JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Gene Targeting RhoA Reveals Its Essential Role in Coordinating Mitochondrial Function and Thymocyte Development.
J. Immunol.
PUBLISHED: 11-16-2014
Show Abstract
Hide Abstract
Thymocyte development is regulated by complex signaling pathways. How these signaling cascades are coordinated remains elusive. RhoA of the Rho family small GTPases plays an important role in actin cytoskeleton organization, cell adhesion, migration, proliferation, and survival. Nonetheless, the physiological function of RhoA in thymocyte development is not clear. By characterizing a conditional gene targeting mouse model bearing T cell deletion of RhoA, we show that RhoA critically regulates thymocyte development by coordinating multiple developmental events. RhoA gene disruption caused a strong developmental block at the pre-TCR checkpoint and during positive selection. Ablation of RhoA led to reduced DNA synthesis in CD4(-)CD8(-), CD4(+)CD8(-), and CD4(-)CD8(+) thymocytes but not in CD4(+)CD8(+) thymocytes. Instead, RhoA-deficient CD4(+)CD8(+) thymocytes showed an impaired mitosis. Furthermore, we found that abrogation of RhoA led to an increased apoptosis in all thymocyte subpopulations. Importantly, we show that the increased apoptosis was resulted from reduced pre-TCR expression and increased production of reactive oxygen species (ROS), which may be because of an enhanced mitochondrial function, as manifested by increased oxidative phosphorylation, glycolysis, mitochondrial membrane potential, and mitochondrial biogenesis in RhoA-deficient thymocytes. Restoration of pre-TCR expression or treatment of RhoA-deficient mice with a ROS scavenger N-acetylcysteine partially restored thymocyte development. These results suggest that RhoA is required for thymocyte development and indicate, to our knowledge, for the first time that fine-tuning of ROS production by RhoA, through a delicate control of metabolic circuit, may contribute to thymopoiesis.
Related JoVE Video
HIPPO Pathway Members Restrict SOX2 to the Inner Cell Mass Where It Promotes ICM Fates in the Mouse Blastocyst.
PLoS Genet.
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Pluripotent epiblast (EPI) cells, present in the inner cell mass (ICM) of the mouse blastocyst, are progenitors of both embryonic stem (ES) cells and the fetus. Discovering how pluripotency genes regulate cell fate decisions in the blastocyst provides a valuable way to understand how pluripotency is normally established. EPI cells are specified by two consecutive cell fate decisions. The first decision segregates ICM from trophectoderm (TE), an extraembryonic cell type. The second decision subdivides ICM into EPI and primitive endoderm (PE), another extraembryonic cell type. Here, we investigate the roles and regulation of the pluripotency gene Sox2 during blastocyst formation. First, we investigate the regulation of Sox2 patterning and show that SOX2 is restricted to ICM progenitors prior to blastocyst formation by members of the HIPPO pathway, independent of CDX2, the TE transcription factor that restricts Oct4 and Nanog to the ICM. Second, we investigate the requirement for Sox2 in cell fate specification during blastocyst formation. We show that neither maternal (M) nor zygotic (Z) Sox2 is required for blastocyst formation, nor for initial expression of the pluripotency genes Oct4 or Nanog in the ICM. Rather, Z Sox2 initially promotes development of the primitive endoderm (PE) non cell-autonomously via FGF4, and then later maintains expression of pluripotency genes in the ICM. The significance of these observations is that 1) ICM and TE genes are spatially patterned in parallel prior to blastocyst formation and 2) both the roles and regulation of Sox2 in the blastocyst are unique compared to other pluripotency factors such as Oct4 or Nanog.
Related JoVE Video
p120-catenin-dependent junctional recruitment of Shroom3 is required for apical constriction during lens pit morphogenesis.
Development
PUBLISHED: 07-18-2014
Show Abstract
Hide Abstract
Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape, which can facilitate morphogenetic movements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them toward the middle of the cell, effectively reducing the apical circumference. A current challenge is to determine whether these mechanisms are conserved in vertebrates and to identify the molecules responsible for linking apical junctions with the AC machinery. Utilizing the developing mouse eye as a model, we have uncovered evidence that lens placode AC may be partially dependent on apically positioned myosin-containing filaments associated with the zonula adherens. In addition we found that, among several junctional components, p120-catenin genetically interacts with Shroom3, a protein required for AC during embryonic morphogenesis. Further analysis revealed that, similar to Shroom3, p120-catenin is required for AC of lens cells. Finally, we determined that p120-catenin functions by recruiting Shroom3 to adherens junctions. Together, these data identify a novel role for p120-catenin during AC and further define the mechanisms required for vertebrate AC.
Related JoVE Video
Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer.
Cancer Res.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Oncogenic targets acting in both tumor cells and tumor stromal cells may offer special therapeutic appeal. Interrogation of the Oncomine database revealed that 52 of 53 human breast carcinomas showed substantial upregulation of WNT family ligand WNT7B. Immunolabeling of human mammary carcinoma showed that WNT7B immunoreactivity was associated with both tumor cells and with tumor-associated macrophages. In the MMTV-PymT mouse model of mammary carcinoma, we found tumor progression relied upon WNT7B produced by myeloid cells in the microenvironment. Wnt7b deletion in myeloid cells reduced the mass and volume of tumors due to a failure in the angiogenic switch. In the tumor overall, there was no change in expression of Wnt/?-catenin pathway target genes, but in vascular endothelial cells (VEC), expression of these genes was reduced, suggesting that VECs respond to Wnt/?-catenin signaling. Mechanistic investigations revealed that failure of the angiogenic switch could be attributed to reduced Vegfa mRNA and protein expression in VECs, a source of VEGFA mRNA in the tumor that was limiting in the absence of myeloid WNT7B. We also noted a dramatic reduction in lung metastasis associated with decreased macrophage-mediated tumor cell invasion. Together, these results illustrated the critical role of myeloid WNT7B in tumor progression, acting at the levels of angiogenesis, invasion, and metastasis. We suggest that therapeutic suppression of WNT7B signaling might be advantageous due to targeting multiple aspects of tumor progression.
Related JoVE Video
?-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!
Hepatology
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Liver-specific ?-catenin knockout (?-Catenin-LKO) mice have revealed an essential role of ?-catenin in metabolic zonation where it regulates pericentral gene expression and in initiating liver regeneration (LR) after partial hepatectomy (PH), by regulating expression of Cyclin-D1. However, what regulates ?-catenin activity in these events remains an enigma. Here we investigate to what extent ?-catenin activation is Wnt-signaling-dependent and the potential cell source of Wnts. We studied liver-specific Lrp5/6 KO (Lrp-LKO) mice where Wnt-signaling was abolished in hepatocytes while the ?-catenin gene remained intact. Intriguingly, like ?-catenin-LKO mice, Lrp-LKO exhibited a defect in metabolic zonation observed as a lack of glutamine synthetase (GS), Cyp1a2, and Cyp2e1. Lrp-LKO also displayed a significant delay in initiation of LR due to the absence of ?-catenin-TCF4 association and lack of Cyclin-D1. To address the source of Wnt proteins in liver, we investigated conditional Wntless (Wls) KO mice, which lacked the ability to secrete Wnts from either liver epithelial cells (Wls-LKO), or macrophages including Kupffer cells (Wls-MKO), or endothelial cells (Wls-EKO). While Wls-EKO was embryonic lethal precluding further analysis in adult hepatic homeostasis and growth, Wls-LKO and Wls-MKO were viable but did not show any defect in hepatic zonation. Wls-LKO showed normal initiation of LR; however, Wls-MKO showed a significant but temporal deficit in LR that was associated with decreased ?-catenin-TCF4 association and diminished Cyclin-D1 expression.
Related JoVE Video
Distinct requirements for cranial ectoderm and mesenchyme-derived wnts in specification and differentiation of osteoblast and dermal progenitors.
PLoS Genet.
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule ?-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation.
Related JoVE Video
Voltage-operated Ca(2) (+) currents and Ca(2) (+) -activated Cl(-) currents in single interstitial cells of the guinea-pig prostate.
BJU Int.
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
To investigate the expression of 'T-type' and 'L-type' voltage-operated Ca(2) (+) channels in single interstitial cells of the guinea-pig prostate.
Related JoVE Video
Methane emission by camelids.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n?=?16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg?¹ d?¹) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg?¹ d?¹). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg?¹ in camelids vs. 86.2±12.1 L kg?¹ in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels.
Related JoVE Video
Crim1 maintains retinal vascular stability during development by regulating endothelial cell Vegfa autocrine signaling.
