JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Biomass, lipid and fatty acid production in large-scale cultures of the marine macroalga Derbesia tenuissima (Chlorophyta).
Mar. Biotechnol.
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Biomass productivity was quantified for the marine macroalga Derbesia tenuissima cultivated outdoors at seven stocking densities from 0.25 to 8 g L(-1) for 5 weeks. Total lipids and fatty acid quantity and quality was measured from samples that were freeze-dried, dried by oven (75 °C), food dehydrator (60 °C), or outdoor in the sun (40 °C) or shade (38 °C). Stocking densities of 0.25 to 2 g L(-1) yielded the highest biomass productivities (>20 g dry weight m(-2) day(-1)) with no effect on total lipid quantity (11 %), or fatty acid quantity (5.3 %) or quality at any density tested. However, there was an interactive effect of stocking density and drying technique, with a decrease of up to 40 % in polyunsaturated fatty acids in sun-dried compared to freeze-dried biomass. Notably, while fatty acid and biomass productivity may be inseparable in macroalgae, cultivation conditions have a significant carryover effect in the post-harvest delivery of high-quality bio-oils.
Related JoVE Video
The sequential application of macroalgal biosorbents for the bioremediation of a complex industrial effluent.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models.
Related JoVE Video
Removing constraints on the biomass production of freshwater macroalgae by manipulating water exchange to manage nutrient flux.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Freshwater macroalgae represent a largely overlooked group of phototrophic organisms that could play an important role within an industrial ecology context in both utilising waste nutrients and water and supplying biomass for animal feeds and renewable chemicals and fuels. This study used water from the intensive aquaculture of freshwater fish (Barramundi) to examine how the biomass production rate and protein content of the freshwater macroalga Oedogonium responds to increasing the flux of nutrients and carbon, by either increasing water exchange rates or through the addition of supplementary nitrogen and CO2. Biomass production rates were highest at low flow rates (0.1-1 vol.day-1) using raw pond water. The addition of CO2 to cultures increased biomass production rates by between 2 and 25% with this effect strongest at low water exchange rates. Paradoxically, the addition of nitrogen to cultures decreased productivity, especially at low water exchange rates. The optimal culture of Oedogonium occurred at flow rates of between 0.5-1 vol.day-1, where uptake rates peaked at 1.09 g.m-2.day-1 for nitrogen and 0.13 g.m-2.day-1 for phosphorous. At these flow rates Oedogonium biomass had uptake efficiencies of 75.2% for nitrogen and 22.1% for phosphorous. In this study a nitrogen flux of 1.45 g.m-2.day-1 and a phosphorous flux of 0.6 g.m-2.day-1 was the minimum required to maintain the growth of Oedogonium at 16-17 g DW.m-2.day-1 and a crude protein content of 25%. A simple model of minimum inputs shows that for every gram of dry weight biomass production (g DW.m-2.day-1), Oedogonium requires 0.09 g.m-2.day-1 of nitrogen and 0.04 g.m-2.day-1 of phosphorous to maintain growth without nutrient limitation whilst simultaneously maintaining a high-nutrient uptake rate and efficiency. As such the integrated culture of freshwater macroalgae with aquaculture for the purposes of nutrient recovery is a feasible solution for the bioremediation of wastewater and the supply of a protein resource.
Related JoVE Video
Bioremediation of a complex industrial effluent by biosorbents derived from freshwater macroalgae.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent.
Related JoVE Video
The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1) rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1) between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1) (228.7 ± 115.4 g fresh weight m(-1)) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1) (120.2 ± 71.8 g fresh weight m(-1)) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.
Related JoVE Video
Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water.
PeerJ
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in "clean" water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions.
Related JoVE Video
Larval behaviours and their contribution to the distribution of the intertidal coral reef sponge Carteriospongia foliascens.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge(-1) day(-1) during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities.
Related JoVE Video
Methods for the induction of reproduction in a tropical species of filamentous ulva.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The green seaweed Ulva is a major fouling organism but also an edible aquaculture product in Asia. This study quantified for the first time the effect of key factors on the reproduction of a tropical species of filamentous Ulva (Ulva sp. 3). The controlled timing of release of swarmers (motile reproductive bodies) was achieved when experiments were initiated in the early afternoon by exposing the thalli to a temperature shock (4°C) for 10 min and subsequently placing them into autoclaved filtered seawater under a 12 h light: 12 h dark photoperiod at 25°C. The release of swarmers then peaked two days after initiation. In contrast, segmentation, dehydration, salinity or time of initiation of experiments had no effect of any magnitude on reproduction. The released swarmers were predominantly biflagellate (95%), negatively phototactic and germinated without complementary gametes. This indicates that Ulva sp. 3 has a simple asexual life history dominated by biflagellate zoids.
