JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Programmable ExG biopotential front-end IC for wearable applications.
IEEE Trans Biomed Circuits Syst
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
This paper presents a configurable CMOS integrated circuit front-end for the recording of a wide range of biopotentials (ExG). The system offers a choice between a single-differential or double-differential recording channel topology, wide continuously adjustable gain range (37-66 dB), selectable CMOS or BJT input stages, offset compensation, differential and buffered single-ended voltage output. Measured results from a prototype manufactured in 0.35 ?m CMOS technology are presented. Practical recording examples of the electrocardiogram (ECG) and electromyogram (EMG) confirm its operation. The chip consumes between 110 and 324 ?W depending on configuration, occupies a core area of 0.16 mm(2), achieves a CMRR > 97 dB , and 21 nV/?Hz input-referred noise. The chip is suited for combination with a microcontroller in long-term wearable physiological sensing applications.
Related JoVE Video
A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
IEEE Trans Neural Syst Rehabil Eng
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
This paper describes a device that emulates propagation of action potentials along a peripheral nerve, suitable for reproducible testing of bio-potential recording systems using nerve cuff electrodes. The system is a microcontroller-based stand-alone instrument which uses established nerve and electrode models to represent neural activity of real nerves recorded with a nerve cuff interface, taking into consideration electrode impedance, voltages picked up by the electrodes, and action potential propagation characteristics. The system emulates different scenarios including compound action potentials with selectable propagation velocities and naturally occurring nerve traffic from different velocity fiber populations. Measured results from a prototype implementation are reported and compared with in vitro recordings from Xenopus Laevis frog sciatic nerve, demonstrating that the electrophysiological setting is represented to a satisfactory degree, useful for the development, optimization and characterization of future recording systems.
Related JoVE Video
A switched-capacitor front-end for velocity-selective ENG recording.
IEEE Trans Biomed Circuits Syst
PUBLISHED: 07-30-2013
Show Abstract
Hide Abstract
Multi-electrode cuffs (MECs) have been proposed as a means for extracting additional information about the velocity and direction of nerve signals from multi-electrode recordings. This paper discusses certain aspects of the implementation of a system for velocity selective recording (VSR) where multiple neural signals are matched and summed to identify excited axon populations in terms of velocity. The approach outlined in the paper involves the replacement of the digital signal processing stages of a standard delay-matched VSR system with analogue switched-capacitor (SC) delay lines which promises significant savings in both size and power consumption. The system specifications are derived and two circuits, each composed of low-noise preamplifiers connecting to a 2nd rank SC gain stage, are evaluated. One of the systems provides a single-ended SC stage whereas the other system is fully differential. Both approaches are shown to provide the low-noise, low-power operation, practically identical channel gains and sample delay range required for VSR. Measured results obtained from chips fabricated in 0.8 ? m CMOS technology are reported.
Related JoVE Video
Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae.
J. Biol. Chem.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
Based on their sequences, the Saccharomyces cerevisiae Hpa2 and Hpa3 proteins are annotated as two closely related members of the Gcn5 acetyltransferase family. Here, we describe the biochemical characterization of Hpa2 and Hpa3 as bona fide acetyltransferases with different substrate specificities. Mutational and MALDI-TOF analyses showed that Hpa3 translation initiates primarily from Met-19 rather than the annotated start site, Met-1, with a minor product starting at Met-27. When expressed in Escherichia coli and assayed in vitro, Hpa2 and Hpa3 (from Met-19) acetylated histones and polyamines. Whereas Hpa2 acetylated histones H3 and H4 (at H3 Lys-14, H4 Lys-5, and H4 Lys-12), Hpa3 acetylated only histone H4 (at Lys-8). Additionally, Hpa2, but not Hpa3, acetylated certain small basic proteins. Hpa3, but not Hpa2, has been reported to acetylate D-amino acids, and we present results consistent with that. Overexpression of Hpa2 or Hpa3 is toxic to yeast cells. However, their deletions do not show any standard phenotypic defects. These results suggest that Hpa2 and Hpa3 are similar but distinct acetyltransferases that might have overlapping roles with other known acetyltransferases in vivo in acetylating histones and other small proteins.
Related JoVE Video
Aristolochic acid I metabolism in the isolated perfused rat kidney.
Chem. Res. Toxicol.