Development
PUBLISHED: 12-18-2013
Show Abstract
Hide Abstract
Angiogenesis defines the process in which new vessels grow from existing vessels. Using the mouse retina as a model system, we show that cysteine-rich motor neuron 1 (Crim1), a type I transmembrane protein, is highly expressed in angiogenic endothelial cells. Conditional deletion of the Crim1 gene in vascular endothelial cells (VECs) causes delayed vessel expansion and reduced vessel density. Based on known Vegfa binding by Crim1 and Crim1 expression in retinal vasculature, where angiogenesis is known to be Vegfa dependent, we tested the hypothesis that Crim1 is involved in the regulation of Vegfa signaling. Consistent with this hypothesis, we showed that VEC-specific conditional compound heterozygotes for Crim1 and Vegfa exhibit a phenotype that is more severe than each single heterozygote and indistinguishable from that of the conditional homozygotes. We further showed that human CRIM1 knockdown in cultured VECs results in diminished phosphorylation of VEGFR2, but only when VECs are required to rely on an autocrine source of VEGFA. The effect of CRIM1 knockdown on reducing VEGFR2 phosphorylation was enhanced when VEGFA was also knocked down. Finally, an anti-VEGFA antibody did not enhance the effect of CRIM1 knockdown in reducing VEGFR2 phosphorylation caused by autocrine signaling, but VEGFR2 phosphorylation was completely suppressed by SU5416, a small-molecule VEGFR2 kinase inhibitor. These data are consistent with a model in which Crim1 enhances the autocrine signaling activity of Vegfa in VECs at least in part via Vegfr2.
Related JoVE Video
Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes.
Development
PUBLISHED: 11-20-2013
Show Abstract
Hide Abstract
Neural precursor cells of the ventricular zone give rise to all neurons and glia of the central nervous system and rely for maintenance of their precursor characteristics on the closely related SoxB1 transcription factors Sox1, Sox2 and Sox3. We show in mouse spinal cord that, whereas SoxB1 proteins are usually downregulated upon neuronal specification, they continue to be expressed in glial precursors. In the oligodendrocyte lineage, Sox2 and Sox3 remain present into the early phases of terminal differentiation. Surprisingly, their deletion does not alter precursor characteristics but interferes with proper differentiation. Although a direct influence on myelin gene expression may be part of their function, we provide evidence for another mode of action. SoxB1 proteins promote oligodendrocyte differentiation in part by negatively controlling miR145 and thereby preventing this microRNA from inhibiting several pro-differentiation factors. This study presents one of the few cases in which SoxB1 proteins, including the stem cell factor Sox2, are associated with differentiation rather than precursor functions.
Related JoVE Video
RhoA GTPase controls cytokinesis and programmed necrosis of hematopoietic progenitors.
J. Exp. Med.
PUBLISHED: 10-07-2013
Show Abstract
Hide Abstract
Hematopoietic progenitor cells (HPCs) are central to hematopoiesis as they provide large numbers of lineage-defined blood cells necessary to sustain blood homeostasis. They are one of the most actively cycling somatic cells, and their precise control is critical for hematopoietic homeostasis. The small GTPase RhoA is an intracellular molecular switch that integrates cytokine, chemokine, and adhesion signals to coordinate multiple context-dependent cellular processes. By using a RhoA conditional knockout mouse model, we show that RhoA deficiency causes a multilineage hematopoietic failure that is associated with defective multipotent HPCs. Interestingly, RhoA(-/-) hematopoietic stem cells retained long-term engraftment potential but failed to produce multipotent HPCs and lineage-defined blood cells. This multilineage hematopoietic failure was rescued by reconstituting wild-type RhoA into the RhoA(-/-) Lin(-)Sca-1(+)c-Kit(+) compartment. Mechanistically, RhoA regulates actomyosin signaling, cytokinesis, and programmed necrosis of the HPCs, and loss of RhoA results in a cytokinesis failure of HPCs manifested by an accumulation of multinucleated cells caused by failed abscission of the cleavage furrow after telophase. Concomitantly, the HPCs show a drastically increased death associated with increased TNF-RIP-mediated necrosis. These results show that RhoA is a critical and specific regulator of multipotent HPCs during cytokinesis and thus essential for multilineage hematopoiesis.
Related JoVE Video
Distinct Functions for Wnt/?-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis.
Cell Stem Cell
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
Wnt/?-catenin signaling is a central regulator of adult stem cells. Variable sensitivity of Wnt reporter transgenes, ?-catenins dual roles in adhesion and signaling, and hair follicle degradation and inflammation resulting from broad deletion of epithelial ?-catenin have precluded clear understanding of Wnt/?-catenins functions in adult skin stem cells. By inducibly deleting ?-catenin globally in skin epithelia, only in hair follicle stem cells, or only in interfollicular epidermis and comparing the phenotypes with those caused by ectopic expression of the Wnt/?-catenin inhibitor Dkk1, we show that this pathway is necessary for hair follicle stem cell proliferation. However, ?-catenin is not required within hair follicle stem cells for their maintenance, and follicles resume proliferating after ectopic Dkk1 has been removed, indicating persistence of functional progenitors. We further unexpectedly discovered a broader role for Wnt/?-catenin signaling in contributing to progenitor cell proliferation in nonhairy epithelia and interfollicular epidermis under homeostatic, but not inflammatory, conditions.
Related JoVE Video
Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.
BJU Int.
PUBLISHED: 07-25-2013
Show Abstract
Hide Abstract
Whats known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions.
Related JoVE Video
RhoA and Cdc42 are required in pre-migratory progenitors of the medial ganglionic eminence ventricular zone for proper cortical interneuron migration.
Development
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Cortical interneurons arise from the ganglionic eminences in the ventral telencephalon and migrate tangentially to the cortex. Although RhoA and Cdc42, members of the Rho family of small GTPases, have been implicated in regulating neuronal migration, their respective roles in the tangential migration of cortical interneurons remain unknown. Here we show that loss of RhoA and Cdc42 in the ventricular zone (VZ) of the medial ganglionic eminence (MGE) using Olig2-Cre mice causes moderate or severe defects in the migration of cortical interneurons, respectively. Furthermore, RhoA- or Cdc42-deleted MGE cells exhibit impaired migration in vitro. To determine whether RhoA and Cdc42 directly regulate the motility of cortical interneurons during migration, we deleted RhoA and Cdc42 in the subventricular zone (SVZ), where more fate-restricted progenitors are located within the ganglionic eminences, using Dlx5/6-Cre-ires-EGFP (Dlx5/6-CIE) mice. Deletion of either gene within the SVZ does not cause any obvious defects in cortical interneuron migration, indicating that cell motility is not dependent upon RhoA or Cdc42. These findings provide genetic evidence that RhoA and Cdc42 are required in progenitors of the MGE in the VZ, but not the SVZ, for proper cortical interneuron migration.
Related JoVE Video
Length of day during early gestation as a predictor of risk for severe retinopathy of prematurity.
Ophthalmology
PUBLISHED: 03-16-2013
Show Abstract
Hide Abstract
Fetal mice require light exposure in utero during early gestation for normal vascular development in the eye. Because angiogenic abnormalities in retinopathy of prematurity (ROP) are manifested in preterm infants, we investigated whether day length during early gestation was associated with severe ROP (SROP).
Related JoVE Video
Wntless is required for peripheral lung differentiation and pulmonary vascular development.
Dev. Biol.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Wntless (Wls), a gene highly conserved across the animal kingdom, encodes for a transmembrane protein that mediates Wnt ligand secretion. Wls is expressed in developing lung, wherein Wnt signaling is necessary for pulmonary morphogenesis. We hypothesize that Wls plays a critical role in modulating Wnt signaling during lung development and therefore affects processes critical for pulmonary morphogenesis. We generated conditional Wls mutant mice utilizing Shh-Cre and Dermo1-Cre mice to delete Wls in the embryonic respiratory epithelium and mesenchyme, respectively. Epithelial deletion of Wls disrupted lung branching morphogenesis, peripheral lung development and pulmonary endothelial differentiation. Epithelial Wls mutant mice died at birth due to respiratory failure caused by lung hypoplasia and pulmonary hemorrhage. In the lungs of these mice, VEGF and Tie2-angiopoietin signaling pathways, which mediate vascular development, were downregulated from early stages of development. In contrast, deletion of Wls in mesenchymal cells of the developing lung did not alter branching morphogenesis or early mesenchymal differentiation. In vitro assays support the concept that Wls acts in part via Wnt5a to regulate pulmonary vascular development. We conclude that epithelial Wls modulates Wnt ligand activities critical for pulmonary vascular differentiation and peripheral lung morphogenesis. These studies provide a new framework for understanding the molecular mechanisms underlying normal pulmonary vasculature formation and the dysmorphic pulmonary vasculature development associated with congenital lung disease.
