specific diffuse large B cell lymphoma entity arising in and confined to the CNS. Despite extensive research since many decades, the pathogenetic mechanisms underlying the remarkable tropism of this peculiar malignant hematopoietic tumor remain still to be elucidated. In the present review, we summarize the present knowledge on the genotypic and phenotypic characteristics of the tumor cells of PCNSL, give an overview over deregulated molecular pathways in PCNSL and present recent progress in the field of preclinical modeling of PCNSL in mice. With regard to the phenotype, PCNSL cells resemble late germinal center exit IgM+IgD+ B cells with blocked terminal B cell differentiation. They show continued BCL6 activity in line with ongoing activity of the germinal center program. This together with the pathways deregulated by genetic alterations may foster B cell activation and brisk proliferation, which correlated with the simultaneous MYC and BCL2 overexpression characteristic for PCNSL. On the genetic level, PCNSL are characterized by ongoing aberrant somatic hypermutation that, besides the IG locus, targets the PAX5, TTF, MYC, and PIM1 genes. Moreover, PCNSL cells show impaired IG class switch due to s? region deletions, and PRDM1 mutations. Several important pathways, i.e., the B cell receptor (BCR), the toll-like receptor, and the nuclear factor-?B pathway, are activated frequently due to genetic changes affecting genes like CD79B, SHIP, CBL, BLNK, CARD11, MALT1, BCL2, and MYD88. These changes likely foster tumor cell survival. Nevertheless, many of these features are also present in subsets of systemic DLBLC and might not be the only reasons for the peculiar tropism of PCNSL. Here, preclinical animal models that closely mimic the clinical course and neuropathology of human PCNSL may provide further insight and we discuss recent advances in this field. Such models enable us to understand the pathogenetic interaction between the malignant B cells, resident cell populations of the CNS, and the associated inflammatory infiltrate. Indeed, the immunophenotype of the CNS as well as tumor cell characteristics and intracerebral interactions may create a micromilieu particularly conducive to PCNSL that may foster aggressiveness of tumor cells and accelerate the fatal course of disease. Suitable animal models may also serve as a well-defined preclinical system and may provide a useful tool for developing new specific therapeutic strategies.
Related JoVE Video
DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery.
Cell Metab.
PUBLISHED: 05-12-2013
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (n = 45) with all stages of NAFLD and controls (n = 18) were analyzed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and methylation differences were seen for nine genes coding for key enzymes in intermediate metabolism (including PC, ACLY, and PLCG1) and insulin/insulin-like signaling (including IGF1, IGFBP2, and PRKCE) and replicated by bisulfite pyrosequening (independent n = 39). Transcription factor binding sites at NAFLD-specific CpG sites were >1,000-fold enriched for ZNF274, PGC1A, and SREBP2. Intraindividual comparison of liver biopsies before and after bariatric surgery showed NAFLD-associated methylation changes to be partially reversible. Postbariatric and NAFLD-specific methylation signatures were clearly distinct both in gene ontology and transcription factor binding site analyses, with >400-fold enrichment of NRF1, HSF1, and ESRRA sites. Our findings provide an example of treatment-induced epigenetic organ remodeling in humans.
Related JoVE Video
Hypermutation of the inactive X chromosome is a frequent event in cancer.
Cell
PUBLISHED: 04-27-2013
Show Abstract
Hide Abstract
Mutation is a fundamental process in tumorigenesis. However, the degree to which the rate of somatic mutation varies across the human genome and the mechanistic basis underlying this variation remain to be fully elucidated. Here, we performed a cross-cancer comparison of 402 whole genomes comprising a diverse set of childhood and adult tumors, including both solid and hematopoietic malignancies. Surprisingly, we found that the inactive X chromosome of many female cancer genomes accumulates on average twice and up to four times as many somatic mutations per megabase, as compared to the individual autosomes. Whole-genome sequencing of clonally expanded hematopoietic stem/progenitor cells (HSPCs) from healthy individuals and a premalignant myelodysplastic syndrome (MDS) sample revealed no X chromosome hypermutation. Our data suggest that hypermutation of the inactive X chromosome is an early and frequent feature of tumorigenesis resulting from DNA replication stress in aberrantly proliferating cells.
Related JoVE Video
Janus--a comprehensive tool investigating the two faces of transcription.
Bioinformatics
PUBLISHED: 04-24-2013
Show Abstract
Hide Abstract
Protocols to generate strand-specific transcriptomes with next-generation sequencing platforms have been used by the scientific community roughly since 2008. Strand-specific reads allow for detection of antisense events and a higher resolution of expression profiles enabling extension of current transcript annotations. However, applications making use of this strandedness information are still scarce.
Related JoVE Video
Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy.
Am. J. Hum. Genet.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.
Related JoVE Video
Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma.
Am. J. Surg. Pathol.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Follicular lymphoma (FL), a common lymphoma in adults, occurs rarely in pediatric and young adult patients. Most pediatric cases have been described as grade 3, but the criteria to distinguish the pediatric variant of FL (PFL) from usual FL (UFL) seen in adults are not well defined. We undertook a study of FL in patients under the age of 30. We identified 63 cases, which were analyzed by morphology, immunohistochemistry, and polymerase chain reaction analysis of IGH@ and IGK@ clonality. These data were correlated with clinical findings including stage, treatment, and outcome. Among the 63 cases, 34 cases were classified as PFL: 22 presenting in lymph nodes, 8 in the Waldeyer ring, and 4 in the testis. Clonal immunoglobulin gene rearrangement was detected in 97% of PFL cases, but fluorescence in situ hybridization analysis showed an absence of the BCL2/IGH@ translocation in all cases tested. Twenty-nine cases were classified as UFL, 28 of which presented in lymph nodes. The nodal PFLs were observed exclusively in male patients in both children and young adults with a median age of 15 years. They showed marked head/neck predilection, blastoid cytologic features with a high proliferation rate, lack of BCL2 protein and t(14;18), low clinical stage at presentation, and good prognosis. PFLs involving the Waldeyer ring were distinguished by MUM1 expression, 50% (3/6) of which carried IRF4 breaks. BCL2 expression was common (63%) in the absence of BCL2/IGH@ translocation. UFLs were more common in female patients, exclusively in young adults (median age, 24 y), with no cases reported in patients under the age of 18. Twenty-five of 29 cases were of grade 1-2, and 4 cases were classified as grade 3A. They exhibited a higher clinical stage at presentation. Eighty-three percent expressed BCL2. Our results indicate that histologic and immunophenotypic criteria can reliably separate PFL and UFL and that UFL is exceptionally rare in the pediatric age group. PFL associated with particular anatomic sites have distinctive features and should be evaluated separately in future clinical and biological studies.