PUBLISHED: 12-14-2011
Show Abstract
Hide Abstract
Aristolochic acids are natural nitro-compounds found globally in the plant genus Aristolochia that have been implicated in the severe illness in humans termed aristolochic acid nephropathy (AAN). Aristolochic acids undergo nitroreduction, among other metabolic reactions, and active intermediates arise that are carcinogenic. Previous experiments with rats showed that aristolochic acid I (AA-I), after oral administration or injection, is subjected to detoxication reactions to give aristolochic acid Ia, aristolactam Ia, aristolactam I, and their glucuronide and sulfate conjugates that can be found in urine and feces. Results obtained with whole rats do not clearly define the role of liver and kidney in such metabolic transformation. In this study, in order to determine the specific role of the kidney on the renal disposition of AA-I and to study the biotransformations suffered by AA-I in this organ, isolated kidneys of rats were perfused with AA-I. AA-I and metabolite concentrations were determined in perfusates and urine using HPLC procedures. The isolated perfused rat kidney model showed that AA-I distributes rapidly and extensively in kidney tissues by uptake from the peritubular capillaries and the tubules. It was also established that the kidney is able to metabolize AA-I into aristolochic acid Ia, aristolochic acid Ia O-sulfate, aristolactam Ia, aristolactam I, and aristolactam Ia O-glucuronide. Rapid demethylation and sulfation of AA-I in the kidney generate aristolochic acid Ia and its sulfate conjugate that are voided to the urine. Reduction reactions to give the aristolactam metabolites occur to a slower rate. Renal clearances showed that filtered AA-I is reabsorbed at the tubules, whereas the metabolites are secreted. The unconjugated metabolites produced in the renal tissues are transported to both urine and perfusate, whereas the conjugated metabolites are almost exclusively secreted to the urine.
Related JoVE Video
Evidence of a folding intermediate in RNase H from single-molecule FRET experiments.
Chemphyschem
PUBLISHED: 08-27-2010
Show Abstract
Hide Abstract
Single-molecule Förster resonance energy transfer (FRET) experiments were performed on the enzyme RNase H specifically labeled with a FRET dye pair and diffusing freely in solutions containing between 0 and 6 M of the chemical denaturant GdmCl. We measured FRET efficiency histograms with high statistical accuracy to identify the well-known folding intermediate of RNase H, which escaped observation in our previous smFRET studies on immobilized preparations. Even with excellent data statistics, a folding intermediate is not obvious from the raw data. However, it can be uncovered by a global fitting procedure applied to the FRET histograms at all 22 GdmCl concentrations, in which a number of parameters were constrained. Most importantly, the fractional populations of the folded, unfolded and intermediate states were coupled by assuming the Boltzmann relation and a linear dependence of the free energies on the GdmCl concentration. The analysis not only resolves the apparent discrepancy with other data on RNase H, but yields free energy differences between the three populations in agreement with literature data. In addition, it removes the strong and unexplained broadening of the unfolded-state distribution in the transition region that was seen earlier in the two-state analysis.
Related JoVE Video
Inactivation of NEIL2 DNA glycosylase by pyridoxal phosphate reveals a loop important for substrate binding.
Biochem. Biophys. Res. Commun.
PUBLISHED: 02-05-2010
Show Abstract
Hide Abstract
Pyridoxal-5-phosphate (PLP), in addition to its known metabolic functions, inactivates many DNA-dependent enzymes through conjugation to their critical amino groups. We have investigated the ability of PLP to inhibit bifunctional DNA repair glycosylases, which possess a catalytic amine. Of six enzymes tested, only endonuclease VIII-like protein 2 (NEIL2) was significantly inhibited by PLP. The inhibition was due to Schiff base formation between PLP and the enzyme. PLP-conjugated NEIL2 completely lost its ability to bind damaged DNA. Liquid chromatography/nanoelectrospray ionization tandem mass spectrometry of the products of proteolysis of pyridoxylated NEIL2 identified Lys50 as the site of modification. Thus, the beta2/beta3 loop where Lys50 is located in NEIL2 is important for DNA binding, presumably lies next to a phosphate-binding site, and may represent a target for regulation of the enzyme activity.
Related JoVE Video
Protein-expression profiles in mouse blood-plasma following acute whole-body exposure to (137)Cs gamma rays.
Int. J. Radiat. Biol.
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
To compare the pattern of protein-expression profiles in blood-plasma after exposure of CBA/CaJ mice to 0 or 3 Gy of (137)Cs gamma rays.
Related JoVE Video
An adaptive sampling system for sensor nodes in body area networks.
IEEE Trans Neural Syst Rehabil Eng
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
The importance of body sensor networks to monitor patients over a prolonged period of time has increased with an advance in home healthcare applications. Sensor nodes need to operate with very low-power consumption and under the constraint of limited memory capacity. Therefore, it is wasteful to digitize the sensor signal at a constant sample rate, given that the frequency contents of the signals vary with time. Adaptive sampling is established as a practical method to reduce the sample data volume. In this paper a low-power analog system is proposed, which adjusts the converter clock rate to perform a peak-picking algorithm on the second derivative of the input signal. The presented implementation does not require an analog-to-digital converter or a digital processor in the sample selection process. The criteria for selecting a suitable detection threshold are discussed, so that the maximum sampling error can be limited. A circuit level implementation is presented. Measured results exhibit a significant reduction in the average sample frequency and data rate of over 50% and 38%, respectively.
Related JoVE Video
Double-differential recording and AGC using microcontrolled variable gain ASIC.
IEEE Trans Neural Syst Rehabil Eng
Show Abstract
Hide Abstract
Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 ?W including amplifiers and microcontroller.
Related JoVE Video
Detecting the immune system response of a 500 year-old Inca mummy.
PLoS ONE
Show Abstract
Hide Abstract
Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active pathogenic infection is suspected.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.