Related JoVE Video
A direct and melanopsin-dependent fetal light response regulates mouse eye development.
Nature
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Vascular patterning is critical for organ function. In the eye, there is simultaneous regression of embryonic hyaloid vasculature (important to clear the optical path) and formation of the retinal vasculature (important for the high metabolic demands of retinal neurons). These events occur postnatally in the mouse. Here we have identified a light-response pathway that regulates both processes. We show that when mice are mutated in the gene (Opn4) for the atypical opsin melanopsin, or are dark-reared from late gestation, the hyaloid vessels are persistent at 8?days post-partum and the retinal vasculature overgrows. We provide evidence that these vascular anomalies are explained by a light-response pathway that suppresses retinal neuron number, limits hypoxia and, as a consequence, holds local expression of vascular endothelial growth factor (VEGFA) in check. We also show that the light response for this pathway occurs in late gestation at about embryonic day 16 and requires the photopigment in the fetus and not the mother. Measurements show that visceral cavity photon flux is probably sufficient to activate melanopsin-expressing retinal ganglion cells in the mouse fetus. These data thus show that light--the stimulus for function of the mature eye--is also critical in preparing the eye for vision by regulating retinal neuron number and initiating a series of events that ultimately pattern the ocular blood vessels.
Related JoVE Video
Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair.
Blood
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
The treatment of festering wounds is one of the most important aspects of medical care. Macrophages are important components of wound repair, both in fending off infection and in coordinating tissue repair. Here we show that macrophages use a Wnt-Calcineurin-Flt1 signaling pathway to suppress wound vasculature and delay repair. Conditional mutants deficient in both Wntless/GPR177, the secretory transporter of Wnt ligands, and CNB1, the essential component of the nuclear factor of activated T cells dephosporylation complex, displayed enhanced angiogenesis and accelerated repair. Furthermore, in myeloid-like cells, we show that noncanonical Wnt activates Flt1, a naturally occurring inhibitor of vascular endothelial growth factor-A-mediated angiogenesis, but only when calcineurin function is intact. Then, as expected, conditional deletion of Flt1 in macrophages resulted in enhanced wound angiogenesis and repair. These results are consistent with the published link between enhanced angiogenesis and enhanced repair, and establish novel therapeutic approaches for treatment of wounds.
Related JoVE Video
LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Fibrosis of vital organs is a major public health problem with limited therapeutic options. Mesenchymal cells including microvascular mural cells (pericytes) are major progenitors of scar-forming myofibroblasts in kidney and other organs. Here we show pericytes in healthy kidneys have active WNT/?-catenin signaling responses that are markedly up-regulated following kidney injury. Dickkopf-related protein 1 (DKK-1), a ligand for the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP-5 and LRP-6) and an inhibitor of WNT/?-catenin signaling, effectively inhibits pericyte activation, detachment, and transition to myofibroblasts in vivo in response to kidney injury, resulting in attenuated fibrogenesis, capillary rarefaction, and inflammation. DKK-1 blocks activation and proliferation of established myofibroblasts in vitro and blocks pericyte proliferation to PDGF, pericyte migration, gene activation, and cytoskeletal reorganization to TGF-? or connective tissue growth factor. These effects are largely independent of inhibition of downstream ?-catenin signaling. DKK-1 acts predominantly by inhibiting PDGF-, TGF-?-, and connective tissue growth factor-activated MAPK and JNK signaling cascades, acting via LRP-6 with associated WNT ligand. Biochemically, LRP-6 interacts closely with PDGF receptor ? and TGF-? receptor 1 at the cell membrane, suggesting that it may have roles in pathways other than WNT/?-catenin. In summary, DKK-1 blocks many of the changes in pericytes required for myofibroblast transition and attenuates established myofibroblast proliferation/activation by mechanisms dependent on LRP-6 and WNT ligands but not the downstream ?-catenin pathway.
Related JoVE Video
A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination.
Development
PUBLISHED: 10-26-2011
Show Abstract
Hide Abstract
Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.
Related JoVE Video
Balanced Rac1 and RhoA activities regulate cell shape and drive invagination morphogenesis in epithelia.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-20-2011
Show Abstract
Hide Abstract
Epithelial bending is a central feature of morphogenesis in animals. Here we show that mutual antagonism by the small Rho GTPases Rac1 and RhoA determines cell shape, tissue curvature, and invagination activity in the model epithelium of the developing mouse lens. The epithelial cells of the invaginating lens placode normally elongate and change from a cylindrical to an apically constricted, conical shape. RhoA mutant lens placode cells are both longer and less apically constricted than control cells, thereby reducing epithelial curvature and invagination. By contrast, Rac1 mutant lens placode cells are shorter and more apically restricted than controls, resulting in increased epithelial curvature and precocious lens vesicle closure. Quantification of RhoA- and Rac1-dependent pathway markers over the apical-basal axis of lens pit cells showed that in RhoA mutant epithelial cells there was a Rac1 pathway gain of function and vice versa. These findings suggest that mutual antagonism produces balanced activities of RhoA-generated apical constriction and Rac1-dependent cell elongation that controls cell shape and thus curvature of the invaginating epithelium. The ubiquity of the Rho family GTPases suggests that these mechanisms are likely to apply generally where epithelial morphogenesis occurs.
Related JoVE Video
Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) integrates developmental signals for eyelid closure.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-03-2011
Show Abstract
Hide Abstract
Developmental eyelid closure is an evolutionarily conserved morphogenetic event requiring proliferation, differentiation, cytoskeleton reorganization, and migration of epithelial cells at the tip of the developing eyelid. Many signaling events take place during eyelid closure, but how the signals converge to regulate the morphogenetic process remains an open and intriguing question. Here we show that mitogen-activated protein kinase kinase kinase 1 (MAP3K1) highly expressed in the developing eyelid epithelium, forms with c-Jun, a regulatory axis that orchestrates morphogenesis by integrating two different networks of eyelid closure signals. A TGF-?/EGFR-RhoA module initiates one of these networks by inducing c-Jun expression which, in a phosphorylation-independent manner, binds to the Map3k1 promoter and causes an increase in MAP3K1 expression. RhoA knockout in the ocular surface epithelium disturbs this network by decreasing MAP3K1 expression, and causes delayed eyelid closure in Map3k1 hemizygotes. The second network is initiated by the enzymatic activity of MAP3K1, which phosphorylates and activates a JNK-c-Jun module, leading to AP-1 transactivation and induction of its downstream genes, such as Pai-1. MAP3K1 inactivation reduces AP-1 activity and PAI-1 expression both in cells and developing eyelids. MAP3K1 is therefore the nexus of an intracrine regulatory loop connecting the TGF-?/EGFR/RhoA-c-Jun and JNK-c-Jun-AP-1 pathways in developmental eyelid closure.
Related JoVE Video
Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival.
Dev. Biol.
PUBLISHED: 07-29-2011
Show Abstract
Hide Abstract
Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/?-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.
Related JoVE Video
Metchnikoffs policemen: macrophages in development, homeostasis and regeneration.
Trends Mol Med
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Over the past decade, modern genetic tools have permitted scientists to study the function of myeloid lineage cells, including macrophages, as never before. Macrophages were first detected more than a century ago as cells that ingested bacteria and other microbes, but it is now known that their functional roles are far more numerous. In this review, we focus on the prevailing functions of macrophages beyond their role in innate immunity. We highlight examples of macrophages acting as regulators of development, tissue homoeostasis, remodeling (the reorganization or renovation of existing tissues) and repair. We also detail how modern genetic tools have facilitated new insights into these mysterious cells.
Related JoVE Video
Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis.
Dev. Biol.
PUBLISHED: 05-05-2011
Show Abstract
Hide Abstract
The cytoskeletal protein Shroom3 is a potent inducer of epithelial cell shape change and is required for lens and neural plate morphogenesis. Analysis of gut morphogenesis in Shroom3 deficient mouse embryos revealed that the direction of gut rotation is also disrupted. It was recently established that Pitx2-dependent, asymmetrical cellular behaviors in the dorsal mesentery (DM) of the early mid-gut, a structure connecting the gut-tube to the rest of the embryo, contribute to the direction of gut rotation in chicken embryos by influencing the direction of the dorsal mesenteric tilt. Asymmetric cell shapes in the DM epithelium are hypothesized to contribute to the tilt, however, it is unclear what lies downstream of Pitx2 to alter epithelial cell shape. The cells of the left DM epithelium in either Pitx2 or Shroom3 deficient embryos are shorter and wider than those in control embryos and resemble the shape of those on the right, demonstrating that like Pitx2, Shroom3 is required for cell shape asymmetry and the leftward DM tilt. Because N-cadherin expression is specific to the left side and is Pitx2 dependent, we determined whether Shroom3 and N-cadherin function together to regulate cell shape in the left DM epithelium. Analysis of mouse embryos lacking one allele of both Shroom3 and N-cadherin revealed that they possess shorter and wider left epithelial DM cells when compared with Shroom3 or N-cadherin heterozygous embryos. This indicates a genetic interaction. Together these data provide evidence that Shroom3 and N-cadherin function cooperatively downstream of Pitx2 to directly regulate cell shape changes necessary for early gut tube morphogenesis.