Related JoVE Video
Isolation and identification of oedogonium species and strains for biomass applications.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Freshwater macroalgae from the genus Oedogonium have recently been targeted for biomass applications; however, strains of Oedogonium for domestication have not yet been identified. Therefore, the objective of this study was to compare the performance of isolates of Oedogonium collected from multiple geographic locations under varying environmental conditions. We collected and identified wild-type isolates of Oedogonium from three geographic locations in Eastern Australia, then measured the growth of these isolates under a range of temperature treatments corresponding to ambient conditions in each geographic location. Our sampling identified 11 isolates of Oedogonium that could be successfully maintained under culture conditions. It was not possible to identify most isolates to species level using DNA barcoding techniques or taxonomic keys. However, there were considerable genetic and morphological differences between isolates, strongly supporting each being an identifiable species. Specific growth rates of species were high (>26% day-1) under 7 of the 9 temperature treatments (average tested temperature range: 20.9-27.7°C). However, the variable growth rates of species under lower temperature treatments demonstrated that some were better able to tolerate lower temperatures. There was evidence for local adaptation under lower temperature treatments (winter conditions), but not under higher temperature treatments (summer conditions). The high growth rates we recorded across multiple temperature treatments for the majority of species confirm the suitability of this diverse genus for biomass applications and the domestication of Oedogonium.
Related JoVE Video
Simple growth patterns can create complex trajectories for the ontogeny of constitutive chemical defences in seaweeds.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae--seaweeds--have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells). To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2-3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence.
Related JoVE Video
Effects of marine and freshwater macroalgae on in vitro total gas and methane production.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP) and methane (CH4) production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME) analysis. Macroalgae and the control, decorticated cottonseed meal (DCS), were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd), and volatile fatty acid (VFA) concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g x kg(-1) may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions.
Related JoVE Video
The fouling hydroid Ectopleura larynx: a lack of effect of next generation antifouling technologies.
Biofouling
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
The hydroid Ectopleura larynx is one of the main fouling organisms on salmon aquaculture cages in Norway; this study investigated novel surface materials and microtopographies to deter its settlement. The settlement preferences of hydroid larvae for 12 materials with wettabilities ranging from hydrophobic (54°) to hydrophilic (112°) were tested in a no-choice bioassay. Although settlement differed between materials, with the highest average settlement on polytetrafluoroethylene (95%) and the lowest on untreated polyurethane (53%), no trend regarding the tested wettabilities could be found and none of the tested materials was able to reduce average settlement below 50%. Furthermore, nine high-density polyethylene (HDPE, 100-600 ?m microtopographies) and seven polydimethylsiloxane (PDMS; 40-400??m microtopographies) microtextured surfaces were tested. There was no systematic effect of microtopography on the settlement of E. larynx larvae. However, there was a preference for settlement in channels on PDMS microtopographies between 80 and 300 ?m. Similarly, there were no preferences for any of the examined microtopographies in a 12-day field test using PDMS surfaces at a commercial fish farm. The study indicated that neither surface wettability (hydrophilicity-phobicity) nor microtopographies were effective at deterring the settlement of the hydroid E. larynx. The high plasticity of the aboral pole and the hydrorhiza of the hydroids may explain settlement even under unfavourable conditions, highlighting the successful colonisation traits of this dominant biofouling species.
Related JoVE Video
Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).
Related JoVE Video
The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks.
Related JoVE Video
Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for bioremediation activities at land-based aquaculture facilities in Eastern Australia.
Related JoVE Video
Selecting reliable and robust freshwater macroalgae for biomass applications.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m?² day?¹), lowest ash content (3-8%), lowest water content (fresh weigh: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO? across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential for biomass applications.
Related JoVE Video
Mini review: Biomimetic models and bioinspired surfaces for fouling control.
Biofouling
PUBLISHED: 03-05-2011
Show Abstract
Hide Abstract
Nature provides many examples of mechanisms to control fouling. These defences can be copied (biomimetic) or tailored (bioinspired) to solve problems of fouling on manmade structures. With increasing research in this area over the last two decades, it is timely to review this burgeoning subject, in particular as the biofouling field shifts focus towards novel, physical mechanisms to prevent and control fouling. This change is being promoted by advances in nano- and micro-scale patterning as well as in a variety of nano-biotechnologies, which are transforming the translation of natural surfaces into experimental materials. In this article, research on the defence of marine organisms against fouling and the technologies they are defining is reviewed.