Related JoVE Video
Signatures of mutational processes in human cancer.
Nature
PUBLISHED: 03-24-2013
Show Abstract
Hide Abstract
All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
Related JoVE Video
Mechanisms of intracerebral lymphoma growth delineated in a syngeneic mouse model of central nervous system lymphoma.
J. Neuropathol. Exp. Neurol.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Primary lymphoma of the central nervous system (PCNSL) is defined as lymphoma of the diffuse large B-cell type confined to the CNS. To understand the effects of the CNS microenvironment on the malignant B cells and their interactions with the cells of the target organ, we analyzed a syngeneic mouse model. Transplantation of BAL17 cells into the frontal white matter of syngeneic BALB/c mice induced lymphomas with major clinical and neuropathologic features that parallel those of human PCNSL, including an angiocentric growth pattern in the brain parenchyma and tropism for the inner and outer ventricular system. Seven cycles of repeated isolation of lymphoma cells from the CNS and their intracerebral reimplantation induced genotypic and phenotypic alterations in resulting BAL17VII cells; the affected genes regulate apoptosis and are of the JAK/STAT pathway. Because lymphoma growth of BAL17VII cells was significantly accelerated, that is, shortening the time to death of the mice, these data indicate that prolonged stay of the lymphoma cells in the CNS was associated with worse outcome. These findings suggest that the CNS microenvironment fosters aggressiveness of lymphoma cells, thereby accelerating the lethal course of PCNSL.
Related JoVE Video
Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas.
Haematologica
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Pediatric follicular lymphoma is a rare disease that differs genetically and clinically from its adult counterpart. With the exception of pediatric follicular lymphoma with IRF4-translocation, the genetic events associated with these lymphomas have not yet been defined. We applied array-comparative genomic hybridization and molecular inversion probe assay analyses to formalin-fixed paraffin-embedded tissues from 18 patients aged 18 years and under with IRF4 translocation negative follicular lymphoma. All evaluable cases lacked t(14;18). Only 6 of 16 evaluable cases displayed chromosomal imbalances with gains or amplifications of 6pter-p24.3 (including IRF4) and deletion and copy number neutral-loss of heterozygosity in 1p36 (including TNFRSF14) being most frequent. Sequencing of TNFRSF14 located in the minimal region of loss in 1p36.32 showed nine mutations in 7 cases from our series. Two subsets of pediatric follicular lymphoma were delineated according to the presence of molecular alterations, one with genomic aberrations associated with higher grade and/or diffuse large B-cell lymphoma component and more widespread disease, and another one lacking genetic alterations associated with more limited disease.
Related JoVE Video
Endobronchial ALK+ anaplastic large-cell lymphoma resembling asthma in a 13-year-old girl.
J. Pediatr. Hematol. Oncol.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
Anaplastic large-cell lymphoma is a rare disease in children, and endobronchial localization is extremely rare in any age group. We report the case of a 13-year-old girl with endobronchial anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma presenting as asthma, and discuss the diagnostic, therapeutic, and clinical implications.
Related JoVE Video
X-linked Dystonia-Parkinsonism manifesting in a female patient due to atypical turner syndrome.
Mov. Disord.
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Recessive X-linked dystonia-parkinsonism almost exclusively affects men. We investigated the genetic mechanisms causing this disorder in a female patient.
Related JoVE Video
MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma.
Blood
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
MYC rearrangements occur in 5% to 10% of diffuse large B-cell lymphomas (DLBCL) and confer an increased risk to cyclophosphamide, hydroxydaunorubicin, oncovin, and prednisone (CHOP) and rituximab (R)-CHOP treated patients. We investigated the prognostic relevance of MYC-, BCL2- and BCL6-rearrangements and protein expression in a prospective randomized trial. Paraffin-embedded tumor samples from 442 de novo DLBCL treated within the RICOVER study of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL) were investigated using immunohistochemistry and fluorescence in situ hybridization (FISH) to detect protein expression and breaks of MYC, BCL2, and BCL6. Rearrangements of MYC, BCL2, and BCL6 were detected in 8.8%, 13.5%, and 28.7%, respectively. Protein overexpression of MYC (>40%) was encountered in 31.8% of tumors; 79.6% and 82.8% of tumors expressed BCL2 and BCL6, respectively. MYC translocations, MYChigh, BCL2high, and BCL6low protein expressions were associated with inferior survival. In multivariate Cox regression modeling, protein expression patterns of MYC, BCL2 and BCL6, and MYC rearrangements were predictive of outcome and provided prognostic information independent of the International Prognostic Index (IPI) for overall survival and event-free survival. A combined immunohistochemical or FISH/immunohistochemical score predicts outcome in DLBCL patients independent of the IPI and identifies a subset of 15% of patients with dismal prognosis in the high-risk IPI group following treatment with R-CHOP. Registered at http://www.cancer.gov/clinicaltrials: RICOVER trial of the DSHNHL is NCT 00052936.
Related JoVE Video
FISH and FICTION to detect chromosomal aberrations in lymphomas.
