JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures.
Transl Oncol
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Related JoVE Video
Sweat but no gain: Inhibiting proliferation of multidrug resistant cancer cells with "ersatzdroges"
Int. J. Cancer
PUBLISHED: 08-23-2014
Show Abstract
Hide Abstract
ATP-binding cassette (ABC) drug transporters consuming ATPs for drug efflux is a common mechanism by which clinical cancers develop multidrug resistance (MDR). We hypothesized that MDR phenotypes could be suppressed by administration of "ersatzdroges," nonchemotherapy drugs that are, nevertheless, ABC substrates. We reasoned that, through prolonged activation of the ABC pumps, ersatzdroges will force MDR cells to divert limited resources from proliferation and invasion thus delaying disease progression. We evaluated ABC substrates as ersatzdroge by comparing their effects on proliferation and survival of MDR cell lines (MCF-7/Dox and 8226/Dox40) with the effects on the drug-sensitive parental lines (MCF-7 and 8226/s, respectively) in glucose-limited condition. The changes in glucose and energy demands were also examined in vitro and in vivo. MCF-7/Dox showed higher ATP demand and susceptibility to glucose resource limitation. Ersatzdroges significantly decreased proliferation of MCF-7/Dox when the culture media contained physiological glucose concentrations (1.0 g/L) or less, but had no effect on MCF-7. Similar evidence was obtained from 8226/Dox40 and 8226/s comparison. In vivo 18F-FDG-PET imaging demonstrated that glucose uptake was increased by systemic administration of an ersatzdroge in tumors composed of MDR. These results suggest that administration of ersatzdroges, by increasing the metabolic cost of resistance, can suppress proliferation of drug-resistance phenotypes. This provides a novel and relatively simple application model of evolution-based strategy, which can exploit the cost of resistance to delay proliferation of drug-resistant cancer phenotypes. Furthermore, suggested is the potential of ersatzdroges to identify tumors or regions of tumors that express the MDR phenotype.
Related JoVE Video
Quantitative imaging biomarkers: A review of statistical methods for computer algorithm comparisons.
Stat Methods Med Res
PUBLISHED: 06-13-2014
Show Abstract
Hide Abstract
Quantitative biomarkers from medical images are becoming important tools for clinical diagnosis, staging, monitoring, treatment planning, and development of new therapies. While there is a rich history of the development of quantitative imaging biomarker (QIB) techniques, little attention has been paid to the validation and comparison of the computer algorithms that implement the QIB measurements. In this paper we provide a framework for QIB algorithm comparisons. We first review and compare various study designs, including designs with the true value (e.g. phantoms, digital reference images, and zero-change studies), designs with a reference standard (e.g. studies testing equivalence with a reference standard), and designs without a reference standard (e.g. agreement studies and studies of algorithm precision). The statistical methods for comparing QIB algorithms are then presented for various study types using both aggregate and disaggregate approaches. We propose a series of steps for establishing the performance of a QIB algorithm, identify limitations in the current statistical literature, and suggest future directions for research.
Related JoVE Video
Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases.
Subcell. Biochem.
PUBLISHED: 05-10-2014
Show Abstract
Hide Abstract
Carbonic anhydrase IX (CAIX) which is a zinc containing metalloprotein, efficiently catalyzes the reversible hydration of carbon dioxide. It is constitutively up-regulated in several cancer types and has an important role in tumor progression, acidification and metastasis. High expression of CAIX generally correlates with poor prognosis and is related to a decrease in the disease-free interval following successful therapy. Therefore, it is considered as a prognostic indicator in oncology.In this review, we describe CAIX regulation and its role in tumor hypoxia, acidification and metastasis. In addition, the molecular imaging of CAIX and its potential for use in cancer detection, diagnosis, staging, and for use in following therapy response is discussed. Both antibodies and small molecular weight compounds have been used for targeted imaging of CAIX expression. The use of CAIX expression as an attractive and promising candidate marker for systemic anticancer therapy is also discussed.
Related JoVE Video
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
Nat Commun
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
Related JoVE Video
Vascular measurements correlate with estrogen receptor status.
BMC Cancer
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
Breast carcinoma can be classified as either Estrogen Receptor (ER) positive or negative by immunohistochemical phenotyping, although ER expression may vary from 1 to 100% of malignant cells within an ER + tumor. This is similar to genetic variability observed in other tumor types and is generally viewed as a consequence of intratumoral evolution driven by random genetic mutations. Here we view cellular evolution within tumors as a classical Darwinian system in which variations in molecular properties represent predictable adaptations to spatially heterogeneous environmental selection forces. We hypothesize that ER expression is a successful adaptive strategy only if estrogen is present in the microenvironment. Since the dominant source of estrogen is blood flow, we hypothesized that, in general, intratumoral regions with higher blood flow would contain larger numbers of ER + cells when compared to areas of low blood flow and in turn necrosis.
Related JoVE Video
Janus-faced tumor microenvironment and redox.
Antioxid. Redox Signal.
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
Tumor microenvironment (TME) is a complex term that includes extracellular matrix, blood vessels, endothelial, stromal, and inflammatory cells, and other supporting structures of the particular organ; and physiological components such as oxygen, pH, nutrients, waste products, signaling molecules, reducing/oxidizing species, growth factors, protumorigenic factors, etc. TME is now widely recognized as a major contributor to cancer aggression and treatment resistance and as a potential target for therapeutic intervention.
Related JoVE Video
Mechanisms of buffer therapy resistance.
Neoplasia
PUBLISHED: 02-13-2014
Show Abstract
Hide Abstract
Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit.
Related JoVE Video
Reproducibility and Prognosis of Quantitative Features Extracted from CT Images.
Transl Oncol
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ? 0.9 and R(2) Bet ? 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ? .046).
Related JoVE Video
Radiologically defined ecological dynamics and clinical outcomes in glioblastoma multiforme: preliminary results.
Transl Oncol
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
We examined pretreatment magnetic resonance imaging (MRI) examinations from 32 patients with glioblastoma multiforme (GBM) enrolled in The Cancer Genome Atlas (TCGA). Spatial variations in T1 post-gadolinium and either T2-weighted or fluid attenuated inversion recovery sequences from each tumor MRI study were used to characterize each small region of the tumor by its local contrast enhancement and edema/cellularity ("habitat"). The patient cohort was divided into group 1 (survival < 400 days, n = 16) and group 2 (survival > 400 days, n = 16).
Related JoVE Video
Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302.
Related JoVE Video
Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
Cancer Metab
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood.
