JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Noncoding RNAs: key molecules in understanding and treating pain.
Trends Mol Med
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Although noncoding RNAs (ncRNAs) were initially considered to be transcriptional byproducts, recent technological advances have led to a steady increase in our understanding of their importance in gene regulation and disease pathogenesis. In keeping with these developments, pain research is also experiencing rapid growth in the investigation of links between ncRNAs and pathological pain. Although the initial focus was on analyzing expression and dysregulation of candidate miRNAs, elucidation of other ncRNAs and ncRNA-mediated functional mechanisms in pain modulation has just commenced. Here we review the major ncRNA literature available to date with respect to pain modulation and discuss tools and opportunities available for testing the impact of other types of ncRNA on pain.
Related JoVE Video
Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways.
Neuron
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
Wnt signaling represents a highly versatile signaling system, which plays diverse and critical roles in various aspects of neural development. Sensory neurons of the dorsal root ganglia require Wnt signaling for initial cell-fate determination as well as patterning and synapse formation. Here we report that Wnt signaling pathways persist in adult sensory neurons and play a functional role in their sensitization in a pathophysiological context. We observed that Wnt3a recruits the Wnt-calcium signaling pathway and the Wnt planar cell polarity pathway in peripheral nerves to alter pain sensitivity in a modality-specific manner and we elucidated underlying mechanisms. In contrast, biochemical, pharmacological, and genetic studies revealed lack of functional relevance for the classical canonical ?-catenin pathway in peripheral sensory neurons in acute modulation of nociception. Finally, this study provides proof-of-concept for a translational potential for Wnt3a-Frizzled3 signaling in alleviating disease-related pain hypersensitivity in cancer-associated pain in vivo.
Related JoVE Video
Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction.
Nat Commun
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain.
Related JoVE Video
Studying ongoing and spontaneous pain in rodents--challenges and opportunities.
Eur. J. Neurosci.
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
The measurement of spontaneous ongoing pain in rodents is a multiplex issue and a subject of extensive and longstanding debate. Considering the need to align available rodent models with clinically relevant forms of pain, it is of prime importance to thoroughly characterize behavioral outcomes in rodents using a portfolio of measurements that are not only stimulus-dependent but also encompass voluntary behavior in unrestrained animals. Moreover, the temporal course and duration of behavioral tests should be taken into consideration when we plan our studies to measure explicit chronic pain, with a particular emphasis on performing longitudinal studies in rodents. While using rodents as model organisms, it is also worth considering their circadian rhythm and the influence of the test conditions on the behavioral results, which are affected by social paradigms, stress and anxiety. In humans, general wellbeing is closely related to pain perception, which also makes it necessary in rodents to consider modulators as well as readouts of overall wellbeing. Optimizing the above parameters in study design and the new developments that are forthcoming to test the affective motivational components of pain hold promise in solving inconsistencies across studies and improving their broad applicability in translational research. In this review, we critically discuss a variety of behavioral tests that have been developed and reported in recent years, attempt to weigh their benefits and potential limitations, and discuss key requirements and challenges that lie ahead in measuring ongoing pain in rodent models.
Related JoVE Video
In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice.
J Vis Exp
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
This report describes a step-by-step guide to the technique of acute intrathecal needle injections in a noninvasive manner, i.e. independent of catheter implantation. The technical limitation of this surgical technique lies in the finesse of the hands. The injection is rapid, especially for a trained experimenter, and since tissue disruption with this technique is minimal, repeated injections are possible; moreover immune reaction to foreign tools (e.g. catheter) does not occur, thereby giving a better and more specific read out of spinal cord modulation. Since the application of the substance is largely limited to the target region of the spinal cord, drugs do not need to be applied in large dosages, and more importantly unwanted effects on other tissue, as observed with a systemic delivery, could be circumvented(1,2). Moreover, we combine this technique with in vivo transfection of nucleic acid with the help of polyethylenimine (PEI) reagent(3), which provides tremendous versatility for studying spinal functions via delivery of pharmacological agents as well as gene, RNA, and protein modulators.