Methods Mol. Biol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Fluorescence In Situ Hybridization (FISH) is a powerful and robust technique allowing the visualization of target sequences like genes in interphase nuclei. It is widely used in routine diagnostics to identify cancer specific aberrations including lymphoma associated translocations or gene copy number changes in single tumor cells. By combining FISH with immunophenotyping-a technique called Fluorescence Immunophenotyping and Interphase Cytogenetic as a Tool for Investigation Of Neoplasia (FICTION)-it is moreover possible to identify a cell population of interest. Here we describe standard protocols for FISH and FICTION as used in our laboratory in diagnosis and research.
Related JoVE Video
Breakpoint characterization of the der(19)t(11;19)(q13;p13) in the ovarian cancer cell line SKOV-3.
Genes Chromosomes Cancer
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
About 20% of ovarian carcinomas show alterations of 19p13 and/or 19q13 in the form of added extra material whose origin often is from chromosome 11. Based on earlier spectral karyotype analysis of the ovarian cancer cell line SKOV-3, which shows an unbalanced translocation der(19)t(11;19), the aim of this study was to determine the precise breakpoints of that derivative chromosome. After rough delimitation of the breakpoints of microdissected derivative chromosomes by array analysis, we designed a matrix of primers spanning 11q13.2 and 19p13.2 detecting multiple amplicons on genomic and cDNA. Sequencing the amplicons, accurate localization of both breakpoints on both chromosomes was possible and we found that exon 14 of HOOK2 from chromosome 19 and exon 2 of ACTN3 from chromosome 11 were fused in the derivative chromosome. The breakpoint in the HOOK2 gene was in an intrinsic triplet of nucleic acids leading to a shift in the ACTN3 reading frame in the derivative chromosome. This frameshift alteration should give rise to an early stop codon causing a loss of function of ACTN3. Signals in two-dimensional Western blotting exactly match to calculated molecular mass and the isoelectric point of the fusion protein.
Related JoVE Video
Related JoVE Video
Hodgkin-reed-sternberg cells in classical hodgkin lymphoma show alterations of genes encoding the NADPH oxidase complex and impaired reactive oxygen species synthesis capacity.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL.
Related JoVE Video
Massive transcriptional perturbation in subgroups of diffuse large B-cell lymphomas.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Based on the assumption that molecular mechanisms involved in cancerogenesis are characterized by groups of coordinately expressed genes, we developed and validated a novel method for analyzing transcriptional data called Correlated Gene Set Analysis (CGSA). Using 50 extracted gene sets we identified three different profiles of tumors in a cohort of 364 Diffuse large B-cell (DLBCL) and related mature aggressive B-cell lymphomas other than Burkitt lymphoma. The first profile had high level of expression of genes related to proliferation whereas the second profile exhibited a stromal and immune response phenotype. These two profiles were characterized by a large scale gene activation affecting genes which were recently shown to be epigenetically regulated, and which were enriched in oxidative phosphorylation, energy metabolism and nucleoside biosynthesis. The third and novel profile showed only low global gene activation similar to that found in normal B cells but not cell lines. Our study indicates novel levels of complexity of DLBCL with low or high large scale gene activation related to metabolism and biosynthesis and, within the group of highly activated DLBCLs, differential behavior leading to either a proliferative or a stromal and immune response phenotype.
Related JoVE Video
Deep bisulfite sequencing of aberrantly methylated Loci in a patient with multiple methylation defects.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
NLRP7 is a maternal effect gene as maternal mutations in this gene cause recurrent hydatidiform moles, spontaneous abortions and stillbirths, whereas live births are very rare. We have studied a patient with multiple anomalies born to a mother with a heterozygous NLRP7 mutation. By array-based CpG methylation analysis of blood DNA from the patient, his parents and 18 normal controls on Illumina Infinium HumanMethylation27 BeadChips we found that the patient had methylation changes (delta ß ? 0.3) at many imprinted loci as well as at 87 CpGs associated with 85 genes of unknown imprinting status. Using a pseudoproband (permutation) approach, we found methylation changes at only 7-24 CpGs (mean 15; standard deviation 4.84) in the controls. Thus, the number of abberantly methylated CpGs in the patient is more than 14 standard deviations higher. In order to identify novel imprinted genes among the 85 conspicuous genes in the patient, we selected 19 (mainly hypomethylated) genes for deep bisulfite amplicon sequencing on the ROCHE/454 Genome Sequencer in the patient and at least two additional controls. These controls had not been included in the array analysis and were heterozygous for a single nucleotide polymorphism at the test locus, so that allele-specific DNA methylation patterns could be determined. Apart from FAM50B, which we proved to be imprinted in blood, we did not observe allele-specific DNA methylation at the other 18 loci. We conclude that the patient does not only have methylation defects at imprinted loci but (at least in blood) also an excess of methylation changes at apparently non-imprinted loci.
Related JoVE Video
Genetic characteristics of the human hepatic stellate cell line LX-2.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40) transforming (T) antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR) profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY) revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.
Related JoVE Video
Androgen receptor function links human sexual dimorphism to DNA methylation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS) due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.
Related JoVE Video
Statistical inference of allelic imbalance from transcriptome data.
Hum. Mutat.
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
Next-generation sequencing and the availability of high-density genotyping arrays have facilitated an analysis of somatic and meiotic mutations at unprecedented level, but drawing sensible conclusions about the functional relevance of the detected variants still remains a formidable challenge. In this context, the study of allelic imbalance in intermediate RNA phenotypes may prove a useful means to elucidate the likely effects of DNA variants of unknown significance. We developed a statistical framework for the assessment of allelic imbalance in next-generation transcriptome sequencing (RNA-seq) data that requires neither an expression reference nor the underlying nuclear genotype(s), and that allows for allele miscalls. Using extensive simulation as well as publicly available whole-transcriptome data from European-descent individuals in HapMap, we explored the power of our approach in terms of both genotype inference and allelic imbalance assessment under a wide range of practically relevant scenarios. In so doing, we verified a superior performance of our methodology, particularly at low sequencing coverage, compared to the more simplistic approach of completely ignoring allele miscalls. Because the proposed framework can be used to assess somatic mutations and allelic imbalance in one and the same set of RNA-seq data, it will be particularly useful for the analysis of somatic genetic variation in cancer studies.