Related JoVE Video
Reproducibility of magnetic resonance perfusion imaging.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Dynamic MR biomarkers (T2*-weighted or susceptibility-based and T1-weighted or relaxivity-enhanced) have been applied to assess tumor perfusion and its response to therapies. A significant challenge in the development of reliable biomarkers is a rigorous assessment and optimization of reproducibility. The purpose of this study was to determine the measurement reproducibility of T1-weighted dynamic contrast-enhanced (DCE)-MRI and T2*-weighted dynamic susceptibility contrast (DSC)-MRI with two contrast agents (CA) of different molecular weight (MW): gadopentetate (Gd-DTPA, 0.5 kDa) and Gadomelitol (P792, 6.5 kDa). Each contrast agent was tested with eight mice that had subcutaneous MDA-MB-231 breast xenograft tumors. Each mouse was imaged with a combined DSC-DCE protocol three times within one week to achieve measures of reproducibility. DSC-MRI results were evaluated with a contrast to noise ratio (CNR) efficiency threshold. There was a clear signal drop (>95% probability threshold) in the DSC of normal tissue, while signal changes were minimal or non-existent (<95% probability threshold) in tumors. Mean within-subject coefficient of variation (wCV) of relative blood volume (rBV) in normal tissue was 11.78% for Gd-DTPA and 6.64% for P792. The intra-class correlation coefficient (ICC) of rBV in normal tissue was 0.940 for Gd-DTPA and 0.978 for P792. The inter-subject correlation coefficient was 0.092. Calculated K(trans) from DCE-MRI showed comparable reproducibility (mean wCV, 5.13% for Gd-DTPA, 8.06% for P792). ICC of K(trans) showed high intra-subject reproducibility (ICC = 0.999/0.995) and inter-subject heterogeneity (ICC = 0.774). Histograms of K(trans) distributions for three measurements had high degrees of overlap (sum of difference of the normalized histograms <0.01). These results represent homogeneous intra-subject measurement and heterogeneous inter-subject character of biological population, suggesting that perfusion MRI could be an imaging biomarker to monitor or predict response of disease.
Related JoVE Video
Monitoring chemotherapeutic response by hyperpolarized 13C-fumarate MRS and diffusion MRI .
Cancer Res.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Targeted chemotherapeutic agents often do not result in tumor shrinkage, so new biomarkers that correlate with clinical efficacy are needed. In this study, we investigated non-invasive imaging protocols to monitor responses to Sorafenib, a multikinase inhibitor approved for treatment of renal cell and hepatocellular cancers. Healthy cells are impermeable to fumarate, so conversion of this metabolite to malate as detected by 13C-magnetic-resonance-spectroscopy (MRS) has been suggested as one marker for cell death and treatment response in tumors. Diffusion MRI also has been suggested as a measure of therapy-induced cytotoxic edema, since viable cells act as a diffusion barrier in tissue. For these reasons, we assessed Sorafenib responses using hyperpolarized (HP) 13C-fumarate, diffusion-weighted MRI (DW-MRI) in a xenograft model of human breast cancer where daily administration of Sorafenib was sufficient to stabilize tumor growth. We detected signals from fumarate and malate following intravenous administration of HP fumarate with a progressive increase in the malate-to-fumarate (MA/FA) ratio at days 2-5 after Sorafenib infusion. The apparent diffusion coefficient (ADC) measured by DW-MRI increased in the treated group consistent with cytotoxic edema. However, the MA/FA ratio was a more sensitive marker of therapeutic response than ADC, with 2.8-fold versus 1.3-fold changes, respectively, by day 5 of drug treatment. Histological analyses confirmed cell death in the Sorafenib-treated cohort. Notably, 13C-pyruvate-to-lactate conversion was not affected by Sorafenib in the breast cancer model examined. Our results illustrate how combining HP-substrates with DW-MRI can allow non-invasive monitoring of targeted therapeutic responses at relatively early times after drug administration.
Related JoVE Video
Quantitative imaging in cancer evolution and ecology.
Radiology
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral Darwinian dynamics before and during therapy. Advances in image analysis will place clinical imaging in an increasingly central role in the development of evolution-based patient-specific cancer therapy.
Related JoVE Video
Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer.
Acta Oncol
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
Maximum, mean and peak SUV of primary tumor at baseline FDG-PET scans, have often been found predictive for overall survival in non-small cell lung cancer (NSCLC) patients. In this study we further investigated the prognostic power of advanced metabolic metrics derived from intensity volume histograms (IVH) extracted from PET imaging.
Related JoVE Video
Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability.
Acta Oncol
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
Besides basic measurements as maximum standardized uptake value (SUV)max or SUVmean derived from 18F-FDG positron emission tomography (PET) scans, more advanced quantitative imaging features (i.e. "Radiomics" features) are increasingly investigated for treatment monitoring, outcome prediction, or as potential biomarkers. With these prospected applications of Radiomics features, it is a requisite that they provide robust and reliable measurements. The aim of our study was therefore to perform an integrated stability analysis of a large number of PET-derived features in non-small cell lung carcinoma (NSCLC), based on both a test-retest and an inter-observer setup.
Related JoVE Video
Development and in vivo quantitative magnetic resonance imaging of polymer micelles targeted to the melanocortin 1 receptor.
J. Med. Chem.
PUBLISHED: 08-09-2013
Show Abstract
Hide Abstract
Recent emphasis has focused on the development of rationally designed polymer-based micelle carriers for drug delivery. The current work tests the hypothesis that target specificity can be enhanced by micelles with cancer-specific ligands. In particular, we describe the synthesis and characterization of a new gadolinium texaphyrin (Gd-Tx) complex encapsulated in an IVECT micellar system, stabilized through Fe(III) cross-linking and targeted with multiple copies of a specific ligand for the melanocortin 1 receptor (MC1R), which has been evaluated as a cell-surface marker for melanoma. On the basis of comparative MRI experiments, we have been able to demonstrate that these Gd-Tx micelles are able to target MC1R-expressing xenograft tumors in vitro and in vivo more effectively than various control systems, including untargeted or un-cross-linked Gd-Tx micelles. Taken in concert, the findings reported herein support the conclusion that appropriately designed micelles are able to deliver contrast agent payloads to tumors expressing the MC1R.
Related JoVE Video
Evaluation of LDH-A and glutaminase inhibition in vivo by hyperpolarized 13C-pyruvate magnetic resonance spectroscopy of tumors.
Cancer Res.
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
Hyperpolarized (13)C magnetic resonance spectroscopy provides a unique opportunity to detect real-time metabolic fluxes as a means to measure metabolic treatment responses in vivo. Here, we show that pharmacologic inhibition of lactate dehydrogenase-A suppressed the conversion of hyperpolarized (13)C-pyruvate to lactate in murine xenografts of P493 human lymphoma. In contrast, a glutaminase inhibitor reduced conversion of (13)C-pyruvate to alanine without affecting conversion of pyruvate to lactate. These results illustrate the ability to monitor biomarkers for responses to antimetabolic therapy in real-time, paving the way for clinical development of imaging biomarkers to monitor metabolic pharmacodynamics.
Related JoVE Video
Acid-mediated tumor proteolysis: contribution of cysteine cathepsins.
Neoplasia
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8) affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D) cultures. For these studies, we used 1) 3D reconstituted basement membrane overlay cultures of human carcinomas, 2) live cell imaging assays to assess proteolysis, and 3) in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.
Related JoVE Video
Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.
Bioorg. Med. Chem.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-?-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-?-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-?-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-?-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-?-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported.
Related JoVE Video
Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI.
Magn Reson Med
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE, and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers because it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as computed tomography (CT). The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens.
Related JoVE Video
Automated Delineation of Lung Tumors from CT Images Using a Single Click Ensemble Segmentation Approach.
Pattern Recognit
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
A single click ensemble segmentation (SCES) approach based on an existing "Click&Grow" algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76% respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated.
Related JoVE Video
Simultaneous analysis of intracellular pH and Ca²? from cell populations.