Related JoVE Video
Effect of rearing water temperature on protandrous sex inversion in cultured Asian Seabass (Lates calcarifer).
Gen. Comp. Endocrinol.
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
Asian Seabass, Lates calcarifer (Bloch, 1790), is a protandrous species cultured for Aquaculture. The cultured Asian Seabass in Australia exhibits precocious sex inversion before 2years of age. This phenomenon highly affects on maintaining a proper broodstock in a hatchery. The effect of temperature on sex inversion inducement in Asian Seabass was thus investigated at five different temperature regimes experienced in Australia. Asian Seabass (14months) grown in fresh water under natural temperature in a commercial farm in Queensland were transported to the research facility at James Cook University, Australia and held in fresh water at 28°C until acclimatized to the experimental conditions. Fish were acclimated to the experimental conditions (30ppt salinity) over the first and final week (22°C, 25°C, 28°C, 31°C and 34°C) of one month acclimatizing period. Fish were fed daily with a commercial pellet (50% protein, 18MJkg(-1)) to satiety. Blood, brain and gonad collected before transfer to the experimental temperature regime in the final week of acclimatization and at the end of the experiment were analysed. Plasma sex steroids level and aromatase activity of brain and gonad were also measured. There was an increase in plasma estradiol levels with increasing temperature from 25°C while no significant difference was observed among all treatment temperatures except at 25°C. However, fish held at 22°C showed higher estradiol level than at 25°C and 28°C. Significantly higher (p<0.05) plasma testosterone levels were detected in fish held at 31°C and 34°C while a reducing trend was observed towards lower temperature regimes. Fish held at 22°C had significantly lower plasma testosterone than all others as well those sampled at the beginning. The plasma 11-ketoTestosterone was at non-detectable levels in all experimental temperatures as shown at the beginning. The average aromatase activity in brain was highest at 28°C among all temperatures, but no significant differences (p>0.05) observed. The Average aromatase activity in gonad was highest at 31°C followed by at 34°C and 28°C. No or very low level of gonad aromatase activity recorded in fish sacrificed prior to treatment. The aromatase activity was greater in brain than in gonad suggesting that the aromatase produced in the brain yet to transfer to the gonad or brain is the first place to response for culture environmental temperature. It is concluded that plasma sex steroids levels and aromatase activity in Asian Seabass have positive response to increasing temperature in culture facilities.
Related JoVE Video
Hepatic coenzyme Q redox balance of fishes as a potential bioindicator of environmental contamination by polycyclic aromatic hydrocarbons.
Biol. Lett.
PUBLISHED: 08-25-2010
Show Abstract
Hide Abstract
In this communication, we introduce a novel biomarker of aquatic contamination based on the xenobiotic-induced response of the hepatic coenzyme Q (CoQ) redox balance of fishes to polycyclic aromatic hydrocarbons (PAHs). The method is demonstrated by comparing changes in the liver CoQ redox balance with that measured using the CYP1A-based, 7-ethoxyresofurin-O-deethylase activity assay, on administration of benzo[a]pyrene (BaP) and ?-naphthoflavone (BNF) to Barramundi (Lates calcarifer). Both assays showed comparable dose-dependent effects in fish treated with BaP or BNF. Perturbation in the constitutive hepatic CoQ redox balance of fishes may thus provide a simple biomarker of aquatic PAH contamination.
Related JoVE Video
Ecology and bioprospecting.
Austral Ecol
PUBLISHED: 08-19-2010
Show Abstract
Hide Abstract
Bioprospecting is the exploration of biodiversity for new resources of social and commercial value. It is carried out by a wide range of established industries such as pharmaceuticals, manufacturing and agriculture as well as a wide range of comparatively new ones such as aquaculture, bioremediation, biomining, biomimetic engineering and nanotechnology. The benefits of bioprospecting have emerged from such a wide range of organisms and environments worldwide that it is not possible to predict what species or habitats will be critical to society, or industry, in the future. The benefits include an unexpected variety of products that include chemicals, genes, metabolic pathways, structures, materials and behaviours. These may provide physical blueprints or inspiration for new designs. Criticism aimed at bioprospecting has been addressed, in part, by international treaties and legal agreements aimed at stopping biopiracy and many activities are now funded by agencies that require capacity-building and economic benefits in host countries. Thus, much contemporary bioprospecting has multiple goals, including the conservation of biodiversity, the sustainable management of natural resources and economic development. Ecologists are involved in three vital ways: first, applying ecological principles to the discovery of new resources. In this context, natural history becomes a vast economic database. Second, carrying out field studies, most of them demographic, to help regulate the harvest of wild species. Third, emphasizing the profound importance of millions of mostly microscopic species to the global economy.