Related JoVE Video
Defining the prognosis of early stage chronic lymphocytic leukaemia patients.
Br. J. Haematol.
PUBLISHED: 12-15-2011
Show Abstract
Hide Abstract
Approximately 70% of chronic lymphocytic leukaemia (CLL) patients present with early stage disease, therefore defining which patients will progress and require treatment is a major clinical challenge. Here, we present the largest study of prognostic markers ever carried out in Binet stage A patients (n?=?1154) with a median follow-up of 8?years. We assessed the prognostic impact of lymphocyte doubling time (LDT), immunoglobulin gene (IGHV) mutation status, CD38 expression, ZAP-70 expression and fluorescence in situ hybridization (FISH) cytogenetics with regards to time to first treatment (TTFT) and overall survival (OS). Univariate analysis revealed LDT as the most prognostic parameter for TTFT, with IGHV mutation status most prognostic for OS. CD38 expression, ZAP-70 expression and FISH were also prognostic variables; combinations of these markers increased prognostic power in concordant cases. Multivariate analysis revealed that only LDT, IGHV mutation status, CD38 and age at diagnosis were independent prognostic variables for TTFT and OS. Therefore, IGHV mutation status and CD38 expression have independent prognostic value in early stage CLL and should be performed as part of the routine diagnostic workup. ZAP-70 expression and FISH were not independent prognostic markers in early stage disease and can be omitted at diagnosis but FISH analysis should be undertaken at disease progression to direct treatment strategy.
Related JoVE Video
B-SOLANA: an approach for the analysis of two-base encoding bisulfite sequencing data.
Bioinformatics
PUBLISHED: 12-06-2011
Show Abstract
Hide Abstract
Bisulfite sequencing, a combination of bisulfite treatment and high-throughput sequencing, has proved to be a valuable method for measuring DNA methylation at single base resolution. Here, we present B-SOLANA, an approach for the analysis of two-base encoding (colorspace) bisulfite sequencing data on the SOLiD platform of Life Technologies. It includes the alignment of bisulfite sequences and the determination of methylation levels in CpG as well as non-CpG sequence contexts. B-SOLANA enables a fast and accurate analysis of large raw sequence datasets.
Related JoVE Video
Loss of protein expression and recurrent DNA hypermethylation of the GNG7 gene in squamous cell carcinoma of the head and neck.
J. Appl. Genet.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
Although down-regulation of GNG7 in cancer was reported before, its role in carcinogenesis is poorly understood. It belongs to a family of large G-proteins that may be involved in cell-contact-induced growth arrest and function in tumor suppression. In the present study, we stained immunohistochemically 188 tumors derived from larynx or floor of the mouth for GNG7 protein and confronted it with clinicopathologic data. Moreover, we performed bisulfite pyrosequencing to analyze GNG7 promoter methylation. We identified recurrent loss of GNG7 protein expression in 68/188 (36%) cases and promoter hypermethylation in (42/98; 43%) primary tumors, predominantly in young patients (p?
Related JoVE Video
Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations.
Mod. Pathol.
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
The term gray zone lymphoma has been applied to tumors that demonstrate transitional morphologic and immunophenotypic features between classical Hodgkins lymphoma and diffuse large B-cell lymphoma, especially primary mediastinal large B-cell lymphoma. Histopathological and genetic data are limited for these unusual cases. We analyzed cases of gray zone lymphoma (n=27), mediastinal composite lymphoma (n=3) and mediastinal synchronous/metachronous lymphoma (n=3) by morphology, immunophenotyping and fluorescence in situ hybridization. Mediastinal involvement was assured in 24/33 patients (73%). The patient cohort showed a male predominance (M:F ratio; 20:13) and a median age of 32 years (range, 16-91 years). Patients with mediastinal disease were significantly younger (median age: 29.5 years) than patients presenting without evident mediastinal disease (median age: 55 years). Gains including amplifications in 2p16.1 (REL/BCL11A locus) were observed in 33% of all patients, whereas alterations affecting the JAK2/PDL2 locus in 9p24.1 were present in 55%. Further studies revealed rearrangement of the CIITA locus at 16p13.13 in 8/30 cases (27%) and 7/26 cases (27%) demonstrated gains of 8q24 (MYC). Genetic aberrations involving 2p16.1, 9p24.1 and 8q24 showed a higher incidence in cases with evident mediastinal involvement. However, this was not statistically significant when compared with cases without known mediastinal involvement. Twelve of the 27 cases of gray zone lymphoma were morphologically more reminiscent of classical Hodgkins lymphoma, whereas the other gray zone lymphomas presented with morphological features more closely resembling large B-cell lymphoma. Both morphological groups of gray zone lymphoma were similarly positive for Cyclin E (75 and 93%) and p63 (50 and 53%, respectively) expression. These findings further support a close relationship between gray zone lymphoma, classical Hodgkins lymphoma and primary mediastinal large B-cell lymphoma, and suggest that some cases of gray zone lymphoma without mediastinal disease may share similar genetic alterations.