Methods Mol. Biol.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Although changes in both pH(in) and [Ca(2+)](i) have been observed in response to a variety of agonists, it is not clear whether these ionic events work independently or are coordinated to lead to a specific physiological response. One of the fundamental problems in studying these ionic events is that changes in pH(in) modify Ca(2+) regulatory mechanisms and changes in Ca(2+) may modify pH regulation. It is desirable to use a technique that allows concomitant monitoring of these two ions in cell populations with high time resolution. Furthermore, like many Ca(2+) binding proteins, all Ca(2+)-sensitive fluoroprobes are inherently sensitive to pH owing to competition of H(+) for the Ca(2+)-binding sites. This chapter describes experimental paradigms that provide optimum conditions for simultaneous measurement of pH from the fluorescence emission of snarf-1, and Ca(2+) using fura-2. The fluorescence spectra of these compounds are sufficiently different to allow simultaneous measurement of pH and Ca(2+) both in vitro and in vivo. Moreover, the ratio of the H(+)-sensitive wavelengths of snarf-1 is unaffected by Ca(2+), or the concomitant presence of fura-2 in cells. Although the fluorescence ratio of fura-2 is insensitive to the presence of snarf-1, it is affected by pH, as indicated above. We describe procedures to correct for this effect and to obtain calibration parameters for fura-2 and snarf-1 required to facilitate analysis of pH and Ca(2+) concentrations within cell populations.
Related JoVE Video
Synthesis and evaluation of cholecystokinin trimers: a multivalent approach to pancreatic cancer detection and treatment.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
In the quest for novel tools for early detection and treatment of cancer, we propose the use of multimers targeting overexpressed receptors at the cancer cell surface. Indeed, multimers are prone to create multivalent interactions, more potent and specific than their corresponding monovalent versions, thus enabling the potential for early detection. There is a lack of tools for early detection of pancreatic cancer, one of the deadliest forms of cancer, but CCK2-R overexpression on pancreatic cancer cells makes CCK based multimers potential markers for these cells. In this Letter, we describe the synthesis and evaluation of CCK trimers targeting overexpressed CCK2-R.
Related JoVE Video
Variance of SUVs for FDG-PET/CT is greater in clinical practice than under ideal study settings.
Clin Nucl Med
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
Measurement variance affects the clinical effectiveness of PET-based measurement as a semiquantitative imaging biomarker for cancer response in individual patients and for planning clinical trials. In this study, we measured test-retest reproducibility of SUV measurements under clinical practice conditions and recorded recognized deviations from protocol compliance.
Related JoVE Video
Demonstration of a sucrose-derived contrast agent for magnetic resonance imaging of the GI tract.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
A scaffold bearing eight terminal alkyne groups was synthesized from sucrose, and copies of an azide-terminated Gd-DOTA complex were attached via copper(I)-catalyzed azide-alkyne cycloaddition. The resulting contrast agent (CA) was administered by gavage to C3H mice. Passage of the CA through the gastrointestinal (GI) tract was followed by T1-weighted magnetic resonance imaging (MRI) over a period of 47h, by which time the CA had exited the GI tract. No evidence for leakage of the CA from the GI tract was observed. Thus, a new, orally administered CA for MRI of the GI tract has been developed and successfully demonstrated.
Related JoVE Video
Wee1 inhibition by MK-1775 leads to tumor inhibition and enhances efficacy of gemcitabine in human sarcomas.
PLoS ONE
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Sarcomas are rare and heterogeneous mesenchymal tumors affecting both pediatric and adult populations with more than 70 recognized histologies. Doxorubicin and ifosfamide have been the main course of therapy for treatment of sarcomas; however, the response rate to these therapies is about 10-20% in metastatic setting. Toxicity with the drug combination is high, response rates remain low, and improvement in overall survival, especially in the metastatic disease, remains negligible and new agents are needed. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Inhibition of Wee1 by MK1775 has been reported to enhance the cytotoxic effect of DNA damaging agents in different types of carcinomas. In this study we investigated the therapeutic efficacy of MK1775 in various sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo both alone and in combination with gemcitabine, which is frequently used in the treatment of sarcomas. Our data demonstrate that MK1775 treatment as a single agent at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death in all sarcomas tested. Additionally, MK1775 significantly enhances the cytotoxic effect of gemcitabine in sarcoma cells lines with different p53 mutational status. In patient-derived bone and soft tissue sarcoma samples we showed that MK1775 alone and in combination with gemcitabine causes significant apoptotic cell death. Magnetic resonance imaging (MRI) and histopathologic studies showed that MK1775 induces significant cell death and terminal differentiation in a patient-derived xenograft mouse model of osteosarcoma in vivo. Our results together with the high safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent in the treatment of both adult as well as pediatric sarcoma patients.
Related JoVE Video
A physical sciences network characterization of non-tumorigenic and metastatic cells.
, David B Agus, Jenolyn F Alexander, Wadih Arap, Shashanka Ashili, Joseph E Aslan, Robert H Austin, Vadim Backman, Kelly J Bethel, Richard Bonneau, Wei-Chiang Chen, Chira Chen-Tanyolac, Nathan C Choi, Steven A Curley, Matthew Dallas, Dhwanil Damania, Paul C W Davies, Paolo Decuzzi, Laura Dickinson, Luis Estévez-Salmerón, Veronica Estrella, Mauro Ferrari, Claudia Fischbach, Jasmine Foo, Stephanie I Fraley, Christian Frantz, Alexander Fuhrmann, Philippe Gascard, Robert A Gatenby, Yue Geng, Sharon Gerecht, Robert J Gillies, Biana Godin, William M Grady, Alex Greenfield, Courtney Hemphill, Barbara L Hempstead, Abigail Hielscher, W Daniel Hillis, Eric C Holland, Arig Ibrahim-Hashim, Tyler Jacks, Roger H Johnson, Ahyoung Joo, Jonathan E Katz, Laimonas Kelbauskas, Carl Kesselman, Michael R King, Konstantinos Konstantopoulos, Casey M Kraning-Rush, Peter Kühn, Kevin Kung, Brian Kwee, Johnathon N Lakins, Guillaume Lambert, David Liao, Jonathan D Licht, Jan T Liphardt, Liyu Liu, Mark C Lloyd, Anna Lyubimova, Parag Mallick, John Marko, Owen J T McCarty, Deirdre R Meldrum, Franziska Michor, Shannon M Mumenthaler, Vivek Nandakumar, Thomas V O'Halloran, Steve Oh, Renata Pasqualini, Matthew J Paszek, Kevin G Philips, Christopher S Poultney, Kuldeepsinh Rana, Cynthia A Reinhart-King, Robert Ros, Gregg L Semenza, Patti Senechal, Michael L Shuler, Srimeenakshi Srinivasan, Jack R Staunton, Yolanda Stypula, Hariharan Subramanian, Thea D Tlsty, Garth W Tormoen, Yiider Tseng, Alexander van Oudenaarden, Scott S Verbridge, Jenny C Wan, Valerie M Weaver, Jonathan Widom, Christine Will, Denis Wirtz, Jonathan Wojtkowiak, Pei-Hsun Wu.
Sci Rep
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.
Related JoVE Video
Acidity generated by the tumor microenvironment drives local invasion.
Cancer Res.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR.
Related JoVE Video
pH sensing and regulation in cancer.
Front Physiol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H(+)-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.
Related JoVE Video
Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Combinations of targeted drugs have been employed to treat sarcomas, however, response rates have not improved notably, therefore emphasizing the need for novel treatments. In addition, imaging approaches to assess therapeutic response is lacking, as currently measurable indices, such as volume and/or diameter, do not accurately correlate with changes in tumor biology. In this study, quantitative and profound analyses of magnetic resonance imaging (MRI) were developed to evaluate these as imaging biomarkers for MK1775 and Gem in an osteosarcoma xenotransplant model at early time-points following treatment. Notably, we showed that Gem and Gem+MK1775 groups had significantly inhibited tumor growth by day 4, which was presaged by elevations in mean ADC by 24 hours post treatment. Significant differences were also observed at later time points for the Gem+MK1775 combination and MK1775 therapy. ADC distribution and entropy (randomness of ADC values) were also elevated by 24 hours following therapy. Immunohistochemistry demonstrated that these treatment-related increases in ADC correlated with apoptosis and observed cell condensations (dense- and exploded bodies). These findings underline the role of ADC as a quantitative imaging biomarker for therapy-induced response and show promising clinical relevance in the sarcoma patient population.