Related JoVE Video
RhoA protects the mouse heart against ischemia/reperfusion injury.
J. Clin. Invest.
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
The small GTPase RhoA serves as a nodal point for signaling through hormones and mechanical stretch. However, the role of RhoA signaling in cardiac pathophysiology is poorly understood. To address this issue, we generated mice with cardiomyocyte-specific conditional expression of low levels of activated RhoA (CA-RhoA mice) and demonstrated that they exhibited no overt cardiomyopathy. When challenged by in vivo or ex vivo ischemia/reperfusion (I/R), however, the CA-RhoA mice exhibited strikingly increased tolerance to injury, which was manifest as reduced myocardial lactate dehydrogenase (LDH) release and infarct size and improved contractile function. PKD was robustly activated in CA-RhoA hearts. The cardioprotection afforded by RhoA was reversed by PKD inhibition. The hypothesis that activated RhoA and PKD serve protective physiological functions during I/R was supported by several lines of evidence. In WT mice, both RhoA and PKD were rapidly activated during I/R, and blocking PKD augmented I/R injury. In addition, cardiac-specific RhoA-knockout mice showed reduced PKD activation after I/R and strikingly decreased tolerance to I/R injury, as shown by increased infarct size and LDH release. Collectively, our findings provide strong support for the concept that RhoA signaling in adult cardiomyocytes promotes survival. They also reveal unexpected roles for PKD as a downstream mediator of RhoA and in cardioprotection against I/R.
Related JoVE Video
Loss of RhoA in neural progenitor cells causes the disruption of adherens junctions and hyperproliferation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-18-2011
Show Abstract
Hide Abstract
The organization of neural progenitors in the developing mammalian neuroepithelium is marked by cadherin-based adherens junctions. Whereas RhoA, a founding member of the small Rho GTPase family, has been shown to play important roles in epithelial adherens junctions, its physiological roles in neural development remain uncertain due to the lack of specific loss-of-function studies. Here, we show that RhoA protein accumulates at adherens junctions in the developing mouse brain and colocalizes to the cadherin-catenin complex. Conditional deletion of RhoA in midbrain and forebrain neural progenitors using Wnt1-Cre and Foxg1-Cre mice, respectively, disrupts apical adherens junctions and causes massive dysplasia of the brain. Furthermore, RhoA-deficient neural progenitor cells exhibit accelerated proliferation, reduction of cell- cycle exit, and increased expression of downstream target genes of the hedgehog pathway. Consequently, both lines of conditional RhoA-deficient embryos exhibit expansion of neural progenitor cells and exencephaly-like protrusions. These results demonstrate a critical role of RhoA in the maintenance of apical adherens junctions and the regulation of neural progenitor proliferation in the developing mammalian brain.
Related JoVE Video
Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells.
Nature
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally, somatic deletion in RMCs of the Wnt ligand transporter Wntless results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF). These findings indicate that resident myeloid cells can use a non-canonical, Wnt-Flt1 pathway to suppress angiogenic branching.
Related JoVE Video
A targeted NKX2.1 human embryonic stem cell reporter line enables identification of human basal forebrain derivatives.
Stem Cells
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
We have used homologous recombination in human embryonic stem cells (hESCs) to insert sequences encoding green fluorescent protein (GFP) into the NKX2.1 locus, a gene required for normal development of the basal forebrain. Generation of NKX2.1-GFP(+) cells was dependent on the concentration, timing, and duration of retinoic acid treatment during differentiation. NKX2.1-GFP(+) progenitors expressed genes characteristic of the basal forebrain, including SHH, DLX1, LHX6, and OLIG2. Time course analysis revealed that NKX2.1-GFP(+) cells could upregulate FOXG1 expression, implying the existence of a novel pathway for the generation of telencephalic neural derivatives. Further maturation of NKX2.1-GFP(+) cells gave rise to ?-aminobutyric acid-, tyrosine hydroxylase-, and somatostatin-expressing neurons as well as to platelet-derived growth factor receptor ?-positive oligodendrocyte precursors. These studies highlight the diversity of cell types that can be generated from human NKX2.1(+) progenitors and demonstrate the utility of NKX2.1(GFP/w) hESCs for investigating human forebrain development and neuronal differentiation.
Related JoVE Video
Non-mydriatic single-field fundus photography for the screening of retinal diseases in an executive health clinic.
Ophthalmic Surg Lasers Imaging
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
To determine the accuracy and sensitivity of a single-field non-mydriatic digital fundus image interpreted by an ophthalmologist and performed within a primary care setting.
Related JoVE Video
RhoA GTPase is dispensable for actomyosin regulation but is essential for mitosis in primary mouse embryonic fibroblasts.
J. Biol. Chem.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
RhoA, the founding member of mammalian Rho GTPase family, is thought to be essential for actomyosin regulation. To date, the physiologic function of RhoA in mammalian cell regulation has yet to be determined genetically. Here we have created RhoA conditional knock-out mice. Mouse embryonic fibroblasts deleted of RhoA showed no significant change in actin stress fiber or focal adhesion complex formation in response to serum or LPA, nor any detectable change in Rho-kinase signaling activity. Concomitant knock-out or knockdown of RhoB and RhoC in the RhoA(-/-) cells resulted in a loss of actin stress fiber and focal adhesion similar to that of C3 toxin treatment. Proliferation of RhoA(-/-) cells was impaired due to a complete cell cycle block during mitosis, an effect that is associated with defective cytokinesis and chromosome segregation and can be readily rescued by exogenous expression of RhoA. Furthermore, RhoA deletion did not affect the transcriptional activity of Stat3, NF?B, or serum response factor, nor the expression of the cell division kinase inhibitor p21(Cip)1 or p27(Kip1). These genetic results demonstrate that in primary mouse embryonic fibroblasts, RhoA is uniquely required for cell mitosis but is redundant with related RhoB and RhoC GTPases in actomyosin regulation.
Related JoVE Video
Spontaneous Ca2+ signaling of interstitial cells in the guinea pig prostate.
J. Urol.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
We investigated whether prostate interstitial cells generate spontaneous Ca(2+) oscillation, a proposed mechanism underlying pacemaker potentials to drive spontaneous activity in stromal smooth muscle cells.
Related JoVE Video
A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures.
PLoS ONE
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Myeloid cells have been associated with physiological and pathological angiogenesis, but their exact functions in these processes remain poorly defined. Monocyte-derived tissue macrophages of the CNS, or microglial cells, invade the mammalian retina before it becomes vascularized. Recent studies correlate the presence of microglia in the developing CNS with vascular network formation, but it is not clear whether the effect is directly caused by microglia and their contact with the endothelium.
Related JoVE Video
Contractility and pacemaker cells in the prostate gland.
J. Urol.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
We focused on the current opinion on mechanisms generating stromal tone in the prostate gland.
Related JoVE Video
Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation.
Development
PUBLISHED: 10-28-2010
Show Abstract
Hide Abstract
Macrophages have been suggested to stimulate neo-lymphangiogenesis in settings of inflammation via two potential mechanisms: (1) acting as a source of lymphatic endothelial progenitor cells via the ability to transdifferentiate into lymphatic endothelial cells and be incorporated into growing lymphatic vessels; and (2) providing a crucial source of pro-lymphangiogenic growth factors and proteases. We set out to establish whether cells of the myeloid lineage are important for development of the lymphatic vasculature through either of these mechanisms. Here, we provide lineage tracing evidence to demonstrate that lymphatic endothelial cells arise independently of the myeloid lineage during both embryogenesis and tumour-stimulated lymphangiogenesis in the mouse, thus excluding macrophages as a source of lymphatic endothelial progenitor cells in these settings. In addition, we demonstrate that the dermal lymphatic vasculature of PU.1(-/-) and Csf1r(-/-) macrophage-deficient mouse embryos is hyperplastic owing to elevated lymphatic endothelial cell proliferation, suggesting that cells of the myeloid lineage provide signals that act to restrain lymphatic vessel calibre in the skin during development. In contrast to what has been demonstrated in settings of inflammation, macrophages do not comprise the principal source of pro-lymphangiogenic growth factors, including VEGFC and VEGFD, in the embryonic dermal microenvironment, illustrating that the sources of patterning and proliferative signals driving embryonic and disease-stimulated lymphangiogenesis are likely to be distinct.