Related JoVE Video
A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
The chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 overexpression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current treatment strategies. Cyclin-D1 has been postulated as an effective therapeutic target, but the evaluation of this target has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model in which cyclin-D1 expression can be regulated externally. These mice developed cyclin-D1-expressing lymphomas capable of recapitulating features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo; however, using a combination of in vitro and in vivo assays, we identified a novel prosurvival cyclin-D1 function in MCL cells. Specifically, we found that cyclin-D1, besides increasing cell proliferation through deregulation of the cell cycle at the G(1)-S transition, sequestrates the proapoptotic protein BAX in the cytoplasm, thereby favoring BCL2s antiapoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a proapoptotic BH3 mimetic synergistically killed the cyclin-D1-expressing murine lymphomas, human MCL cell lines, and primary lymphoma cells. Our study identifies a role of cyclin-D1 in deregulating apoptosis in MCL cells, and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL. This effective combination therapy also might be exploited in other cyclin-D1-expressing tumors.
Related JoVE Video
Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immunohistochemical profiles.
Haematologica
PUBLISHED: 06-09-2011
Show Abstract
Hide Abstract
According to the current World Health Organization Classification of Lymphoid Tumours, follicular lymphoma is subclassified into three grades according to the number of centroblasts. Follicular lymphoma grade 3 can be further divided into types A and B. Almost all available genetic data on grade 3B follicular lymphomas have been generated from tumors with an additional diffuse large B-cell lymphoma component. The purely follicular type of follicular lymphoma grade 3B is a rare neoplasm.
Related JoVE Video
A DNA methylation fingerprint of 1628 human samples.
Genome Res.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases.
Related JoVE Video
Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression.
Am. J. Surg. Pathol.
PUBLISHED: 05-14-2011
Show Abstract
Hide Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are highly aggressive brain tumors of early childhood poorly responding to therapy. The majority of cases show inactivation of SMARCB1 (INI1, hSNF5, BAF47), a core member of the adenosine triphosphate (ATP)-dependent SWI/SNF chromatin-remodeling complex. We here report the case of a supratentorial AT/RT in a 9-month-old boy, which showed retained SMARCB1 staining on immunohistochemistry and lacked genetic alterations of SMARCB1. Instead, the tumor showed loss of protein expression of another SWI/SNF chromatin-remodeling complex member, the ATPase subunit SMARCA4 (BRG1) due to a homozygous SMARCA4 mutation [c.2032C>T (p.Q678X)]. Our findings highlight the role of SMARCA4 in the pathogenesis of SMARCB1-positive AT/RT and the usefulness of antibodies directed against SMARCA4 in this diagnostic setting.
Related JoVE Video
Epigenetic activation of SOX11 in lymphoid neoplasms by histone modifications.
PLoS ONE
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Recent studies have shown aberrant expression of SOX11 in various types of aggressive B-cell neoplasms. To elucidate the molecular mechanisms leading to such deregulation, we performed a comprehensive SOX11 gene expression and epigenetic study in stem cells, normal hematopoietic cells and different lymphoid neoplasms. We observed that SOX11 expression is associated with unmethylated DNA and presence of activating histone marks (H3K9/14Ac and H3K4me3) in embryonic stem cells and some aggressive B-cell neoplasms. In contrast, adult stem cells, normal hematopoietic cells and other lymphoid neoplasms do not express SOX11. Such repression was associated with silencing histone marks H3K9me2 and H3K27me3. The SOX11 promoter of non-malignant cells was consistently unmethylated whereas lymphoid neoplasms with silenced SOX11 tended to acquire DNA hypermethylation. SOX11 silencing in cell lines was reversed by the histone deacetylase inhibitor SAHA but not by the DNA methyltransferase inhibitor AZA. These data indicate that, although DNA hypermethylation of SOX11 is frequent in lymphoid neoplasms, it seems to be functionally inert, as SOX11 is already silenced in the hematopoietic system. In contrast, the pathogenic role of SOX11 is associated with its de novo expression in some aggressive lymphoid malignancies, which is mediated by a shift from inactivating to activating histone modifications.
Related JoVE Video
How to analyse epigenetic marks?
Pediatr Endocrinol Rev
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
By adding adaptable information about the activity of genes, epigenetics enables the activation of specific genes depending on the prevalent environmental conditions and individual requirements of a cell. Although epigenetic information is heritable, it is not stored in the sequence of the DNA but mainly in the modification pattern of the chromatin, i.e., the methylation of cytosine residues in the DNA or covalent modifications of the histones. By controlling gene activity and therefore the availability of the final gene product in the cell, epigenetic alterations can have similar effects as classical genetic mutations. Indeed, the recent past epigenetic modifications have become a focus for the clinic for diagnostics, prognostics, as well as therapeutic purposes. This review briefly summarizes the major aspects of epigenetics and presents a comprehensive overview about the fundamental principles of DNA methylation analysis.
Related JoVE Video
A girl with an atypical form of ataxia telangiectasia and an additional de novo 3.14 Mb microduplication in region 19q12.
Eur J Med Genet
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
A 9-year-old girl born to healthy parents showed manifestations suggestive of ataxia telangiectasia (AT), such as short stature, sudden short bouts of horizontal and rotary nystagmus, a weak and dysarthric voice, rolling gait, unstable posture, and atactic movements. She did not show several cardinal features typical of AT such as frequent, severe infections of the respiratory tract. In contrast, she showed symptoms not generally related to AT, including microcephaly, profound motor and mental retardation, small hands and feet, severely and progressively reduced muscle tone with slackly protruding abdomen and undue drooling, excess fat on her upper arms, and severe oligoarthritis. A cranial MRI showed no cerebellar hypoplasia and other abnormalities. In peripheral blood samples she carried a de novo duplication of 3.14 Mb in chromosomal region 19q12 containing six annotated genes, UQCRFS1, VSTM2B, POP4, PLEKHF1, CCNE1, and ZNF536, and a de novo mosaic inversion 14q11q32 (96% of metaphases). In a saliva-derived DNA sample only the duplication in 19q12 was detected, suggesting that the rearrangements in blood lymphocytes were acquired. These findings reinforced the suspicion that she had AT. AT was confirmed by strongly elevated serum AFP levels, cellular radiosensitivity and two inherited mutations in the ATM gene (c.510_511delGT; paternal origin and c.2922-50_2940del69; maternal origin). This case suggest that a defective ATM-dependent DNA damage response may entail additional stochastic genomic rearrangements. Screening for genomic rearrangements appears indicated in patients suspected of defective DNA damage responses.