Related JoVE Video
Current Advances in Mathematical Modeling of Anti-Cancer Drug Penetration into Tumor Tissues.
Front Oncol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.
Related JoVE Video
Free Base Lysine Increases Survival and Reduces Metastasis in Prostate Cancer Model.
J Cancer Sci Ther
PUBLISHED: 11-19-2011
Show Abstract
Hide Abstract
Malignant tumor cells typically metabolize glucose anaerobically to lactic acid even under normal oxygen tension, a phenomenon called aerobic glycolysis or the Warburg effect. This results in increased acid production and the acidification of the extracellular microenvironment in solid tumors. H(+) ions tend to flow along concentration gradients into peritumoral normal tissue causing extracellular matrix degradation and increased tumor cell motility thus promoting invasion and metastasis. We have shown that reducing this acidity with sodium bicarbonate buffer decreases the metastatic fitness of circulating tumor cells in prostate cancer and other cancer models. Mathematical models of the tumor-host dynamics predicted that buffers with a pka around 7 will be more effective in reducing intra- and peri-tumoral acidosis and, thus, and possibly more effective in inhibiting tumor metastasis than sodium bicarbonate which has a pKa around 6. Here we test this prediction the efficacy of free base lysine; a non-bicarbonate/non-volatile buffer with a higher pKa (~10), on prostate tumor metastases model.
Related JoVE Video
Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand.
J. Med. Chem.
PUBLISHED: 11-10-2011
Show Abstract
Hide Abstract
The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R. Of these, compound 1 (4-phenylbutyryl-His-dPhe-Arg-Trp-NH(2)) exhibited high (0.2 nM) binding affinity for MC1R and low (high nanomolar) affinities for MC4R and MC5R. Functionalization of the ligand at the C-terminus with an alkyne for use in Cu-catalyzed click chemistry was shown not to affect the binding affinity. Finally, formation of the targeted polymer, as well as the targeted micelle formulation, also resulted in constructs with low nanomolar binding affinity.
Related JoVE Video
Drug resistance and cellular adaptation to tumor acidic pH microenvironment.
Mol. Pharm.
PUBLISHED: 10-26-2011
Show Abstract
Hide Abstract
Despite advances in developing novel therapeutic strategies, a major factor underlying cancer related death remains resistance to therapy. In addition to biochemical resistance, mediated by xenobiotic transporters or binding site mutations, resistance can be physiological, emerging as a consequence of the tumors physical microenvironment. This review focuses on extracellular acidosis, an end result of high glycolytic flux and poor vascular perfusion. Low extracellular pH, pHe, forms a physiological drug barrier described by an "ion trapping" phenomenon. We describe how the acid-outside plasmalemmal pH gradient negatively impacts drug efficacy of weak base chemotherapies but is better suited for weakly acidic therapeutics. We will also explore the physiologic changes tumor cells undergo in response to extracellular acidosis which contribute to drug resistance including reduced apoptotic potential, genetic alterations, and elevated activity of a multidrug transporter, p-glycoprotein, pGP. Since low pHe is a hallmark of solid tumors, therapeutic strategies designed to overcome or exploit this condition can be developed.
Related JoVE Video
Related JoVE Video
Design, synthesis, and biological studies of efficient multivalent melanotropin ligands: tools toward melanoma diagnosis and treatment.
J. Med. Chem.
PUBLISHED: 10-03-2011
Show Abstract
Hide Abstract
To achieve early detection and specific cancer treatment, we propose the use of multivalent interactions in which a series of binding events leads to increased affinity and consequently to selectivity. Using melanotropin (MSH) ligands, our aim is to target melanoma cells which overexpress melanocortin receptors. In this study, we report the design and efficient synthesis of new trivalent ligands bearing MSH ligands. Evaluation of these multimers on a cell model engineered to overexpress melanocortin 4 receptors (MC4R) showed up to a 350-fold increase in binding compared to the monomer, resulting in a trivalent construct with nanomolar affinity starting from a micromolar affinity ligand. Cyclic adenosine monophosphate (cAMP) production was also investigated, leading to more insights into the effects of multivalent compounds on transduction mechanisms.
Related JoVE Video
Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats.
J Renin Angiotensin Aldosterone Syst
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
The renin-angiotensin system (RAS) in the nucleus tractus solitarius (NTS) is an important modulator of the baroreceptor heart rate reflex. This study tested the hypothesis that angiotensin-converting enzyme 2 (ACE2) expression is decreased in the NTS of spontaneously hypertensive rats (SHRs) and that its gene transfer in this nucleus would lead to beneficial effects on baroreflex function since this enzyme is key in the regulation of the vasoprotective axis of the RAS. ACE2 protein levels and its activity were significantly decreased in the NTS of SHRs compared to normotensive Wistar-Kyoto (WKY) control rats. Rats instrumented with radio-telemetry transducers received NTS microinjection of either Lenti-ACE2 (Lentiviral vector-mediated gene transfer of ACE2) or lenti-GFP (green fluorescent protein). The ACE2 gene transfer into the NTS resulted in long-term overexpression of ACE2. This was associated with a 60% increase in heart rate baroreflex sensitivity in the lenti-ACE2 injected SHRs compared with the lenti-GFP injected control SHRs (0.27 ± 0.02 ms/mmHg in lenti-GFP rats vs. 0.44 ± 0.07 ms/mmHg in lenti-ACE2 rats). These observations demonstrate that ACE2 gene transfer overcomes its intrinsic decrease in the NTS of SHRs and improves baroreceptor heart rate reflex.
Related JoVE Video
A sucrose-derived scaffold for multimerization of bioactive peptides.
Bioorg. Med. Chem.
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-?-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second anchoring binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding.
Related JoVE Video
Cell-specific targeting by heterobivalent ligands.
Bioconjug. Chem.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-?-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.
Related JoVE Video
Of cancer and cave fish.
Nat. Rev. Cancer
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
We propose that the drivers of carcinogenesis lie more in the adaptive changes that are enabled by local or systemic alterations of tissue architecture than in the genetic changes observed in cancer cells. A full understanding of cancer biology and therapy through a cataloguing of the cancer genome is unlikely unless it is integrated into an evolutionary and ecological context.
Related JoVE Video
Immunohistochemical assessment of intrinsic and extrinsic markers of hypoxia in reproductive tissue: differential expression of HIF1? and HIF2? in rat oviduct and endometrium.