Related JoVE Video
Synaptic plasticity in pathological pain.
Trends Neurosci.
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
Chronic pain represents a major challenge to clinical practice and basic science. Excitatory neurotransmission in somatosensory nociceptive pathways is predominantly mediated by glutamatergic synapses. A key feature of these synapses is their ability to adapt synaptic strength in an activity-dependent manner. Such disease-induced synaptic plasticity is paramount to alterations in synaptic function and structure. Recent work has recognized that synaptic plasticity at both excitatory and inhibitory synapses can function as a prime mechanism underlying pathological pain. In this review, cellular and molecular mechanisms underlying synaptic plasticity in nociceptive pathways will be reviewed and discussed. New insights derived from these advances are expected to expedite development of novel interventional approaches for treatment of pathological pain.
Related JoVE Video
Sources of individual variability: miRNAs that predispose to neuropathic pain identified using genome-wide sequencing.
Mol Pain
PUBLISHED: 02-26-2014
Show Abstract
Hide Abstract
We carried out a genome-wide study, using microRNA sequencing (miRNA-seq), aimed at identifying miRNAs in primary sensory neurons that are associated with neuropathic pain. Such scans usually yield long lists of transcripts regulated by nerve injury, but not necessarily related to pain. To overcome this we tried a novel search strategy: identification of transcripts regulated differentially by nerve injury in rat lines very similar except for a contrasting pain phenotype. Dorsal root ganglia (DRGs) L4 and 5 in the two lines were excised 3 days after spinal nerve ligation surgery (SNL) and small RNAs were extracted and sequenced.
Related JoVE Video
Genetic dissection of plexin signaling in vivo.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Mammalian plexins constitute a family of transmembrane receptors for semaphorins and represent critical regulators of various processes during development of the nervous, cardiovascular, skeletal, and renal system. In vitro studies have shown that plexins exert their effects via an intracellular R-Ras/M-Ras GTPase-activating protein (GAP) domain or by activation of RhoA through interaction with Rho guanine nucleotide exchange factor proteins. However, which of these signaling pathways are relevant for plexin functions in vivo is largely unknown. Using an allelic series of transgenic mice, we show that the GAP domain of plexins constitutes their key signaling module during development. Mice in which endogenous Plexin-B2 or Plexin-D1 is replaced by transgenic versions harboring mutations in the GAP domain recapitulate the phenotypes of the respective null mutants in the developing nervous, vascular, and skeletal system. We further provide genetic evidence that, unexpectedly, the GAP domain-mediated developmental functions of plexins are not brought about via R-Ras and M-Ras inactivation. In contrast to the GAP domain mutants, Plexin-B2 transgenic mice defective in Rho guanine nucleotide exchange factor binding are viable and fertile but exhibit abnormal development of the liver vasculature. Our genetic analyses uncover the in vivo context-dependence and functional specificity of individual plexin-mediated signaling pathways during development.
Related JoVE Video
A novel biological role for the phospholipid lysophosphatidylinositol in nociceptive sensitization via activation of diverse G-protein signalling pathways in sensory nerves in vivo.
Pain
PUBLISHED: 07-29-2013
Show Abstract
Hide Abstract
The rich diversity of lipids and the specific signalling pathways they recruit provides tremendous scope for modulation of biological functions. Lysophosphatidylinositol (LPI) is emerging as a key modulator of cell proliferation, migration, and function, and holds important pathophysiological implications due to its high levels in diseased tissues, such as in cancer. Here we report a novel role for LPI in sensitization of peripheral sensory neurons, which was evident as exaggerated sensitivity to painful and innocuous pressure. Histopathological analyses indicated lack of involvement of myelin pathology and immune cell recruitment by LPI. Using pharmacological and conditional genetic tools in mice, we delineated receptor-mediated from non-receptor-mediated effects of LPI and we observed that GPR55, which functions as an LPI receptor when heterologously expressed in mammalian cells, only partially mediates LPI-induced actions in the context of pain sensitization in vivo; we demonstrate that, in vivo, LPI functions by activating G?13 as well as G?q/11 arms of G-protein signalling in sensory neurons. This study thus reports a novel pathophysiological function for LPI and elucidates underlying molecular mechanisms.