Related JoVE Video
Follicular lymphoma grade 3B.
Best Pract Res Clin Haematol
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Follicular lymphoma (FL) grade 3B (FL3B) is defined as FL with more than 15% centroblasts per high resolution field present as solid sheets. Coexistence with diffuse large B-cell lymphoma (DLBCL) is frequent. In contrast to other FL, FL3B frequently lack CD10 expression (approximately 50% of cases), show lower probability of BCL2 expression (69% positive) and increased TP53 expression (31% positive). The t(14;18) hallmark translocation of FL is present in only around 13% of FL3B. In contrast, translocations affecting the BCL6 locus in 3q27 are frequent (44%). Overall, FL3B in many features resembles DLBCL. The presence of a diffuse component in FL3B has been related to an unfavorable outcome except for pediatric FL3B that presents in 60% of the cases this DLBCL component. In this chapter we sought to review the present knowledge on morphological, cytogenetic and molecular features in FL3B.
Related JoVE Video
Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults.
Blood
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma.
Related JoVE Video
The gray zone between Burkitts lymphoma and diffuse large B-cell lymphoma from a genetics perspective.
J. Clin. Oncol.
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
It has long been recognized that the border between classical Burkitts lymphoma (BL) and classical diffuse large B-cell lymphoma (DLBCL) is hard to determine. Instead, both classical lymphoma entities seem to be the extreme ends of a spectrum of diseases that contains a group of lymphomas characterized predominately by the fact that they are hard to assign to the one or the other group. This gray zone has been recently termed "lymphoma, unclassifiable, with features intermediate between DLBCL and BL" by the updated WHO classification. The term "intermediate" resembles that from a recent gene-expression study of mature aggressive B-cell lymphomas, although, notably, it is used differently. Intermediate lymphomas according to the WHO classification clearly are a temporary container of different biologic subtypes of aggressive lymphoma, from which several might be associated with an unfavorable clinical outcome. The present review aims at describing the morphologic, clinical, and biologic heterogeneity of the intermediate lymphomas and, moreover, attempts to propose testable subgroups based on age and presence of genetic aberrations.
Related JoVE Video
Distinct DNA methylation patterns in cirrhotic liver and hepatocellular carcinoma.
Int. J. Cancer
PUBLISHED: 03-16-2011
Show Abstract
Hide Abstract
Abberrant DNA methylation is one of the hallmarks of cancerogenesis. Our study aims to delineate differential DNA methylation in cirrhosis and hepatic cancerogenesis. Patterns of methylation of 27,578 individual CpG loci in 12 hepatocellular carcinomas (HCCs), 15 cirrhotic controls and 12 normal liver samples were investigated using an array-based technology. A supervised principal component analysis (PCA) revealed 167 hypomethylated loci and 100 hypermethylated loci in cirrhosis and HCC as compared to normal controls. Thus, these loci show a "cirrhotic" methylation pattern that is maintained in HCC. In pairwise supervised PCAs between normal liver, cirrhosis and HCC, eight loci were significantly changed in all analyses differentiating the three groups (p < 0.0001). Of these, five loci showed highest methylation levels in HCC and lowest in control tissue (LOC55908, CELSR1, CRMP1, GNRH2, ALOX12 and ANGPTL7), whereas two loci showed the opposite direction of change (SPRR3 and TNFSF15). Genes hypermethylated between normal liver to cirrhosis, which maintain this methylation pattern during the development of HCC, are depleted for CpG islands, high CpG content promoters and polycomb repressive complex 2 (PRC2) targets in embryonic stem cells. In contrast, genes selectively hypermethylated in HCC as compared to nonmalignant samples showed an enrichment of CpG islands, high CpG content promoters and PRC2 target genes (p < 0.0001). Cirrhosis and HCC show distinct patterns of differential methylation with regards to promoter structure, PRC2 targets and CpG islands.
Related JoVE Video
A de novo 1.1Mb microdeletion of chromosome 19p13.11 provides indirect evidence for EPS15L1 to be a strong candidate for split hand split foot malformation.
Eur J Med Genet
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
We describe a 3.5 year old girl presenting with short stature, developmental delay, marked muscular hypotonia with ataxia, premature pubarche, and dysmorphic features. A 1.07-1.12Mb-sized de novo microdeletion of chromosome 19p13.11 is most likely the cause for the clinical phenotype. The patient did not show any abnormalities of the extremities which contrasts with the finding of one previously reported patient with an overlapping deletion presenting with split hand and foot malformation (SHFM). The remarkable difference is that in the previously described patient but not in the patient reported herein the genes EPS15L1 and CALR3 were deleted. As EPS15L1 has been associated with limb development previously, the presented case provides indirect evidence that this may be a new candidate gene for SHFM. A possible genotype-phenotype correlation is provided based on literature review and comparison of our patient to the previously reported patients with overlapping or partly overlapping copy number variations in 19p13.11.
Related JoVE Video
Fast approach for clarification of chromosomal aberrations by using LM-PCR and FT-CGH in leukaemic sample.
Acta Haematol.