J. Mol. Histol.
PUBLISHED: 04-18-2011
Show Abstract
Hide Abstract
Hypoxia is thought to be critical in regulating physiological processes within the female reproductive system, including ovulation, composition of the fluid in the oviductal/uterine lumens and ovarian follicle development. This study examined the localisation of exogenous (pimonidazole) and endogenous [hypoxia inducible factor 1? and 2? (HIF1?, -2?), glucose transporter type 1 (GLUT1) and carbonic anhydrase 9 (CAIX)] hypoxia-related antigens within the oviduct and uterus of the rat reproductive tract. The extent to which each endogenous antigen co-compartmentalised with pimonidazole was also assessed. Female Wistar Furth rats (n = 10) were injected intraperitoneally with pimonidazole (60 mg/kg) 1 h prior to death. Reproductive tissues were removed immediately following death and fixed in 4% paraformaldehyde before being embedded in paraffin. Serial sections were cut (6-7 ?m thick) and antigens of interest identified using standard immunohistochemical procedures. The mucosal epithelia of the ampulla, isthmus and uterus were immunopositive for pimonidazole in most sections. Co-compartmentalisation of pimonidazole with HIF1? was only expressed in the mucosa of the uterus whilst co-compartmentalisation with HIF2? was observed in the mucosa of the ampulla, isthmus and uterus. Both GLUT1 and CAIX were co-compartmentalised with pimonidazole in mucosa of the isthmus and uterus. This study confirms that mucosal regions of the rat oviduct and uterus frequently experience severe hypoxia and there are compartment specific variations in expression of endogenous hypoxia-related antigens, including the HIF isoforms. The latter observation may relate to target gene specificity of HIF isoforms or perhaps HIF2?s responsiveness to non-hypoxic stimuli such as hypoglycaemia independently of HIF1?.
Related JoVE Video
Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells.
PLoS ONE
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
Mice have been employed as models of cancer for over a century, providing significant advances in our understanding of this multifaceted family of diseases. In particular, orthotopic tumor xenograft mouse models are emerging as the preference for cancer research due to increased clinical relevance over subcutaneous mouse models. In the current study, we developed orthotopic pancreatic cancer xenograft models in mice by a minimally invasive method, ultrasound guided injection (USGI) comparable to highly invasive surgical orthotopic injection (SOI) methods. This optimized method prevented injection complications such as recoil of cells through the injection canal or leakage of cells out of the pancreas into the peritoneal cavity. Tumor growth was monitored in vivo and quantified by ultrasound imaging weekly, tumors were also detected by in vivo fluorescence imaging using a tumor targeted molecular probe. The mean tumor volumes for the USGI and SOI models after 2 weeks of tumor growth were 205 mm(3) and 178 mm(3) respectively. By USGI of human pancreatic cancer cell lines, human orthotopic pancreatic cancer xenografts were established. Based on ultrasound imaging, the orthotopic human pancreatic cancer xenograft take rate was 100% for both human pancreatic cancer cell lines used, MiaPaCa-2 and Su86.86, with mean tumor volumes of 28 mm(3)and 30 mm(3). We demonstrated that this USGI method is feasible, reproducible, facile, minimally invasive and improved compared to the highly-invasive SOI method for establishing orthotopic pancreatic tumor xenograft models suitable for molecular imaging.
Related JoVE Video
Imaging pH and metastasis.
NMR Biomed
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Metastasis is a multistep process that culminates in the spread of cells from a primary tumor to a distant site or organs. For tumor cells to be able to metastasize, they have to locally invade through basement membrane into the lymphatic and the blood vasculatures. Eventually they extravasate from the blood and colonize in the secondary organ. This process involves multiple interactions between the tumor cells and their microenvironments. The microenvironment surrounding tumors has a significant impact on tumor development and progression. A key factor in the microenvironment is an acidic pH. The extracellular pH of solid tumors is more acidic in comparison to normal tissue as a consequence of high glycolysis and poor perfusion. It plays an important role in almost all steps of metastasis. The past decades have seen development of technologies to non-invasively measure intra- and/or extracellular pH. Most successful measurements are MR-based, and sensitivity and accuracy have dramatically improved. Quantitatively imaging the distribution of acidity helps us understand the role of the tumor microenvironment in cancer progression. The present review discusses different MR methods in measuring tumor pH along with emphasizing the importance of extracelluar tumor low pH on different steps of metastasis; more specifically focusing on epithelial-to-mesenchymal transition (EMT), and anti cancer immunity.
Related JoVE Video
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions.
PLoS ONE
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumours growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumours response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour.
Related JoVE Video
Imaging the extracellular pH of tumors by MRI after injection of a single cocktail of T1 and T2 contrast agents.
NMR Biomed
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
The extracellular pH (pH(e) ) of solid tumors is acidic, and there is evidence that an acidic pH(e) is related to invasiveness. Herein, we describe an MRI single-infusion method to measure pH(e) in gliomas using a cocktail of contrast agents (CAs). The cocktail contained gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (GdDOTA-4AmP) and dysprosium-1,4,7,10-tetraazacyclododecane-N,N,N,N-tetrakis(methylenephosphonic acid) (DyDOTP), whose effects on relaxation are sensitive and insensitive to pH, respectively. The Gd-CA dominated the spin-lattice relaxivity ?R(1) , whereas the Dy-CA dominated the spin-spin relaxivity ?R(2)*. The ?R(2)* effects were used to determine the pixel-wise concentration of [Dy] which, in turn, was used to calculate a value for [Gd] concentration. This value was used to convert ?R(1) values to the molar relaxivity ?r(1) and, hence, pH(e) maps. The development of the method involved in vivo calibration and measurements in a rat brain glioma model. The calibration phase consisted of determining a quantitative relationship between ?R(1) and ?R(2)* induced by the two pH-independent CAs, gadolinium-diethylenetriaminepentaacetic acid (GdDTPA) and DyDOTP, using echo planar spectroscopic imaging (EPSI) and T(1) -weighted images. The intensities and linewidths of the water peaks in EPSI images were affected by CA and were used to follow the pharmacokinetics. These data showed a linear relationship between inner- and outer-sphere relaxation rate constants that were used for CA concentration determination. Nonlinearity in the slope of the relationship was observed and ascribed to variations in vascular permeability. In the pH(e) measurement phase, GdDOTA-4AmP was infused instead of GdDTPA, and relaxivities were obtained through the combination of interleaved T(1) -weighted images (R(1) ) and EPSI for ?R(2)*. The resulting r(1) values yielded pH(e) maps with high spatial resolution.
Related JoVE Video
Reduction of metastasis using a non-volatile buffer.
Clin. Exp. Metastasis
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
The tumor microenvironment is acidic as a consequence of upregulated glycolysis and poor perfusion and this acidity, in turn, promotes invasion and metastasis. We have recently demonstrated that chronic consumption of sodium bicarbonate increased tumor pH and reduced spontaneous and experimental metastases. This occurred without affecting systemic pH, which was compensated. Additionally, these prior data did not rule out the possibility that bicarbonate was working though effects on carbonic anhydrase, and not as a buffer per se. Here, we present evidence that chronic ingestion of a non-volatile buffer, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA) with a pK (a) of 6.9 also reduced metastasis in an experimental PC3M prostate cancer mouse model. Animals (n = 30) were injected with luciferase expressing PC3M prostate cancer cells either subcutaneously (s.c., n = 10) or intravenously (i.v., n = 20). Four days prior to inoculations, half of the animals for each experiment were provided drinking water containing 200 mM IEPA buffer. Animals were imaged weekly to follow metastasis, and these data showed that animals treated with IEPA had significantly fewer experimental lung metastasis compared to control groups (P < 0.04). Consistent with prior work, the pH of treated tumors was elevated compared to controls. IEPA is observable by in vivo magnetic resonance spectroscopy and this was used to measure the presence of IEPA in the bladder, confirming that it was orally available. The results of this study indicate that metastasis can be reduced by non-volatile buffers as well as bicarbonate and thus the effect appears to be due to pH buffering per se.
Related JoVE Video
A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes.
Cancer Res.