Related JoVE Video
Taking blood pressure: too important to trust to humans?
Cleve Clin J Med
PUBLISHED: 10-05-2010
Show Abstract
Hide Abstract
The measurement of blood pressure in the physicians office is subject to a number of observer errors and also to the "white-coat effect." Automatic devices that measure blood pressure without a human observer in the room can eliminate many of these problems. We argue for greater use of these devices in the physicians office.
Related JoVE Video
Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca2+ waves in interstitial cells of Cajal-like cells of the rabbit urethra.
Br. J. Pharmacol.
PUBLISHED: 10-01-2010
Show Abstract
Hide Abstract
Although spontaneous Ca(2+) waves in interstitial cells of Cajal (ICC)-like cells (ICC-LCs) primarily arise from endoplasmic reticulum (ER) Ca(2+) release, the interactions among mitochondrial Ca(2+) buffering, cellular energetics and ER Ca(2+) release in determining the spatiotemporal dynamics of intracellular Ca(2+) remain to be elucidated.
Related JoVE Video
Role of connexin 43 in the maintenance of spontaneous activity in the guinea pig prostate gland.
Br. J. Pharmacol.
PUBLISHED: 08-26-2010
Show Abstract
Hide Abstract
To investigate the role of connexin 43 in the maintenance of spontaneous activity in prostate tissue from young and old guinea pigs.
Related JoVE Video
Generation of mice with a conditional null allele for Wntless.
Genesis
PUBLISHED: 07-09-2010
Show Abstract
Hide Abstract
The Wnt-signaling pathway is necessary in a variety of developmental processes and has been implicated in numerous pathologies. Wntless (Wls) binds to Wnt proteins and facilitates Wnt sorting and secretion. Conventional deletion of Wls results in early fetal lethality due to defects in body axis establishment. To gain insight into the function of Wls in later stages of development, we have generated a conditional null allele. Homozygous germline deletion of Wls confirmed prenatal lethality and failure of embryonic axis formation. Deletion of Wls using Wnt1-cre phenocopied Wnt1 null abnormalities in the midbrain and hindbrain. In addition, conditional deletion of Wls in pancreatic precursor cells resulted in pancreatic hypoplasia similar to that previously observed after conditional ?-catenin deletion. This Wls conditional null allele will be valuable in detecting novel Wnt functions in development and disease.
Related JoVE Video
Role of hyperpolarization-activated cation channels in pyeloureteric peristalsis.
Kidney Int.
PUBLISHED: 02-27-2010
Show Abstract
Hide Abstract
Although it has been recognized for more than 140 years that the pacemaker driving pyeloureteric peristalsis resides within the kidney, the cellular mechanisms underlying this autorhythmicity have been little investigated. The demonstration by Hurtado et al. of a role of hyperpolarization-activated cation channels in the maintenance of coordinated propagating contractions in the mouse renal pelvis raises a number of intriguing possibilities in addition to the provided correlation with pacemaker function as in the heart and neurons.
Related JoVE Video
Functions of ICC-like cells in the urinary tract and male genital organs.
J. Cell. Mol. Med.
PUBLISHED: 02-24-2010
Show Abstract
Hide Abstract
Interstitial cells of Cajal (ICC)-like cells (ICC-LCs) have been identified in many regions of the urinary tract and male genital organs by immunohistochemical studies and electron microscopy. ICC-LCs are characterized by their spontaneous electrical and Ca(2+) signalling and the cellular mechanisms of their generation have been extensively investigated. Spontaneous activity in ICC-LCs rises from the release of internally stored Ca(2+) and the opening of Ca(2+)-activated Cl(-) channels to generate spontaneous transient depolarizations (STDs) in a manner not fundamentally dependent on Ca(2+) influx through L-type voltage-dependent Ca(2+) channels. Since urogenital ICC-LCs have been identified by their immunoreactivity to Kit (CD117) antibodies, the often-used specific marker for ICC in the gastrointestinal tract, their functions have been thought likely to be similar. Thus ICC-LCs in the urogenital tract might be expected to act as either electrical pacemaker cells to drive the smooth muscle wall or as intermediaries in neuromuscular transmission. However, present knowledge of the functions of ICC-LCs suggests that their functions are not so predetermined, that their functions may be very region specific, particularly under pathological conditions. In this review, we summarize recent advances in our understanding of the location and function of ICC-LCs in various organs of the urogenital system. We also discuss several unsolved issues regarding the identification, properties and functions of ICC-LCs in various urogenital regions in health and disease.
Related JoVE Video
Macrophage Wnt7b is critical for kidney repair and regeneration.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-16-2010
Show Abstract
Hide Abstract
Macrophages are required for tissue homeostasis through their role in regulation of the immune response and the resolution of injury. Here we show, using the kidney as a model, that the Wnt pathway ligand Wnt7b is produced by macrophages to stimulate repair and regeneration. When macrophages are inducibly ablated from the injured kidney, the canonical Wnt pathway response in kidney epithelial cells is reduced. Furthermore, when Wnt7b is somatically deleted in macrophages, repair of injury is greatly diminished. Finally, injection of the Wnt pathway regulator Dkk2 enhances the repair process and suggests a therapeutic option. Because Wnt7b is known to stimulate epithelial responses during kidney development, these findings suggest that macrophages are able to rapidly invade an injured tissue and reestablish a developmental program that is beneficial for repair and regeneration.
Related JoVE Video
Pax6-dependent Shroom3 expression regulates apical constriction during lens placode invagination.
Development
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
Embryonic development requires a complex series of relative cellular movements and shape changes that are generally referred to as morphogenesis. Although some of the mechanisms underlying morphogenesis have been identified, the process is still poorly understood. Here, we address mechanisms of epithelial morphogenesis using the vertebrate lens as a model system. We show that the apical constriction of lens epithelial cells that accompanies invagination of the lens placode is dependent on Shroom3, a molecule previously associated with apical constriction during morphogenesis of the neural plate. We show that Shroom3 is required for the apical localization of F-actin and myosin II, both crucial components of the contractile complexes required for apical constriction, and for the apical localization of Vasp, a Mena family protein with F-actin anti-capping function that is also required for morphogenesis. Finally, we show that the expression of Shroom3 is dependent on the crucial lens-induction transcription factor Pax6. This provides a previously missing link between lens-induction pathways and the morphogenesis machinery and partly explains the absence of lens morphogenesis in Pax6-deficient mutants.
Related JoVE Video
Wnt2 regulates progenitor proliferation in the developing ventral midbrain.
J. Biol. Chem.
PUBLISHED: 12-16-2009
Show Abstract
Hide Abstract
Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.
Related JoVE Video
Cdc42- and IRSp53-dependent contractile filopodia tether presumptive lens and retina to coordinate epithelial invagination.
Development
PUBLISHED: 10-13-2009
Show Abstract
Hide Abstract
The vertebrate lens provides an excellent model with which to study the mechanisms required for epithelial invagination. In the mouse, the lens forms from the head surface ectoderm. A domain of ectoderm first thickens to form the lens placode and then invaginates to form the lens pit. The epithelium of the lens placode remains in close apposition to the epithelium of the presumptive retina as these structures undergo a coordinated invagination. Here, we show that F-actin-rich basal filopodia that link adjacent presumptive lens and retinal epithelia function as physical tethers that coordinate invagination. The filopodia, most of which originate in the presumptive lens, form at E9.5 when presumptive lens and retinal epithelia first come into close contact, and have retracted by E11.5 when invagination is complete. At E10.5--the lens pit stage--there is approximately one filopodium per epithelial cell. Formation of filopodia is dependent on the Rho family GTPase Cdc42 and the Cdc42 effector IRSp53 (Baiap2). Loss of filopodia results in reduced lens pit invagination. Pharmacological manipulation of the actin-myosin contraction pathway showed that the filopodia can respond rapidly in length to change inter-epithelial distance. These data suggest that the lens-retina inter-epithelial filopodia are a fine-tuning mechanism to assist in lens pit invagination by transmitting the forces between presumptive lens and retina. Although invagination of the archenteron in sea urchins and dorsal closure in Drosophila are known to be partly dependent on filopodia, this mechanism of morphogenesis has not previously been identified in vertebrates.
Related JoVE Video
Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis.
Br. J. Pharmacol.
PUBLISHED: 09-26-2009
Show Abstract
Hide Abstract
We investigated the cellular mechanisms underlying spontaneous contractions in the mouse renal pelvis, regulated by calcitonin gene-related peptide (CGRP).
Related JoVE Video
Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis.