PUBLISHED: 03-10-2011
Show Abstract
Hide Abstract
Chromosomal abnormalities, like deletions, amplifications, inversions or translocations, are recurrent features in haematological malignancies. However, the precise molecular breakpoints are frequently not determined. Here we describe a rapid analysis of genetic imbalances combining fine tiling comparative genomic hybridization (FT-CGH) and ligation-mediated PCR (LM-PCR). We clarified an inv(14)(q11q32) in a case of T cell acute lymphoblastic leukaemia with a breakpoint in the TRA/D in 68% of cells detected by fluorescence in situ hybridization. FT-CGH showed several mono- and biallelic losses within TRA/D. LM-PCR disclosed a TRA/D rearrangement on one allele. The other allele revealed an inv(14)(q11q32), joining TRDD2 at 21,977,000 of 14q11 together with the IGH locus at 105,948,000 and 3-sequence of TRAC at 22,092,000 joined together with IGHV4-61 at 106,166,000. This sensitive approach can unravel complex chromosomal abnormalities in patient samples with a limited amount of aberrant cells and may lead to better diagnostic and therapeutic options.
Related JoVE Video
Inhibition of anaplastic lymphoma kinase (ALK) activity provides a therapeutic approach for CLTC-ALK-positive human diffuse large B cell lymphomas.
PLoS ONE
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
ALK positive diffuse large B-cell lymphomas (DLBCL) are a distinct lymphoma subtype associated with a poor outcome. Most of them feature a t(2;17) encoding a clathrin (CLTC)-ALK fusion protein. The contribution of deregulated ALK-activity in the pathogenesis and maintenance of these DLBCLs is not yet known. We established and characterized the first CLTC-ALK positive DLBCL cell line (LM1). LM1 formed tumors in NOD-SCID mice. The selective ALK inhibitor NVP-TAE684 inhibited growth of LM1 cells in vitro at nanomolar concentrations. NVP-TAE684 repressed ALK-activated signalling pathways and induced apoptosis of LM1 DLBCL cells. Inhibition of ALK-activity resulted in sustained tumor regression in the xenotransplant tumor model. These data indicate a role of CLTC-ALK in the maintenance of the malignant phenotype thereby providing a rationale therapeutic target for these otherwise refractory tumors.
Related JoVE Video
A putative "hepitype" in the ATM gene associated with chronic lymphocytic leukemia risk.
Genes Chromosomes Cancer
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Chronic lymphocytic leukemia (CLL) cells are characterized by several chromosomal lesions. Some of these aberrations imply chromosome breaks as a result of unrepaired double strand breaks (DSBs) in the DNA. The ATM (ataxia telangiectasia-mutated) protein is the principal integrator of cellular responses to DSBs. ATM deletion is also an adverse prognostic factor in CLL. Taking this into account, we evaluated if genetic and/or epigenetic variation in the ATM gene may modulate the individual susceptibility to develop CLL. Our case-control association study was performed in a large Spanish population of 1,503 individuals, including 742 patients with CLL and 761 controls. We identified one haplotype within the ATM gene that confers an increased risk of CLL development (OR = 1.33; 95% CI: 1.10-1.60). Two polymorphisms of this ATM haplotype eliminated one CpG site each in Introns 15 and 61, causing changes in DNA methylation pattern. These data provide the first evidence for the existence of a putative "hepitype" in the ATM gene associated with CLL risk.
Related JoVE Video
Pyrosequencing-based DNA methylation profiling of Fanconi anemia/BRCA pathway genes in laryngeal squamous cell carcinoma.
Int. J. Oncol.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Fanconi anemia (FA) associated genes [FANCA, -B, -C, FANCD1(BRCA2), -D2, -E, -F, -G, -I, -L, -M, FANCN (PALB2), FANCJ(BRIP1) and FA-linked BRCA1] encode proteins of DNA damage response pathways mutated in FA patients. FA is characterized by congenital malformations, chromosomal instability and high cancer susceptibility. FA patients have a 500-700 times higher risk of head and neck squamous cell carcinoma (HNSCC) compared to the non-FA population. As DNA methylation comprises one of the known gene inactivation mechanisms in cancer we have investigated the methylation status of 13 FA and one FA-linked gene in order to assess the role of FA in sporadic laryngeal squamous cell carcinoma (LSCC) tumor samples. Thirteen laryngeal squamous carcinoma cell lines (UT-SCC) and 64 primary laryngeal carcinoma cases were analyzed by bisulfite pyrosequencing. DNA from buccal swabs of 10 healthy volunteers was used as a control group. Promoter regions of FANCA, BRCA1 and BRCA2 displayed recurrent alterations in the methylation levels in cancer samples as compared to buccal swabs controls. For FANCA, hypomethylation was observed in 11/13 cell lines (p<0.0003) and all 64 primary larynx samples (p<0.001) compared to buccal swabs. For BRCA1, 4/13 cell lines (p=0.04) and 3/58 primary laryngeal cases (p=0.22) showed hypomethylation. In BRCA2, all 13 cell lines (p<0.0001) 4/63 primary LSCC (p<0.01) showed hypermethylation as compared to controls. In conclusion, we show recurrent alterations of DNA methylation levels in three Fanconi anemia genes which might contribute to the pathogenesis of LSCC.
Related JoVE Video
Technology-specific error signatures in the 1000 Genomes Project data.
Hum. Genet.
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
Next-generation sequencing (NGS) will likely facilitate a better understanding of the causes and consequences of human genetic variability. In this context, the validity of NGS-inferred single-nucleotide variants (SNVs) is of paramount importance. We therefore developed a statistical framework to assess the fidelity of three common NGS platforms. Using aligned DNA sequence data from two completely sequenced HapMap samples as included in the 1000 Genomes Project, we unraveled remarkably different error profiles for the three platforms. Compared to confirmed HapMap variants, newly identified SNVs included a substantial proportion of false positives (3-17%). Consensus calling by more than one platform yielded significantly lower error rates (1-4%). This implies that the use of multiple NGS platforms may be more cost-efficient than relying upon a single technology alone, particularly in physically localized sequencing experiments that rely upon small error rates. Our study thus highlights that different NGS platforms suit different practical applications differently well, and that NGS-based studies require stringent data quality control for their results to be valid.