PUBLISHED: 12-17-2010
Show Abstract
Hide Abstract
Pathologic axillary lymph node (ALN) status is an important prognostic factor for staging breast cancer. Currently, status is determined by histopathology following surgical excision of sentinel lymph node(s), which is an invasive, time consuming, and costly procedure with potential morbidity to the patient. Here, we describe an imaging platform for noninvasive assessment of ALN status, eliminating the need for surgical examination of patients to rule out nodal involvement. A targeted imaging probe (MamAb-680) was developed by conjugation of a mammaglobin-A-specific monoclonal antibody to a near-infrared fluorescent dye. Using DNA and tissue microarray, mammaglobin-A was validated as a cell-surface target that is expressed in ALN-positive patient samples but is not expressed in normal lymph nodes. In vivo selectivity was determined by i.v. injection of MamAb-680 into mice with mammaglobin-A-positive and -negative mammary fat pad (MFP) tumors; and by peritumoral MFP injection of the targeted imaging probe in mice with spontaneous ALN metastases. Fluorescence imaging showed that probe was only retained in positive tumors and metastases. As few as 1,000 cells that endogenously express mammaglobin-A were detected in ALN, indicating high sensitivity of this method. Translation of this approach offers considerable potential as a noninvasive clinical strategy to stage breast cancer.
Related JoVE Video
Evolutionary dynamics of cancer prevention.
Nat. Rev. Cancer
PUBLISHED: 12-08-2010
Show Abstract
Hide Abstract
Multicellular organisms must evolve mechanisms to suppress cancer formation prior to reproduction, and we propose that the organizational structure of normal epithelium is one such strategy. Understanding evolved host cancer suppression mechanisms is essential to defining the first steps of carcinogenesis and developing rational cancer prevention strategies.
Related JoVE Video
A mathematical model of tumour and blood pHe regulation: The HCO3-/CO2 buffering system.
Math Biosci
PUBLISHED: 09-21-2010
Show Abstract
Hide Abstract
Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the HCO3-/CO2 buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe.
Related JoVE Video
A solanesol-derived scaffold for multimerization of bioactive peptides.
J. Org. Chem.
PUBLISHED: 08-13-2010
Show Abstract
Hide Abstract
A flexible molecular scaffold bearing varying numbers of terminal alkyne groups was synthesized in five steps from solanesol. R(CO)-MSH(4)-NH(2) ligands, which have a relatively low affinity for binding at the human melanocortin 4 receptor (hMC4R), were prepared by solid phase synthesis and were N-terminally acylated with 6-azidohexanoic acid. Multiple copies of the azide N(3)(CH(2))(5)(CO)-MSH(4)-NH(2) were attached to the alkyne-bearing, solanesol-derived molecular scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Control studies showed that the binding affinity of the triazole-containing ligand, CH(3)(CH(2))(3)(C(2)N(3))(CH(2))(5)(CO)-MSH(4)-NH(2), was not significantly diminished relative to the corresponding parental ligand, CH(3)(CO)-MSH(4)-NH(2). In a competitive binding assay with a Eu-labeled probe based on the superpotent ligand NDP-alpha-MSH, the monovalent and multivalent constructs appear to bind to hMC4R as monovalent species. In a similar assay with a Eu-labeled probe based on MSH(4), modest increases in binding potency with increased MSH(4) content per scaffold were observed.
Related JoVE Video
Tumor pH and its measurement.
J. Nucl. Med.
PUBLISHED: 07-21-2010
Show Abstract
Hide Abstract
Studies over the last few decades have demonstrated that the intracellular pH of solid tumors is maintained within a range of 7.0-7.2, whereas the extracellular pH is acidic. A low extracellular pH may be an important factor inducing more aggressive cancer phenotypes. Research into the causes and consequences of this acidic pH of tumors is highly dependent on accurate, precise, and reproducible measurements, and these have undergone great changes in the last decade. This review focuses on the most recent advances in the in vivo measurement of tumor pH by pH-sensitive PET radiotracers, MR spectroscopy, MRI, and optical imaging.
Related JoVE Video
Design and synthesis of trivalent ligands targeting opioid, cholecystokinin, and melanocortin receptors for the treatment of pain.
Bioorg. Med. Chem. Lett.
PUBLISHED: 04-08-2010
Show Abstract
Hide Abstract
It has been known that co-administration of morphine with either cholecystokinin (CCK) receptor or melanocortin (MC) receptor antagonists enhance morphines analgesic efficacy by reducing serious side effects such as tolerance and addiction. Considering these synergistic effects, we have designed trivalent ligands in which all three different pharmacophores for opioid, CCK, and MC receptors are combined in such a way as to conserve their own topographical pharmacophore structures. These ligands, excluding the cyclic compound, were synthesized by solid phase synthesis using Rink-amide resin under microwave assistance in very high yields. These trivalent ligands bind to their respective receptors well demonstrating that the topographical pharmacophore structures for the three receptors were retained for receptor binding. Ligand 10 was a lead compound to show the best biological activities at all three receptors.
Related JoVE Video
Identification of pancreatic cancer-specific cell-surface markers for development of targeting ligands.
Methods Mol. Biol.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
Pancreatic cancer is generally detected at later stages with a poor prognosis and a high-mortality rate. Development of theranostic imaging agents that noninvasively target pancreatic cancer by gene expression and deliver therapies directly to malignant cells could greatly improve therapeutic outcomes. Small-peptide ligands that bind cell-surface proteins and are conjugated to imaging moieties have demonstrated efficacy in cancer imaging. Identification of cancer-specific targets is a major bottleneck in the development of such agents. Herein, a method is presented that uses DNA microarray expression profiling of large sets of normal and cancer tissues to identify targets expressed in cancer but not expressed in relevant normal tissues. Identified targets are subsequently validated for protein expression using tissue microarray. Further validations are performed by quantifying expression in pancreatic cancer cells by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), by immunocytochemistry and immunohistochemistry, and by reviewing data and literature in public databases. Validated targets are selected for ligand development based on the existence of a known ligand or by known structure-activity relationships useful for development of novel ligands.
Related JoVE Video
Molecular imaging and targeted therapies.
Biochem. Pharmacol.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
Targeted therapeutic and imaging agents are becoming more prevalent, and are used to treat increasingly smaller segments of the patient population. This has lead to dramatic increases in the costs for clinical trials. Biomarkers have great potential to reduce the numbers of patients needed to test novel targeted agents by predicting or identifying non-response early-on and thus enriching the clinical trial population with patients more likely to respond. Biomarkers are characteristics that are objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. Biomarkers can be used to predict response to specific therapies, predict response regardless of therapy, or to monitor response once a therapy has begun. In terms of drug development, predictive biomarkers have the greatest impact, as they can be used as inclusion criteria for patient segmentation. Prognostic markers are used routinely in clinical practice but do not provide direction for the use of targeted therapies. Imaging biomarkers have distinct advantages over those that require a biopsy sample in that they are "non-invasive" and can be monitored longitudinally at multiple time points in the same patient. This review will examine the role of functional and molecular imaging in predicting response to specific therapies; will explore the advantages and disadvantages of targeting intracellular or extracellular markers; and will discuss the attributes of useful targets and methods for target identification and validation.
Related JoVE Video
Identification of novel pancreatic adenocarcinoma cell-surface targets by gene expression profiling and tissue microarray.
Biochem. Pharmacol.