Sci Signal
PUBLISHED: 09-17-2009
Show Abstract
Hide Abstract
The developmental activities of morphogens depend on the gradients that they form in the extracellular matrix. Here, we show that differences in the binding of fibroblast growth factor 7 (FGF7) and FGF10 to heparan sulfate (HS) underlie the formation of different gradients that dictate distinct activities during branching morphogenesis. Reducing the binding affinity of FGF10 for HS by mutating a single residue in its HS-binding pocket converted FGF10 into a functional mimic of FGF7 with respect to gradient formation and regulation of branching morphogenesis. In particular, the mutant form of FGF10 caused lacrimal and salivary gland epithelium buds to branch rather than to elongate. In contrast, mutations that reduced the affinity of the FGF10 for its receptor affected the extent, but not the nature, of the response. Our data may provide a general model for understanding how binding to HS regulates other morphogenetic gradients.
Related JoVE Video
Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis.
Development
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
The transcription factors Pax6 and Sox2 have been implicated in early events in lens induction and have been proposed to cooperate functionally. Here, we investigated the activity of Sox2 in lens induction and its genetic relationship to Pax6 in the mouse. Conditional deletion of Sox2 in the lens placode arrests lens development at the pit stage. As previously shown, conditional deletion of Pax6 in the placode eliminates placodal thickening and lens pit invagination. The cooperative activity of Sox2 and Pax6 is illustrated by the dramatic failure of lens and eye development in presumptive lens conditional, compound Sox2, Pax6 heterozygotes. The resulting phenotype resembles that of germ line Pax6 inactivation, and the failure of optic cup morphogenesis indicates the importance of ectoderm-derived signals for all aspects of eye development. We further assessed whether Sox2 and Pax6 were required for N-cadherin expression at different stages of lens development. N-cadherin was lost in Sox2-deficient but not Pax6-deficient pre-placodal ectoderm. By contrast, after the lens pit has formed, N-cadherin expression is dependent on Pax6. These data support a model in which the mode of Pax6-Sox2 inter-regulation is stage-dependent and suggest an underlying mechanism in which DNA binding site availability is regulated.
Related JoVE Video
Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells.
PLoS ONE
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
The bronchioles of the murine lung are lined by a simple columnar epithelium composed of ciliated, Clara, and goblet cells that together mediate barrier function, mucociliary clearance and innate host defense, vital for pulmonary homeostasis. In the present work, we demonstrate that expression of Sox2 in Clara cells is required for the differentiation of ciliated, Clara, and goblet cells that line the bronchioles of the postnatal lung. The gene was selectively deleted in Clara cells utilizing Scgb1a1-Cre, causing the progressive loss of Sox2 in the bronchioles during perinatal and postnatal development. The rate of bronchiolar cell proliferation was decreased and associated with the formation of an undifferentiated, cuboidal-squamous epithelium lacking the expression of markers of Clara cells (Scgb1a1), ciliated cells (FoxJ1 and alpha-tubulin), and goblet cells (Spdef and Muc5AC). By adulthood, bronchiolar cell numbers were decreased and Sox2 was absent in extensive regions of the bronchiolar epithelium, at which time residual Sox2 expression was primarily restricted to selective niches of CGRP staining neuroepithelial cells. Allergen-induced goblet cell differentiation and mucus production was absent in the respiratory epithelium lacking Sox2. In vitro, Sox2 activated promoter-luciferase reporter constructs for differentiation markers characteristic of Clara, ciliated, and goblet cells, Scgb1a1, FoxJ1, and Agr2, respectively. Sox2 physically interacted with Smad3 and inhibited TGF-beta1/Smad3-mediated transcriptional activity in vitro, a pathway that negatively regulates proliferation. Sox2 is required for proliferation and differentiation of Clara cells that serve as the progenitor cells from which Clara, ciliated, and goblet cells are derived.
Related JoVE Video
A rare trigger for macrophage activation syndrome.
Rheumatol. Int.
PUBLISHED: 07-03-2009
Show Abstract
Hide Abstract
Macrophage activation syndrome (MAS) is a disorder characterized by increased activation of mononuclear cells leading to phagocytosis of blood cell precursors in the bone marrow. We describe a case of MAS triggered by disseminated histoplasmosis occurring in a patient with Stills disease on long-term treatment with adalimumab.
Related JoVE Video
Pax6 is essential for lens fiber cell differentiation.
Development
PUBLISHED: 07-01-2009
Show Abstract
Hide Abstract
The developing ocular lens provides an excellent model system with which to study the intrinsic and extrinsic cues governing cell differentiation. Although the transcription factors Pax6 and Sox2 have been shown to be essential for lens induction, their later roles during lens fiber differentiation remain largely unknown. Using Cre/loxP mutagenesis, we somatically inactivated Pax6 and Sox2 in the developing mouse lens during differentiation of the secondary lens fibers and explored the regulatory interactions of these two intrinsic factors with the canonical Wnt pathway. Analysis of the Pax6-deficient lenses revealed a requirement for Pax6 in cell cycle exit and differentiation into lens fiber cells. In addition, Pax6 disruption led to apoptosis of lens epithelial cells. We show that Pax6 regulates the Wnt antagonist Sfrp2 in the lens, and that Sox2 expression is upregulated in the Pax6-deficient lenses. However, our study demonstrates that the failure of differentiation following loss of Pax6 is independent of beta-catenin signaling or Sox2 activity. This study reveals that Pax6 is pivotal for initiation of the lens fiber differentiation program in the mammalian eye.
Related JoVE Video
Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis.
Clin. Exp. Pharmacol. Physiol.
PUBLISHED: 06-08-2009
Show Abstract
Hide Abstract
1. Peristalsis in the smooth muscle cell (SMC) wall of the pyeloureteric system is unique in physiology in that the primary pacemaker resides in a population of atypical SMCs situated near the border of the renal papilla. 2. Atypical SMCs display high-frequency Ca(2+) transients upon the spontaneous release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))-dependent stores that trigger cation-selective spontaneous transient depolarizations (STDs). In the presence of nifedipine, these Ca(2+) transients and STDs seldom propagate > 100 mum. Synchronization of STDs in neighbouring atypical SMCs into an electrical signal that can trigger action potential discharge and contraction in the typical SMC layer involves a coupled oscillator mechanism dependent on Ca(2+) entry through L-type voltage-operated Ca(2+) channels. 3. A population of spindle- or stellate-shaped cells, immunopositive for the tyrosine receptor kinase kit, is sparsely distributed throughout the pyeloureteric system. In addition, Ca(2+) transients and action potentials of long duration occurring at low frequencies have been recorded in a population of fusiform cells, which we have termed interstitial cells of Cajal (ICC)-like cells. 4. The electrical and Ca(2+) signals in ICC-like cells are abolished upon blockade of Ca(2+) release from either IP(3)- or ryanodine-dependent Ca(2+) stores. However, the spontaneous Ca(2+) signals in atypical SMCs or ICC-like cells are little affected in W/W(-v) transgenic mice, which have extensive lesions of their intestinal ICC networks. 5. In summary, we have developed a model of pyeloureteric pacemaking in which atypical SMCs are indeed the primary pacemakers, but the function of ICC-like cells has yet to be determined.
Related JoVE Video
Estradiol-17beta inhibits gonadotropin-releasing hormone-induced Ca2+ in gonadotropes to regulate negative feedback on luteinizing hormone release.
Endocrinology
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
In pituitary gonadotropes, estrogens have biphasic actions to cause an initial negative feedback followed by a positive feedback on LH secretion, but the mechanisms involved are not clearly understood. To investigate the feedback effects of estrogen, we used mixed ovine pituitary cell cultures (48-72 h), which were treated with 10(-9) M estradiol-17beta (E(2)) or vehicle followed by a pulse of 10(-9) M GnRH. Medium was collected for LH assay and cells extracted to determine activation of MAPK (phosphorylated ERK-1/2). E(2) treatment for 5 min reduced GnRH-induced LH release and caused phosphorylation of ERK-1/2. E(2) alone also caused phosphorylation of ERK-1/2, similar to the response evoked by GnRH alone. GnRH increased cytoplasmic intracellular free calcium concentration ([Ca(2+)](i)) and this was abolished by 2 min pretreatment with E(2) or E-bovine serum albumen conjugate. Blockade of Ca(2+) channels with nifedipine had no effect on the initial peak of GnRH-induced increase in [Ca(2+)](i) but reduced its duration by 27 +/- 6%. Depletion of intracellular Ca(2+) stores with thapsigargin prevented GnRH-induced increase in [Ca(2+)](i). Thapsigargin (10(-7) M) or nifedipine (10(-5) M) pretreatment (15 min) of cells lowered GnRH-induced LH secretion by 30 +/- 6 and 50% +/- 4%, respectively. We conclude that inhibition of the GnRH-induced increase in [Ca(2+)](i) in gonadotropes by E(2) is a likely mechanism for the negative feedback effect of E(2) on LH secretion involving a rapid nongenomic effect of E(2). Activation of the MAPK pathway by E(2) may be the mechanism for the time-delayed positive feedback effect on LH secretion at the level of the gonadotrope.
