JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways.
Oncotarget
PUBLISHED: 10-11-2014
Show Abstract
Hide Abstract
Cancer dormancy refers to the prolonged clinical disease-free time between removal of the primary tumor and recurrence, which is common in prostate cancer (PCa), breast cancer, esophageal cancer, and other cancers. PCa disseminated tumor cells (DTC) are detected in both patients with no evidence of disease (NED) and advanced disease (ADV). However, the molecular and cellular nature of DTC is unknown. We performed a first-in-field study of single DTC transcriptomic analyses in cancer patients to identify a molecular signature associated with cancer dormancy. We profiled eighty-five individual EpCAM+/CD45- cells from the bone marrow of PCa patients with NED or ADV. We analyzed 44 DTC with high prostate-epithelial signatures, and eliminated 41 cells with high erythroid signatures and low prostate epithelial signatures. DTC were clustered into 3 groups: NED, ADV_1, and ADV_2, in which the ADV_1 group presented a distinct gene expression pattern associated with the p38 stress activated kinase pathway. Additionally, DTC from the NED group were enriched for a tumor dormancy signature associated with head and neck squamous carcinoma and breast cancer. This study provides the first clinical evidence of the p38 pathway as a potential biomarker for early recurrence and an attractive target for therapeutic intervention.
Related JoVE Video
The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma.
Mol. Cancer Res.
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). Implications: Chromosomal alterations are not a prerequisite for tumor formation in GEM prostate cancer models and cooperating events do not naturally occur by mechanisms that recapitulate changes in genomic integrity as observed in human prostate cancer.
Related JoVE Video
History of Inclusive Design in the UK.
Appl Ergon
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
The UK Design Council describes Inclusive Design as neither a new genre of design, nor a separate specialism, but as a general approach to designing in which designers ensure that their products and services address the needs of the widest possible audience, irrespective of age or ability. Inclusive Design (also known [in Europe] as Design for All and as Universal Design in the USA) is in essence the inverse of earlier approaches to designing for disabled and elderly people as a sub-set of the population, and an integral part of a more recent international trend towards the integration of older and disabled people in the mainstream of society. This paper describes the development of Inclusive Design in the UK, from its early beginnings, through its subsequent adoption as a topic of academic research, leading to its recent emergence embodied as a framework and toolkit for design.
Related JoVE Video
Single cell transcriptomic analysis of prostate cancer cells.
BMC Mol. Biol.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR).
Related JoVE Video
Computer modeling of selected projectional factors of the 84-in focal film distance anteroposterior full spine radiograph compared with 40-in focal film distance sectional views.
J Chiropr Med
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
The purpose of this study was to compare the 84-in focal film distance anteroposterior (A-P) full spine view to selected sectional views taken at a 40-in focal film distance for angles of divergence and changes produced by lateral translation and variation in source object distance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.