PUBLISHED: 02-20-2010
Show Abstract
Hide Abstract
Pancreatic cancer has a high mortality rate, which is generally related to the initial diagnosis coming at late stage disease combined with a lack of effective treatment options. Novel agents that selectively detect pancreatic cancer have potential for use in the molecular imaging of cancer, allowing for non-invasive determination of tumor therapeutic response and molecular characterization of the disease. Such agents may also be used for the targeted delivery of therapy to tumor cells while decreasing systemic effects. Using complementary assays of mRNA expression profiling to determine elevated expression in pancreatic cancer tissues relative to normal pancreas tissues, and validation of protein expression by immunohistochemistry on tissue microarray, we have identified cell-surface targets with potential for imaging and therapeutic agent development. Expression profiles of 2177 cell-surface genes for 28 pancreatic tumor specimens and 4 normal pancreas tissue samples were evaluated. Expression in normal tissues was evaluated using array data from 103 samples representing 28 organ sites as well as mining published data. One-hundred seventy unique targets were highly expressed in 2 or more of the pancreatic tumor specimens and were not expressed in the normal pancreas samples. Two targets (TLR2 and ABCC3) were further validated for protein expression by tissue microarray (TMA) based immunohistochemistry. These validated targets have potential for the development of diagnostic imaging and therapeutic agents for pancreatic cancer.
Related JoVE Video
Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects.
Related JoVE Video
Enhanced targeting with heterobivalent ligands.
Mol. Cancer Ther.
PUBLISHED: 08-11-2009
Show Abstract
Hide Abstract
A novel approach to specifically target tumor cells for detection and treatment is the proposed use of heteromultivalent ligands, which are designed to interact with, and noncovalently crosslink, multiple different cell surface receptors. Although enhanced binding has been shown for synthetic homomultivalent ligands, proof of cross-linking requires the use of ligands with two or more different binding moieties. As proof-of-concept, we have examined the binding of synthetic heterobivalent ligands to cell lines that were engineered to coexpress two different G-protein-coupled human receptors, i.e., the human melanocortin 4 receptor (MC4R) expressed in combination with either the human delta-opioid receptor (deltaOR) or the human cholecystokinin-2 receptor (CCK2R). Expression levels of these receptors were characterized by time-resolved fluorescence saturation binding assays using Europium-labeled ligands; Eu-DPLCE, Eu-NDP-alpha-MSH, and Eu-CCK8 for the deltaOR, MC4R, and CCK2R, respectively. Heterobivalent ligands were synthesized to contain a MC4R agonist connected via chemical linkers to either a deltaOR or a CCK2R agonist. In both cell systems, the heterobivalent constructs bound with much higher affinity to cells expressing both receptors, compared with cells with single receptors or to cells where one of the receptors was competitively blocked. These results indicate that synthetic heterobivalent ligands can noncovalently crosslink two unrelated cell surface receptors, making feasible the targeting of receptor combinations. The in vitro cell models described herein will lead to the development of multivalent ligands for target combinations identified in human cancers.
Related JoVE Video
Anticonvulsant Met-enkephalin analogues containing backbone spacers reveal alternative non-opioid signaling in the brain.
ACS Chem. Biol.
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
Prosthesis of non-critical parts of a polypeptide backbone is an attractive strategy to simplify bioactive peptides. This approach was applied to an opioid neuropeptide, Met-enkephalin, in which two adjacent Gly2-Gly3 residues were replaced with a series of non-peptidic backbone spacers varying in length and/or physicochemical properties. The backbone spacers did not affect the overall structural properties of the analogues, but they did dramatically reduce their affinities and agonist activities toward delta- and mu-opioid receptors. Molecular modeling suggested that the decrease of the affinity of Met-enkephalin to delta-opioid receptor could be accounted for by the loss of a single hydrogen bond. Remarkably, the analogues containing the most isostere spacers retained potent antinociceptive and anticonvulsant properties that were comparable to that of the endogenous peptide. This unexpected high in vivo potency could not be accounted for by an increase in metabolic stability. Moreover, the antiepileptic activity could not be reversed by opioid receptor antagonists. In summary, the results obtained with the analogues containing backbone spacers suggest a novel mechanism for seizure control in the brain that involves alternative non-opioid signaling.
Related JoVE Video
Glioblastoma targeting via integrins is concentration dependent.
Biotechnol. Bioeng.
PUBLISHED: 07-04-2009
Show Abstract
Hide Abstract
A novel approach to treat cancer more selectively is achieved by targeting drugs to cells via conjugating the drug or imaging agent to an antibody or ligand for a cell surface receptor that is over-expressed by the target cell population. Previous work by us has suggested that enhanced specificity can be obtained by multivalency of binding moieties. In this study we investigated the binding specificity of a multivalent construct including three peptides segments (TWYKIAFQRNRK), which bind the alpha(6)beta(1)-integrin, linked by poly(ethylene glycol) spacers. The binding specificity of the constructs was calculated by quantifying their binding to target cells (glioma cells, SF 767) relative to non-targeted cells (normal human astrocytes, NHA). Dodecapeptide constructs (monovalent) exhibit specificity equal to the ratio of receptor expression at all concentrations. However, trivalent constructs demonstrated a sharp increase in specificity at concentrations less than the affinity of the receptor-ligand bond (4.28 microM). These experiments (conducted at 4 degrees C) were consistent with the theoretical prediction and indicate that the biophysical model captures the basic trend of the data in the absence of receptor internalization, although the concentration at which increased specificity is observed is greater than predicted. The biophysical model does not predict the results of 37 degrees C experiments, and this is shown to be due to internalization which occurs at 37 degrees C but not at 4 degrees C.
Related JoVE Video
Adaptive therapy.
Cancer Res.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
Related JoVE Video
Optimization of time-resolved fluorescence assay for detection of europium-tetraazacyclododecyltetraacetic acid-labeled ligand-receptor interactions.
Anal. Biochem.
PUBLISHED: 05-29-2009
Show Abstract
Hide Abstract
Lanthanide-based luminescent ligand binding assays are superior to traditional radiolabel assays due to improving sensitivity and affordability in high-throughput screening while eliminating the use of radioactivity. Despite significant progress using lanthanide(III)-coordinated chelators such as diethylenetriaminepentaacetic acid (DTPA) derivatives, dissociation-enhanced lanthanide fluoroimmunoassays (DELFIAs) have not yet been successfully used with more stable chelators (e.g., tetraazacyclododecyltetraacetic acid [DOTA] derivatives) due to the incomplete release of lanthanide(III) ions from the complex. Here a modified and optimized DELFIA procedure incorporating an acid treatment protocol is introduced for use with Eu(III)-DOTA-labeled peptides. Complete release of Eu(III) ions from DOTA-labeled ligands was observed using hydrochloric acid (2.0M) prior to the luminescent enhancement step. [Nle(4),d-Phe(7)]-alpha-melanocyte-stimulating hormone (NDP-alpha-MSH) labeled with Eu(III)-DOTA was synthesized, and the binding affinity to cells overexpressing the human melanocortin-4 (hMC4) receptor was evaluated using the modified protocol. Binding data indicate that the Eu(III)-DOTA-linked peptide bound to these cells with an affinity similar to its DTPA analogue. The modified DELFIA procedure was further used to monitor the binding of an Eu(III)-DOTA-labeled heterobivalent peptide to the cells expressing both hMC4 and cholecystokinin-2 (CCK-2) receptors. The modified assay provides superior results and is appropriate for high-throughput screening of ligand libraries.
Related JoVE Video
Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway.