Related JoVE Video
A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth.
PLoS ONE
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown.
Related JoVE Video
Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled.
J. Biol. Chem.
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Dishevelled (Dvl) is an essential protein in the Wnt signaling pathways; it uses its PDZ domain to transduce the Wnt signals from the membrane receptor Frizzled to downstream components. Here, we report identifying a drug-like small molecule compound through structure-based ligand screening and NMR spectroscopy and show the compound to interact at low micromolar affinity with the PDZ domain of Dvl. In a Xenopus testing system, the compound could permeate the cell membrane and block the Wnt signaling pathways. In addition, the compound inhibited Wnt signaling and reduced the levels of apoptosis in the hyaloid vessels of eye. Moreover, this compound also suppressed the growth of prostate cancer PC-3 cells. These biological effects suggest that by blocking the PDZ domain of Dvl, the compound identified in our studies effectively inhibits the Wnt signaling and thus provides a useful tool for studies dissecting the Wnt signaling pathways.
Related JoVE Video
Spontaneous electrical waveforms in aging guinea pig prostates.
J. Urol.
PUBLISHED: 04-17-2009
Show Abstract
Hide Abstract
We characterized spontaneous electrical activity in the aging guinea pig prostate.
Related JoVE Video
CD133 expression by neural progenitors derived from human embryonic stem cells and its use for their prospective isolation.
Stem Cells Dev.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
The ability to generate purified neural progenitors is critical to the development of embryonic stem cell-based therapies to alleviate human neurological disorders. While many cell culture protocols for directed differentiation of human embryonic stem (hES) cells into neural cells have been described, most yield mixed populations, some containing cells of different embryonic germ layer lineages, or even undifferentiated embryonic stem cells. In this study, we describe a method for single-cell dissociation, isolation by flow cytometry, and subsequent culture of neural progenitors from hES cells. As reported earlier, hES cells treated with the bone morphogenetic protein (BMP) antagonist noggin gave rise to neurospheres at a relatively high frequency. However, these noggin-treated embryonic stem cell cultures were heterogeneous, with cells expressing embryonic stem markers still detectable even following 14 days of differentiation. In order to isolate pure human neural progenitors, we fractionated noggin-treated ES cells on the basis of their expression of the putative neural stem cell marker, CD133, and the GCTM-2, and SSEA-1 antigens, which mark pluripotent stem cells and differentiated cells respectively from hES cell culture. CD133(+) cells formed larger spheres compared to CD133(-) cells. CD133(+)SSEA1(+) cells and CD133(+)SSEA-1(-) cells expressed similar levels of neural genes and formed neurospheres at similar frequencies. By contrast, CD133(+)GCTM-2(+) cells expressed high levels of OCT4 but not neural lineage genes and failed to form neurospheres. CD133(+)GCTM-2(-) cells formed neurospheres at the relative highest frequency. Thus, negative selection with GCTM-2 may be useful for the purification of specific cell types differentiated from hES cells.
Related JoVE Video
International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs.
Mar. Pollut. Bull.
PUBLISHED: 03-15-2009
Show Abstract
Hide Abstract
Samples of polyethylene pellets were collected at 30 beaches from 17 countries and analyzed for organochlorine compounds. PCB concentrations in the pellets were highest on US coasts, followed by western Europe and Japan, and were lower in tropical Asia, southern Africa and Australia. This spatial pattern reflected regional differences in the usage of PCBs and was positively correlated with data from Mussel Watch, another monitoring approach. DDTs showed high concentrations on the US west coast and in Vietnam. In Vietnam, DDT was predominant over its metabolites (DDE and DDD), suggesting the principal source may be current usage of the pesticide for malaria control. High concentrations of pesticide HCHs were detected in the pellets from southern Africa, suggesting current usage of the pesticides in southern Africa. This study demonstrates the utility and feasibility of the International Pellet Watch approach to monitor POPs at a global scale.
Related JoVE Video
Co-operative roles for E-cadherin and N-cadherin during lens vesicle separation and lens epithelial cell survival.
Dev. Biol.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
The classical cadherins are known to have both adhesive and signaling functions. It has also been proposed that localized regulation of cadherin activity may be important in cell assortment during development. In the context of eye development, it has been suggested that cadherins are important for separation of the invaginated lens vesicle from the surface ectoderm. To test this hypothesis, we conditionally deleted N-cadherin or E-cadherin from the presumptive lens ectoderm of the mouse. Conditional deletion of either cadherin alone did not produce a lens vesicle separation defect. However, these conditional mutants did exhibit common structural deficits, including microphthalmia, severe iris hyperplasia, persistent vacuolization within the fibre cell region, and eventual lens epithelial cell deterioration. To assess the co-operative roles of E-cadherin and N-cadherin within the developing lens, double conditional knockout embryos were generated. These mice displayed distinct defects in lens vesicle separation and persistent expression of another classical cadherin, P-cadherin, within the cells of the persistent lens stalk. Double mutant lenses also exhibited severe defects in lens epithelial cell adhesion and survival. Finally, the severity of the lens phenotype was shown to be sensitive to the number of wild-type E- and N-cadherin alleles. These data suggest that the co-operative expression of both E- and N-cadherin during lens development is essential for normal cell sorting and subsequent lens vesicle separation.
Related JoVE Video
Inositol trisphosphate-dependent Ca stores and mitochondria modulate slow wave activity arising from the smooth muscle cells of the guinea pig prostate gland.
Br. J. Pharmacol.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca(2+) compartments in regulating slow wave activity in the guinea pig prostate.
Related JoVE Video
Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis.
Dev. Cell
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
When and where to make or break new blood vessel connections is the key to understanding guided vascular patterning. VEGF-A stimulation and Dll4/Notch signaling cooperatively control the number of new connections by regulating endothelial tip cell formation. Here, we show that the Notch-regulated ankyrin repeat protein (Nrarp) acts as a molecular link between Notch- and Lef1-dependent Wnt signaling in endothelial cells to control stability of new vessel connections in mouse and zebrafish. Dll4/Notch-induced expression of Nrarp limits Notch signaling and promotes Wnt/Ctnnb1 signaling in endothelial stalk cells through interactions with Lef1. BATgal-reporter expression confirms Wnt signaling activity in endothelial stalk cells. Ex vivo, combined Wnt3a and Dll4 stimulation of endothelial cells enhances Wnt-reporter activity, which is abrogated by loss of Nrarp. In vivo, loss of Nrarp, Lef1, or endothelial Ctnnb1 causes vessel regression. We suggest that the balance between Notch and Wnt signaling determines whether to make or break new vessel connections.
Related JoVE Video
alpha(1)-adrenoceptor modulation of spontaneous electrical waveforms in the guinea-pig prostate.
Eur. J. Pharmacol.
PUBLISHED: 01-16-2009
Show Abstract
Hide Abstract
The aim of this study was to investigate the effects of phenylephrine on the spontaneous slow wave and pacemaker activity in the guinea-pig prostate. Membrane potential recordings were made using intracellular microelectrodes. Guinea-pig prostatic cells either displayed slow wave activity or pacemaker potentials. In the presence of nifedipine, none of the parameters measured were significantly different between both waveforms. Phenylephrine (1 microM) or histamine (5 microM) increased the frequency of slow waves and pacemaker potentials in the absence or presence of nifedipine (1 microM). In the presence of nifedipine (1 microM), the addition of either cyclopiazonic acid (CPA, 10 microM) or carbonyl cyanide 3-chlorophenylhydrazone (CCCP, 1-10 microM) caused an initial transient increase in frequency of the spontaneous electrical activity that was associated with a membrane depolarisation of 3-7 mV before abolishing activity. Following the cessation of electrical activity, phenylephrine (1 microM) was unable to restore the spontaneous electrical events. Although niflumic acid (10-100 microM) (in the presence of 1 microM nifedipine) similarly abolished all activity, electrical activity was promptly initiated upon the addition of phenylephrine (1 microM). These results demonstrate that in the presence of nifedipine, there are no differences between the slow waves and pacemaker potentials suggesting that both activities arise from cells that are well coupled. Both phenylephrine and histamine increased the frequency of pacemaker activity which is likely to; at least, partly explain the increase in slow wave discharge also evoked by these agents. In the presence of nifedipine, the effects observed upon alpha(1)-adrenoceptor activation were dependent on Ca(2+) cycling by both the intracellular Ca(2+) stores and mitochondria.