Related JoVE Video
Algal biochar--production and properties.
Bioresour. Technol.
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
This study presents baseline data on the physiochemical properties and potential uses of macroalgal (seaweed) biochar produced by pyrolysis of eight species of green tide algae sourced from fresh, brackish and marine environments. All of the biochars produced are comparatively low in carbon content, surface area and cation exchange capacity, but high in pH, ash, nitrogen and extractable inorganic nutrients including P, K, Ca and Mg. The biochars are more similar in characteristics to those produced from poultry litter relative to those derived from ligno-cellulosic feedstocks. This means that, like poultry litter biochar, macroalgal biochar has properties that provide direct nutrient benefits to soils and thereby to crop productivity, and will be particularly useful for application on acidic soils. However, macroalgal biochars are volumetrically less able to provide the carbon sequestration benefits of the high carbon ligno-cellulosic biochars.
Related JoVE Video
Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production.
Biotechnol. Bioeng.
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Biomass and lipid productivity, lipid content, and quantitative and qualitative lipid composition are critical parameters in selecting microalgal species for commercial scale-up production. This study compares lipid content and composition, and lipid and biomass productivity during logarithmic, late logarithmic, and stationary phase of Nannochloropsis sp., Isochrysis sp., Tetraselmis sp., and Rhodomonas sp. grown in L1-, f/2-, and K-medium. Of the tested species, Tetraselmis sp. exhibited a lipid productivity of 3.9-4.8 g m(-2) day(-1) in any media type, with comparable lipid productivity by Nannochloropsis sp. and Isochrysis sp. when grown in L1-medium. The dry biomass productivity of Tetraselmis sp. (33.1-45.0 g m(-2) day(-1)) exceeded that of the other species by a factor 2-10. Of the organisms studied, Tetraselmis sp. had the best dry biomass and/or lipid production profile in large-scale cultures. The present study provides a practical benchmark, which allows comparison of microalgal production systems with different footprints, as well as terrestrial systems.
Related JoVE Video
Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement.
Biofouling
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
This manuscript constitutes the first evidence of the effects of texture on the rate of removal of cyprids from surfaces and the link between settlement preferences and susceptibility to removal by force. Cyprids of Balanus amphitrite settled preferentially on sinusoidal linear textures (1:1 aspect ratio) in the range 0-32 microm, with textures on the scale of the cyprid (512 microm) treated as flat. Polycarbonate was preferred as a substratum to a polydimethylsiloxane (PDMS) elastomer. Textures of 64-256 microm were avoided and the texture of 256 microm in PDMS was the least preferred substratum tested, with no settlement of cyprids. Hydrodynamic removal was inversely correlated to settlement rate on the textures assayed, implying an adaptive response by cyprids to select surface textures to which their attachment was most tenacious. Correlation plots suggest that likelihood of removal by force is not the only factor involved when cyprids elect to settle on a given texture. Choice and no-choice assays delivered different results. This discrepancy is partially ascribed to inherent variability in the choice assay method, but also to the ability of cyprids to compare textures and exercise true choice, biasing settlement towards stimulatory textures in preference to intermediate textures that were settled on in the absence of choice. The identification of a link between settlement preference and likelihood of removal will assist practically in the development of fouling-resistant marine coatings.
Related JoVE Video
Ockhams razor gone blunt: coenzyme Q adaptation and redox balance in tropical reef fishes.
Biol. Lett.
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
The ubiquitous coenzyme Q (CoQ) is a powerful antioxidant defence against cellular oxidative damage. In fishes, differences in the isoprenoid length of CoQ and its associated antioxidant efficacy have been proposed as an adaptation to different thermal environments. Here, we examine this broad contention by a comparison of the CoQ composition and its redox status in a range of coral reef fishes. Contrary to expectations, most species possessed CoQ(8) and their hepatic redox balance was mostly found in the reduced form. These elevated concentrations of the ubiquinol antioxidant are indicative of a high level of protection required against oxidative stress. We propose that, in contrast to the current paradigm, CoQ variation in coral reef fishes is not a generalized adaptation to thermal conditions, but reflects species-specific ecological habits and physiological constraints associated with oxygen demand.