Related JoVE Video
Pain hypersensitivity mechanisms at a glance.
Dis Model Mech
PUBLISHED: 07-06-2013
Show Abstract
Hide Abstract
There are two basic categories of pain: physiological pain, which serves an important protective function, and pathological pain, which can have a major negative impact on quality of life in the context of human disease. Major progress has been made in understanding the molecular mechanisms that drive sensory transduction, amplification and conduction in peripheral pain-sensing neurons, communication of sensory inputs to spinal second-order neurons, and the eventual modulation of sensory signals by spinal and descending circuits. This poster article endeavors to provide an overview of how molecular and cellular mechanisms underlying nociception in a physiological context undergo plasticity in pathophysiological states, leading to pain hypersensitivity and chronic pain.
Related JoVE Video
Gq rather than G11 preferentially mediates nociceptor sensitization.
Mol Pain
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
The Gq/11-Protein signaling mechanism is essential throughout the nervous system, but little is known about the contribution of the individual G-protein GPCR signaling branches towards nociceptor activation and their specific role on nociceptor sensitization. We aimed to unravel the contribution of the Gq/11-signaling pathway towards nociceptor activation via a variety of classical inflammatory mediators signalling via different G-protein GPCRs and investigated the specific contribution of the individual Gq and G11 G-Proteins in nociceptors.
Related JoVE Video
BKCa channels expressed in sensory neurons modulate inflammatory pain in mice.
Pain
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
Large conductance calcium-activated potassium (BKCa) channels are important regulators of neuronal excitability. Although there is electrophysiological evidence for BKCa channel expression in sensory neurons, their in vivo functions in pain processing have not been fully defined. Using a specific antibody, we demonstrate here that BKCa channels are expressed in subpopulations of peptidergic and nonpeptidergic nociceptors. To test a functional association of BKCa channel activity in sensory neurons with particular pain modalities, we generated mice in which BKCa channels are ablated specifically from sensory neurons and analyzed their behavior in various models of pain. Mutant mice showed increased nociceptive behavior in models of persistent inflammatory pain. However, their behavior in models of neuropathic or acute nociceptive pain was normal. Moreover, systemic administration of the BKCa channel opener, NS1619, inhibited persistent inflammatory pain. Our investigations provide in vivo evidence that BKCa channels expressed in sensory neurons exert inhibitory control on sensory input in inflammatory pain states.
Related JoVE Video
Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation.
J. Immunol.
PUBLISHED: 04-12-2013
Show Abstract
Hide Abstract
Epidermal keratinocytes (KCs) and cannabinoid (CB) receptors both participate in the regulation of inflammatory responses in a mouse model for allergic contact dermatitis, the contact hypersensitivity (CHS) response to the obligate sensitizer 2,4-dinitrofluorobenzene. In this study, we investigated the cellular and molecular mechanisms how CB1 receptors attenuate CHS responses to 2,4-dinitrofluorobenzene. We used a conditional gene-targeting approach to identify the relative contribution of CB1 receptors on epidermal KCs for the control of CHS responses. To determine the underlying cellular and molecular mechanisms that regulate inflammatory responses in the effector phase of CHS, we performed further investigations on inflamed ear tissue and primary KC cultures using morphologic, molecular, and immunologic methods. Mice with a KC-specific deletion of CB1 receptors developed increased and prolonged CHS responses. These were associated with enhanced reactive epidermal acanthosis and inflammatory KC hyperproliferation in the effector phase of CHS. In vitro, primary cultures of CB1 receptor-deficient KC released increased amounts of CXCL10 and CCL8 after stimulation with IFN-? compared with controls. In vivo, contact allergic ear tissue of CB1 receptor-deficient KCs showed enhanced expression of CXCL10 and CCL8 compared with controls. Further investigations established CCL8 as a proinflammatory chemokine regulated by CB1 receptors that promotes immune cell recruitment to allergen-challenged skin. Taken together, these results demonstrate that CB1 receptors are functionally expressed by KCs in vivo and help to limit the secretion of proinflammatory chemokines that regulate T cell-dependent inflammation in the effector phase of CHS.
