JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial.
Lancet Oncol.
PUBLISHED: 12-11-2013
Show Abstract
Hide Abstract
Endogenous or iatrogenic antitumour immune responses can improve the course of follicular lymphoma, but might be diminished by immune checkpoints in the tumour microenvironment. These checkpoints might include effects of programmed cell death 1 (PD1), a co-inhibitory receptor that impairs T-cell function and is highly expressed on intratumoral T cells. We did this phase 2 trial to investigate the activity of pidilizumab, a humanised anti-PD1 monoclonal antibody, with rituximab in patients with relapsed follicular lymphoma.
Related JoVE Video
Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial.
J. Clin. Oncol.
PUBLISHED: 10-14-2013
Show Abstract
Hide Abstract
The Programmed Death-1 (PD-1) immune checkpoint pathway may be usurped by tumors, including diffuse large B-cell lymphoma (DLBCL), to evade immune surveillance. The reconstituting immune landscape after autologous hematopoietic stem-cell transplantation (AHSCT) may be particularly favorable for breaking immune tolerance through PD-1 blockade.
Related JoVE Video
PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine.
J. Immunother.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
We have developed a cancer vaccine in which autologous tumor is fused with dendritic cells (DCs) resulting in the presentation of tumor antigens in the context of DC-mediated costimulation. In clinical trials, immunologic responses have been observed, however responses may be muted by inhibitory pathways. The PD1/PDL1 pathway is an important element contributing to tumor-mediated immune suppression. In this study, we demonstrate that myeloma cells and DC/tumor fusions strongly express PD-L1. Compared with a control population of normal volunteers, increased PD-1 expression was observed on T cells isolated from patients with myeloma. It is interesting to note that after autologous transplantation, T-cell expression of PD-1 returned to levels seen in normal controls. We examined the effect of PD-1 blockade on T-cell response to DC/tumor fusions ex vivo. Presence of CT-011, an anti-PD1 antibody, promoted the vaccine-induced T-cell polarization towards an activated phenotype expressing Th1 compared with Th2 cytokines. A concomitant decrease in regulatory T cells and enhanced killing in a cytotoxicity assay was observed. In summary, we demonstrate that PD-1 expression is increased in T cells of patients with active myeloma, and that CT-011 enhances activated T-cell responses after DC/tumor fusion stimulation.
Related JoVE Video
Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms.
Eur. J. Immunol.
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Programmed death-1 receptor (PD-1) is expressed on T cells following TCR activation. Binding of this receptor to its cognate ligands, programmed death ligand (PDL)-1 and PDL-2, down-regulates signals by the TCR, promoting T-cell anergy and apoptosis, thus leading to immune suppression. Here, we find that using an anti-PD-1 antibody (CT-011) with Treg-cell depletion by low-dose cyclophosphamide (CPM), combined with a tumor vaccine, induces synergistic antigen-specific immune responses and reveals novel activities of each agent in this combination. This strategy led to complete regression of established tumors in a significant percentage of treated animals, with survival prolongation. We show for the first time that combining CT-011 and CPM significantly increases the number of vaccine-induced tumor-infiltrating CD8(+) T cells, with simultaneous decrease in infiltrating Treg cells. Interestingly, we find that CT-011 prolongs Treg-cell inhibition induced by CPM, leading to a sustainable significant synergistic decrease of splenic and tumor-infiltrated Treg cells. Surprisingly, we find that the anti-tumor effect elicited by the combination of CT-011 and CPM is dependent on both CD8(+) and CD4(+) T-cell responses, although the antigen we used is a class I MHC-restricted peptide. Thus, we describe a novel and effective therapeutic approach by combining multiple strategies to target several tumor-mediated immune inhibitory mechanisms.
Related JoVE Video
The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.
Blood
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti-PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1(+) MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011s enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.
Related JoVE Video
PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer.
Cancer Res.
Show Abstract
Hide Abstract
Head and neck cancers positive for human papillomavirus (HPV) have a more favorable clinical outcome than HPV-negative cancers, but it is unknown why this is the case. We hypothesized that prognosis was affected by intrinsic features of HPV-infected tumor cells or differences in host immune response. In this study, we focused on a comparison of regulatory Foxp3(+) T cells and programmed death-1 (PD-1)(+) T cells in the microenvironment of tumors that were positive or negative for HPV, in two groups that were matched for various clinical and biologic parameters. HPV-positive head and neck cancers were more heavily infiltrated by regulatory T cells and PD-1(+) T cells and the levels of PD-1(+) cells were positively correlated with a favorable clinical outcome. In explaining this paradoxical result, we showed that these PD-1(+) T cells expressed activation markers and were functional after blockade of the PD-1-PD-L1 axis in vitro. Approximately 50% of PD-1(+) tumor-infiltrating T cells lacked Tim-3 expression and may indeed represent activated T cells. In mice, administration of a cancer vaccine increased PD-1 on T cells with concomitant tumor regression. In this setting, PD-1 blockade synergized with vaccine in eliciting antitumor efficacy. Our findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where we suggest that PD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD-1/PD-L1 blockade.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.