Related JoVE Video
Algal bioproducts derived from suspended solids in intensive land-based aquaculture.
Bioresour. Technol.
Show Abstract
Hide Abstract
Land-based aquaculture produces suspended solids in culture pond and settlement pond waters that could be harvested as a bioresource. Suspended solids were quantified, characterised and harvested from these two sources to assess their suitability for conversion to bioproducts. The suspended solids of settlement ponds were less concentrated (87.6±24.7mgL(-1)) than those of culture ponds (131.8±8.8mgL(-1)), but had a higher concentration of microalgae (27.5±4.0%) and consequently higher particulate organic carbon (24.8±4.7%) and particulate nitrogen (4.0±0.8%). The microalgal community also differed between sources with a higher concentration of fatty acids in the biomass from settlement ponds. Consequently, biochar produced from biomass harvested from settlement ponds was higher in organic carbon and nitrogen, with a lower cation exchange capacity. In conclusion, we characterised a renewable and potentially valuable bioresource for algal bioproducts derived from suspended solids in intensive land-based aquaculture.
Related JoVE Video
Where to settle--settlement preferences of Mytilus galloprovincialis and choice of habitat at a micro spatial scale.
PLoS ONE
Show Abstract
Hide Abstract
The global mussel aquaculture industry uses specialised spat catching and nursery culture ropes made of multi-filament synthetic and natural fibres to optimise settlement and retention of mussels for on-growing. However, the settlement ecology and preferences of mussels are poorly understood and only sparse information exists in a commercial context. This study quantified the settlement preferences of pediveligers and plantigrades of Mytilus galloprovincialis on increasingly complex surfaces and settlement locations at a micro spatial scale on and within ropes under commercial hatchery operating conditions using optical microscopy and X-ray micro-computed tomography (µCT). M. galloprovincialis has clear settlement preferences for more complex materials and high selectivity for settlement sites from the pediveliger through to the plantigrade stage. Pediveligers of M. galloprovincialis initially settle inside specialised culture ropes. Larger pediveligers were located close to the exterior of ropes as they increased in size over time. In contrast, smaller individuals were located deeper inside of the ropes over time. This study demonstrates that X-ray µCT is an excellent non-destructive technique for mapping settlement and attachment sites of individuals as early as one day post settlement, and quantifies the number and location of settled individuals on and within ropes as a tool to understand and optimise settlement in complex multi-dimensional materials and environments.
Related JoVE Video
Seaweed extracts as a natural control against the monogenean ectoparasite, Neobenedenia sp., infecting farmed barramundi (Lates calcarifer).
Int. J. Parasitol.
Show Abstract
Hide Abstract
Aqueous extracts from common tropical seaweeds were evaluated for their effect on the life cycle of the commercially important ectoparasite, Neobenedenia sp. (Platyhelminthes: Monogenea), through the survival of attached adult parasites, period of embryonic development, hatching success and oncomiracidia (larvae) infection success. There was no significant effect of any extract on the survival of adult parasites attached to fish hosts or infection success by oncomiracidia. However, the extracts of two seaweeds, Ulva sp. and Asparagopsis taxiformis, delayed embryonic development and inhibited egg hatching. The extract of A. taxiformis was most effective, inhibiting embryonic development of Neobenedenia sp. and reducing hatching success to 3% compared with 99% for the seawater control. Furthermore, of the 3% of eggs that hatched, time to first and last hatch was delayed (days 14 and 18) compared with the seawater control (days 5 and 7). Asparagopsis taxiformis shows the most potential for development as a natural treatment to manage monogenean infections in intensive aquaculture with the greatest impact at the embryo stage.
Related JoVE Video
Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.
PLoS ONE
Show Abstract
Hide Abstract
Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2)) was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3) h(-1)) relative to other aquatic systems. Denitrification was the main driver of N(2) production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N(2). A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N(2) production and N removal from aquaculture wastewater.
Related JoVE Video
The impact and control of biofouling in marine aquaculture: a review.
Biofouling
Show Abstract
Hide Abstract
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.
Related JoVE Video
Feeding preferences and the nutritional value of tropical algae for the abalone Haliotis asinina.
PLoS ONE
Show Abstract
Hide Abstract
Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae--or any feedstock--which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g(-1)) and the protein-rich Asparagopsis taxiformis (>15 g 100 g(-1) of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties.
Related JoVE Video
Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
PLoS ONE
Show Abstract
Hide Abstract
Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg(-1) DW and 137 mg.kg(-1) DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.