Related JoVE Video
Generation of an Rx-tTA: TetOp-Cre knock-in mouse line for doxycycline regulated Cre activity in the Rx expression domain.
PLoS ONE
Show Abstract
Hide Abstract
Genetic deletion of mouse genes has played a crucial role in our understanding of embryonic eye development. Transgenic, tissue specific Cre recombinase expression in various eye structures has facilitated these experiments. However, an early expressing, temporally-regulated, optic vesicle-specific Cre line has not been available. In this report, we detail the generation and analysis of a knock-in, inducible Cre line designed to drive recombination specifically within the Rx expression domain. Crossing this line with a reporter line demonstrates that recombination can be mediated within the early optic vesicle and throughout retinal development. Recombination can also be mediated in the Rx-expressing, ventral diencephalon and future posterior pituitary gland. Furthermore, it was demonstrated that dietary doxycycline could effectively modulate Cre activity. This line has the potential to facilitate conditional knock-out experimentation to study early retina and/or posterior pituitary development.
Related JoVE Video
Left-right locomotor circuitry depends on RhoA-driven organization of the neuroepithelium in the developing spinal cord.
J. Neurosci.
Show Abstract
Hide Abstract
RhoA is a key regulator of cytoskeletal dynamics with a variety of effects on cellular processes. Loss of RhoA in neural progenitor cells disrupts adherens junctions and causes disorganization of the neuroepithelium in the developing nervous system. However, it remains essentially unknown how the loss of RhoA physiologically affects neural circuit formation. Here we show that proper neuroepithelial organization maintained by RhoA GTPase in both the ventral and dorsal spinal cord is critical for left-right locomotor behavior. We examined the roles of RhoA in the ventral and dorsal spinal cord by deleting the gene in neural progenitors using Olig2-Cre and Wnt1-Cre mice, respectively. RhoA-deleted neural progenitors in both mutants exhibit defects in the formation of apical adherens junctions and disorganization of the neuroepithelium. Consequently, the ventricular zone and lumen of the dysplastic region are lost, causing the left and right sides of the gray matter to be directly connected. Furthermore, the dysplastic region lacks ephrinB3 expression at the midline that is required for preventing EphA4-expressing corticospinal neurons and spinal interneurons from crossing the midline. As a result, aberrant neuronal projections are observed in that region. Finally, both RhoA mutants develop a rabbit-like hopping gait. These results demonstrate that RhoA functions to maintain neuroepithelial structures in the developing spinal cord and that proper organization of the neuroepithelium is required for appropriate left-right motor behavior.
Related JoVE Video
Wntless functions in mature osteoblasts to regulate bone mass.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Recent genome-wide association studies of individuals of Asian and European descent have found that SNPs located within the genomic region (1p31.3) encoding the Wntless (Wls)/Gpr177 protein are associated significantly with reduced bone mineral density. Wls/Gpr177 is a newly identified chaperone protein that specifically escorts Wnt ligands for secretion. Given the strong functional association between the Wnt signaling pathways and bone development and homeostasis, we generated osteoblast-specific Wls-deficient (Ocn-Cre;Wls-flox) mice. Homozygous conditional knockout animals were born at a normal Mendelian frequency. Whole-body dual-energy X-ray absorptiometry scanning revealed that bone-mass accrual was significantly inhibited in homozygotes as early as 20 d of age. These homozygotes had spontaneous fractures and a high frequency of premature lethality at around 2 mo of age. Microcomputed tomography analysis and histomorphometric data revealed a dramatic reduction of both trabecular and cortical bone mass in homozygous mutants. Bone formation in homozygotes was severely impaired, but no obvious phenotypic change was observed in mice heterozygous for the conditional deletion. In vitro studies showed that Wls-deficient osteoblasts had a defect in differentiation and mineralization, with significant reductions in the expression of key osteoblast differentiation regulators. In summary, these results reveal a surprising and crucial role of osteoblast-secreted Wnt ligands in bone-mass accrual.
Related JoVE Video
RhoA is dispensable for axon guidance of sensory neurons in the mouse dorsal root ganglia.
Front Mol Neurosci
Show Abstract
Hide Abstract
RhoA, a member of the Rho family small GTPases, has been shown to play important roles in axon guidance. However, to date, the physiological function of RhoA in axon guidance events in vivo has not been determined genetically in animals. Here we show that RhoA mRNA is strongly expressed by sensory neurons in the developing mouse dorsal root ganglia (DRG). We have deleted RhoA in sensory neurons of the DRG using RhoA-floxed mice under the Wnt1-Cre driver in which Cre is strongly expressed in sensory neurons. Peripheral projections of sensory neurons appear normal and there are no detectable defects in the central projections of either cutaneous or proprioceptive sensory neurons in RhoA(f/f); Wnt1-Cre mice. Furthermore, a co-culture assay using DRG explants from RhoA(f/f); Wnt1-Cre embryos, and 293T cells expressing semaphorin3A (Sema3A) reveals that RhoA is not required for Sema3A-mediated axonal repulsion of sensory neurons. Expression of RhoC, a closely related family member, is increased in RhoA-deficient sensory neurons and may play a compensatory role in this context. Taken together, these genetic studies demonstrate that RhoA is dispensable for peripheral and central projections of sensory neurons in the DRG.
Related JoVE Video
The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone.
PLoS ONE
Show Abstract
Hide Abstract
Eyes Absents (EYA) are multifunctional proteins best known for their role in organogenesis. There is accumulating evidence that overexpression of EYAs in breast and ovarian cancers, and in malignant peripheral nerve sheath tumors, correlates with tumor growth and increased metastasis. The EYA protein is both a transcriptional activator and a tyrosine phosphatase, and the tyrosine phosphatase activity promotes single cell motility of mammary epithelial cells. Since EYAs are expressed in vascular endothelial cells and cell motility is a critical feature of angiogenesis we investigated the role of EYAs in this process. Using RNA interference techniques we show that EYA3 depletion in human umbilical vein endothelial cells inhibits transwell migration as well as Matrigel-induced tube formation. To specifically query the role of the EYA tyrosine phosphatase activity we employed a chemical biology approach. Through an experimental screen the uricosuric agents Benzbromarone and Benzarone were found to be potent EYA inhibitors, and Benzarone in particular exhibited selectivity towards EYA versus a representative classical protein tyrosine phosphatase, PTP1B. These compounds inhibit the motility of mammary epithelial cells over-expressing EYA2 as well as the motility of endothelial cells. Furthermore, they attenuate tubulogenesis in matrigel and sprouting angiogenesis in the ex vivo aortic ring assay in a dose-dependent fashion. The anti-angiogenic effect of the inhibitors was also demonstrated in vivo, as treatment of zebrafish embryos led to significant and dose-dependent defects in the developing vasculature. Taken together our results demonstrate that the EYA tyrosine phosphatase activity is pro-angiogenic and that Benzbromarone and Benzarone are attractive candidates for repurposing as drugs for the treatment of cancer metastasis, tumor angiogenesis, and vasculopathies.
Related JoVE Video
Nitric oxide signaling pathways involved in the inhibition of spontaneous activity in the guinea pig prostate.
J. Urol.
Show Abstract
Hide Abstract
We investigated nitric oxide mediated inhibition of spontaneous activity recorded in young and aging guinea pig prostates.
Related JoVE Video
Association between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant mice.
J. Pathol.
Show Abstract
Hide Abstract
Crim1 hypomorphic (Crim1(KST264/KST264)) mice display progressive renal disease characterized by glomerular defects, leaky peritubular vasculature, and progressive interstitial fibrosis. Here we show that 27% of these mice also present with hydronephrosis, suggesting obstructive nephropathy. Dynamic magnetic resonance imaging using Magnevist showed fast development of hypo-intense signal in the kidneys of Crim1(KST264/KST264) mice, suggesting pooling of filtrate within the renal parenchyma. Rhodamine dextran (10 kDa) clearance was also delayed in Crim1(KST264/KST264) mice. Pyeloureteric peristalsis, while present, was less co-ordinated in Crim1(KST264/KST264) mice. However, isolated renal pelvis preparations suggest normal pelvic smooth muscle contractile responses. An analysis of maturation during the immediate postnatal period [postnatal day (P) 0-15] revealed defects in papillary extension in Crim1({KST264/KST264) mice. While Crim1 expression is weak in pelvic smooth muscle, strong expression is seen in the interstitium and loops of Henle of the extending papilla, commencing at the tip of the P1 papilla and disseminating throughout the papilla by P15. These results, as well as implicating Crim1 in papillary extension and pelvic smooth muscle contractility, highlight the previously unrecognized association between defects in papillary development and progression to chronic kidney disease later in life.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.