Related JoVE Video
Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain.
EMBO Mol Med
PUBLISHED: 03-23-2013
Show Abstract
Hide Abstract
Cancer pain remains a major challenge and there is an urgent demand for the development of specific mechanism-based therapies. Various diseases are associated with unique signatures of expression of microRNAs (miRNAs), which reveal deep insights into disease pathology. Using a comprehensive approach combining genome-wide miRNA screening, molecular and in silico analyses with behavioural approaches in a clinically relevant model of metastatic bone-cancer pain in mice, we now show that tumour-induced conditions are associated with a marked dysregulation of 57 miRNAs in sensory neurons corresponding to tumour-affected areas. By establishing protocols for interference with disease-induced miRNA dysregulation in peripheral sensory neurons in vivo, we functionally validate six dysregulated miRNAs as significant modulators of tumour-associated hypersensitivity. In silico analyses revealed that their predicted targets include key pain-related genes and we identified Clcn3, a gene encoding a chloride channel, as a key miRNA target in sensory neurons, which is functionally important in tumour-induced nociceptive hypersensitivity in vivo. Our results provide new insights into endogenous gene regulatory mechanisms in cancer pain and open up attractive and viable therapeutic options.
Related JoVE Video
Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by granulocyte-/granulocyte-macrophage colony stimulating factors.
Mol Pain
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Cancer-associated pain is a major cause of poor quality of life in cancer patients and is frequently resistant to conventional therapy. Recent studies indicate that some hematopoietic growth factors, namely granulocyte macrophage colony stimulating factor (GMCSF) and granulocyte colony stimulating factor (GCSF), are abundantly released in the tumor microenvironment and play a key role in regulating tumor-nerve interactions and tumor-associated pain by activating receptors on dorsal root ganglion (DRG) neurons. Moreover, these hematopoietic factors have been highly implicated in postsurgical pain, inflammatory pain and osteoarthritic pain. However, the molecular mechanisms via which G-/GMCSF bring about nociceptive sensitization and elicit pain are not known.
Related JoVE Video
Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain.
Neuron
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Persistent pain induced by noxious stimuli is characterized by the transition from normosensitivity to hypersensitivity. Underlying mechanisms are not well understood, although gene expression is considered important. Here, we show that persistent nociceptive-like activity triggers calcium transients in neuronal nuclei within the superficial spinal dorsal horn, and that nuclear calcium is necessary for the development of long-term inflammatory hypersensitivity. Using a nucleus-specific calcium signal perturbation strategy in vivo complemented by gene profiling, bioinformatics, and functional analyses, we discovered a pain-associated, nuclear calcium-regulated gene program in spinal excitatory neurons. This includes C1q, a modulator of synaptic spine morphogenesis, which we found to contribute to activity-dependent spine remodelling on spinal neurons in a manner functionally associated with inflammatory hypersensitivity. Thus, nuclear calcium integrates synapse-to-nucleus communication following noxious stimulation and controls a spinal genomic response that mediates the transition between acute and long-term nociceptive sensitization by modulating functional and structural plasticity.
Related JoVE Video
microRNAs in nociceptive circuits as predictors of future clinical applications.
Front Mol Neurosci
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs - and microRNAs (miRNAs) in particular - regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals.
Related JoVE Video
Presynaptic alpha2-GABAA receptors in primary afferent depolarization and spinal pain control.