NMR Biomed
PUBLISHED: 05-28-2009
Show Abstract
Hide Abstract
Tumor choline metabolites have potential for use as diagnostic indicators of breast cancer phenotype and can be non-invasively monitored in vivo by MRS. Extract studies have determined that the principle diagnostic component of these peaks is phosphocholine (PCho), the biosynthetic precursor to the membrane phospholipid, phosphatidylcholine (PtdCho). The ability to resolve and quantify PCho in vivo would improve the accuracy of this putative diagnostic tool. In addition, determining the biochemical mechanisms underlying these metabolic perturbations will improve the understanding of breast cancer and may suggest potential molecular targets for drug development. Reported herein is the in vivo resolution and quantification of PCho and glycerophosphocholine (GPC) in breast cancer xenografts in SCID mice via image-guided 31P MRS, localized to a single voxel. Tumor metabolites are also detected using ex vivo extracts and high-resolution NMR spectroscopy and are quantified in the metastatic tumor line, MDA-mb-231. Also reported is the quantification of cytosolic and lipid metabolites in breast cells of differing cancer phenotype, and the identification of metabolites that differ among these cell lines. In cell extracts, PCho and the PtdCho breakdown products, lysophosphatidylcholine, GPC and glycerol 3-phosphate, are all raised in breast cancer lines relative to an immortalized non-malignant line. These metabolic differences are in direct agreement with differences in expression of genes encoding enzymes in the choline metabolic pathway. Results of this study are consistent with previous studies, which have concluded that increased choline uptake, increased choline kinase activity, and increased phosholipase-mediated turnover of PtdCho contribute to the observed increase in PCho in breast cancer. In addition, this study presents evidence suggesting a specific role for phospholipase A2-mediated PtdCho catabolism. Gene expression changes following taxane therapy are also reported and are consistent with previously reported changes in choline metabolites after the same therapy in the same tumor model.
Related JoVE Video
Solid-phase synthetic strategy and bioevaluation of a labeled delta-opioid receptor ligand Dmt-Tic-Lys for in vivo imaging.
Org. Lett.
PUBLISHED: 05-19-2009
Show Abstract
Hide Abstract
A general solid-phase synthetic strategy is developed to prepare fluorescent and/or lanthanide-labeled derivatives of the delta-opioid receptor (deltaOR) ligand H-Dmt-Tic-Lys(R)-OH. The high delta-OR affinity (K(i) = 3 nM) and desirable in vivo characteristics of the Cy5 derivative 1 suggest its usefulness for structure-function studies and receptor localization and as a high-contrast noninvasive molecular marker for live imaging ex vivo or in vivo.
Related JoVE Video
Bicarbonate increases tumor pH and inhibits spontaneous metastases.
Cancer Res.
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO(3) selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by (31)P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO(3) therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO(3) therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease.
Related JoVE Video
The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion.
Cancer Res.
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
A number of studies have shown that the extracellular pH (pHe) in cancers is typically lower than that in normal tissue and that an acidic pHe promotes invasive tumor growth in primary and metastatic cancers. Here, we investigate the hypothesis that increased systemic concentrations of pH buffers reduce intratumoral and peritumoral acidosis and, as a result, inhibit malignant growth. Computer simulations are used to quantify the ability of systemic pH buffers to increase the acidic pHe of tumors in vivo and investigate the chemical specifications of an optimal buffer for such purpose. We show that increased serum concentrations of the sodium bicarbonate (NaHCO(3)) can be achieved by ingesting amounts that have been used in published clinical trials. Furthermore, we find that consequent reduction of tumor acid concentrations significantly reduces tumor growth and invasion without altering the pH of blood or normal tissues. The simulations also show that the critical parameter governing buffer effectiveness is its pK(a). This indicates that NaHCO(3), with a pK(a) of 6.1, is not an ideal intratumoral buffer and that greater intratumoral pHe changes could be obtained using a buffer with a pK(a) of approximately 7. The simulations support the hypothesis that systemic pH buffers can be used to increase the tumor pHe and inhibit tumor invasion.
Related JoVE Video
Responsive MRI agents for sensing metabolism in vivo.
Acc. Chem. Res.
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
Magnetic resonance imaging (MRI) has inherent advantages in safety, three-dimensional output, and clinical relevance when compared with optical and radiotracer imaging methods. However, MRI contrast agents are inherently less sensitive than agents used in other imaging modalities primarily because MRI agents are detected indirectly by changes in either the water proton relaxation rates (T(1), T(2), and T(*)(2)) or water proton intensities (chemical exchange saturation transfer and paramagnetic chemical exchange saturation transfer, CEST and PARACEST). Consequently, the detection limit of an MRI agent is determined by the characteristics of the background water signal; by contrast, optical and radiotracer-based methods permit direct detection of the agent itself. By virtue of responding to background water (which reflects bulk cell properties), however, MRI contrast agents have considerable advantages in "metabolic" imaging, that is, spatially resolving tissue variations in pH, redox state, oxygenation, or metabolite levels. In this Account, we begin by examining sensitivity limits in targeted contrast agents and then address contrast agents that respond to a physiological change; these responsive agents are effective metabolic imaging sensors. The sensitivity requirements for a metabolic imaging agent are quite different from those for a targeted Gd(3+)-based T(1) agent (for example, sensing cell receptors). Targeted Gd(3+) agents must have either an extraordinarily high water proton relaxivity (r(1)) or multiple Gd(3+) complexes clustered together at the target site on a polymer platform or nanoparticle assembly. Metabolic MRI agents differ in that the high relaxivity requirement, although helpful, is eased because these agents respond to bulk properties of tissues rather than low concentrations of a specific biological target. For optimal sensing, metabolic imaging agents should display a large change in relaxivity (deltar(1)) in response to the physiological or metabolic parameter of interest. Metabolic imaging agents have only recently begun to appear in the literature and only a few have been demonstrated in vivo. MRI maps of absolute tissue pH have been obtained with Gd(3+)-based T(1) sensors. The requirement of an independent measure of agent concentration in tissues complicates these experiments, but if qualitative changes in tissue pH are acceptable, then these agents can be quite useful. In this review, we describe examples of imaging extracellular pH in brain tumors, ischemic hearts, and pancreatic islets with Gd(3+)-based pH sensors and discuss the potential of CEST and PARACEST agents as metabolic imaging sensors.
Related JoVE Video
A quantitative theoretical model for the development of malignancy in ductal carcinoma in situ.
J. Theor. Biol.
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
Mathematical models and clinical observations have demonstrated that microenvironmental hypoxia and acidosis are important selection factors during the later stages of the somatic evolution of breast cancer. The consequent promotion of constitutive upregulation of glycolysis and resistance to acid-induced cellular toxicity is hypothesized to be critical for the ability of cancer cells to invade host tissue. In this work we developed a 3D fixed lattice cellular automata model to study the role of these two phenotypes in determining morphology and the potential for invasion of ductal carcinoma in situ (DCIS), which in this work is defined as the erosion of a healthy epithelial cell layer and direct contact with the basement membrane. The model was conceived as a 40-cell wide epithelial duct surrounded by blood vessels and composed of a basement membrane and one internal layer of epithelial cells. Our results show that an increment in the order of 8-fold in glucose metabolism and an increase in acid resistance corresponding to pH thresholds of approximately 6.8 and 6.45 for quiescence and death, respectively, are required for the tumor to breach through the layer of healthy epithelial cells and reach the basement membrane as a first step for invasion. Our model also suggests correlations between classic morphologies and different values of hyperglycolytic and acid-resistant phenotypes, indicating that immunohistochemistry studies targeting these genes may improve the predictive power of morphological analyses of biopsies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.