Related JoVE Video
A de novo 0.57 Mb microdeletion in chromosome 11q13.1 in a patient with speech problems, autistic traits, dysmorphic features and multiple endocrine neoplasia type 1.
Eur J Med Genet
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
We report a 21-year-old patient with speech problems, autistic traits, dysmorphic facial features, broad thumbs with short distal phalanges and a pancreatic gastrinoma. Array-CGH demonstrated a 0.57 Mb de novo deletion in chromosome 11q13.1. The deleted region contains several genes which likely contribute to the patients complex phenotype, including the MEN1 gene. The deletion of the MEN1 gene is causing multiple endocrine neoplasia type 1 (MEN1). The neurodevelopmental phenotype of the patient might be associated with the deletion of the genes NRXN2 and PPP2R5B which have been described to be involved in synaptogenesis and dendritic branching. According to our knowledge, we report for the first time a patient with the combination of a neurodevelopmental phenotype and MEN1 caused by a microdeletion on chromosome 11.
Related JoVE Video
Pipeline for large-scale microdroplet bisulfite PCR-based sequencing allows the tracking of hepitype evolution in tumors.
PLoS ONE
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Cytosine methylation provides an epigenetic level of cellular plasticity that is important for development, differentiation and cancerogenesis. We adopted microdroplet PCR to bisulfite treated target DNA in combination with second generation sequencing to simultaneously assess DNA sequence and methylation. We show measurement of methylation status in a wide range of target sequences (total 34 kb) with an average coverage of 95% (median 100%) and good correlation to the opposite strand (rho?=?0.96) and to pyrosequencing (rho?=?0.87). Data from lymphoma and colorectal cancer samples for SNRPN (imprinted gene), FGF6 (demethylated in the cancer samples) and HS3ST2 (methylated in the cancer samples) serve as a proof of principle showing the integration of SNP data and phased DNA-methylation information into "hepitypes" and thus the analysis of DNA methylation phylogeny in the somatic evolution of cancer.
Related JoVE Video
A 2 Mb deletion in 14q13 associated with severe developmental delay and hemophagocytic lymphohistiocytosis.
Eur J Med Genet
PUBLISHED: 01-09-2011
Show Abstract
Hide Abstract
Interstitial deletions of chromosome 14 have rarely been described. We report on a boy in whom a 2 Mb deletion in 14q13 was discovered by array CGH. The deletion was a de novo event. The boy presented with asymmetrical growth retardation at birth. There was severe developmental delay with muscular hypotonia and focal epilepsy with apneic episodes progressing to serial tonic seizures. At the age of 3 3/12 years he was diagnosed with pneumonia. In the further course he developed symptoms of hemophagocytic lymphohistiocytosis. He died due to organ failure. Herein the clinical findings are compared to patients with cytogenetic visible deletions encompassing the region deleted in the proband and the possible connection with the deleted genes.
Related JoVE Video
A 1 Mb-sized microdeletion Xq26.2 encompassing the GPC3 gene in a fetus with Simpson-Golabi-Behmel syndrome Report, antenatal findings and review.
Eur J Med Genet
PUBLISHED: 01-09-2011
Show Abstract
Hide Abstract
Simpson-Golabi-Behmel syndrome (SGBS) is a rare X-linked recessive disorder encompassing pre- and postnatal overgrowth and a variety of additional anomalies including craniofacial dysmorphism, macrocephaly, congenital heart defects and genitourinary anomalies. There is little published information regarding the prenatal presentation of SGBS in pregnancy. In the present report we describe the antenatal features of an affected fetus from 12 gestational weeks onwards, subsequently diagnosed with SGBS by molecular testing positive for GPC3 gene mutation.
Related JoVE Video
Double-hit B-cell lymphomas.
Blood
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
In many B-cell lymphomas, chromosomal translocations are biologic and diagnostic hallmarks of disease. An intriguing subset is formed by the so-called double- hit (DH) lymphomas that are defined by a chromosomal breakpoint affecting the MYC/8q24 locus in combination with another recurrent breakpoint, mainly a t(14;18)(q32;q21) involving BCL2. Recently, these lymphomas have received increased attention, which contributed to the introduction of a novel category of lymphomas in the 2008 WHO classification, "B cell lymphoma unclassifiable with features intermediate between DLBCL and BL." In this review we explore the existing literature for the most recurrent types of DH B-cell lymphomas and the involved genes with their functions, as well as their pathology and clinical aspects including therapy and prognosis. The incidence of aggressive B-cell lymphomas other than Burkitt lymphoma with a MYC breakpoint and in particular a double hit is difficult to assess, because screening by methods like FISH has not been applied on large, unselected series, and the published cytogenetic data may be biased to specific categories of lymphomas. DH lymphomas have been classified heterogeneously but mostly as DLBCL, the majority having a germinal center phenotype and expression of BCL2. Patients with DH lymphomas often present with poor prognostic parameters, including elevated LDH, bone marrow and CNS involvement, and a high IPI score. All studies on larger series of patients suggest a poor prognosis, also if treated with RCHOP or high-intensity treatment modalities. Importantly, this poor outcome cannot be accounted for by the mere presence of a MYC/8q24 breakpoint. Likely, the combination of MYC and BCL2 expression and/or a related high genomic complexity are more important. Compared to these DH lymphomas, BCL6(+)/MYC(+) DH lymphomas are far less common, and in fact most of these cases represent BCL2(+)/BCL6(+)/MYC(+) triple-hit lymphomas with involvement of BCL2 as well. CCND1(+)/MYC(+) DH lymphomas with involvement of 11q13 may also be relatively frequent, the great majority being classified as aggressive variants of mantle cell lymphoma. This suggests that activation of MYC might be an important progression pathway in mantle cell lymphoma as well. Based on clinical significance and the fact that no other solid diagnostic tools are available to identify DH lymphomas, it seems advisable to test all diffuse large B-cell and related lymphomas for MYC and other breakpoints.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.