J. Neurosci.
PUBLISHED: 06-03-2011
Show Abstract
Hide Abstract
Spinal dorsal horn GABA(A) receptors are found both postsynaptically on central neurons and presynaptically on axons and/or terminals of primary sensory neurons, where they mediate primary afferent depolarization (PAD) and presynaptic inhibition. Both phenomena have been studied extensively on a cellular level, but their role in sensory processing in vivo has remained elusive, due to inherent difficulties to selectively interfere with presynaptic receptors. Here, we address the contribution of a major subpopulation of GABA(A) receptors (those containing the ?2 subunit) to spinal pain control in mice lacking ?2-GABA(A) receptors specifically in primary nociceptors (sns-?2(-/-) mice). sns-?2(-/-) mice exhibited GABA(A) receptor currents and dorsal root potentials of normal amplitude in vitro, and normal response thresholds to thermal and mechanical stimulation in vivo, and developed normal inflammatory and neuropathic pain sensitization. However, the positive allosteric GABA(A) receptor modulator diazepam (DZP) had almost completely lost its potentiating effect on PAD and presynaptic inhibition in vitro and a major part of its spinal antihyperalgesic action against inflammatory hyperalgesia in vivo. Our results thus show that part of the antihyperalgesic action of spinally applied DZP occurs through facilitated activation of GABA(A) receptors residing on primary nociceptors.
Related JoVE Video
Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors.
Mol Pain
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transgenic mice overexpressing Homer1a in the forebrain (H1a-mice), we analyzed synaptic plasticity, pain behavior and mGluR1 function in the basolateral amygdala (BLA) in a model of arthritis pain.
Related JoVE Video
Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase.
Neuron
PUBLISHED: 03-09-2011
Show Abstract
Hide Abstract
Excitatory synaptic transmission is modulated by inhibitory neurotransmitters and neuromodulators. We found that the synaptic transmission of somatic sensory afferents can be rapidly regulated by a presynaptically secreted protein, follistatin-like 1 (FSTL1), which serves as a direct activator of Na(+),K(+)-ATPase (NKA). The FSTL1 protein is highly expressed in small-diameter neurons of the dorsal root ganglion (DRG). It is transported to axon terminals via small translucent vesicles and secreted in both spontaneous and depolarization-induced manners. Biochemical assays showed that FSTL1 binds to the ?1 subunit of NKA and elevates NKA activity. Extracellular FSTL1 induced membrane hyperpolarization in cultured cells and inhibited afferent synaptic transmission in spinal cord slices by activating NKA. Genetic deletion of FSTL1 in small DRG neurons of mice resulted in enhanced afferent synaptic transmission and sensory hypersensitivity, which could be reduced by intrathecally applied FSTL1 protein. Thus, FSTL1-dependent activation of NKA regulates the threshold of somatic sensation.
Related JoVE Video
Genetic evidence for involvement of neuronally expressed S1P? receptor in nociceptor sensitization and inflammatory pain.
PLoS ONE
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P? receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P? receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P? receptor. Our data show that neuronally expressed S1P? receptors play a significant role in regulating nociceptor function and that S1P/S1P? signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.
Related JoVE Video
G?(q/11) signaling tonically modulates nociceptor function and contributes to activity-dependent sensitization.
Pain
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Peripheral injury or inflammation leads to a release of mediators capable of binding to a variety of ion channels and receptors. Among these are the 7-transmembrane receptors (G protein-coupled receptors) coupling to G(s), G(i/o), G??/??, or G(q/11) G proteins. Each of the G protein-coupled receptor pathways is involved in nociceptive modulation and pain processing, but the relative contribution of individual signaling pathways in vivo has not yet been worked out. The G(q)/G?? signaling branch is of particular interest because it leads to the activation of phospholipase C-?, protein kinase C, the release of calcium from intracellular stores, and it modulates extracellular regulated kinases. To investigate the contribution of the entire G(q/11)-signaling pathway in nociceptors towards regulation of pain, we generated double-deficient mice lacking G(q/11) selectively in nociceptors using a conditional gene-targeting approach. We observed that nociceptor-specific loss of G(q) and G?? results in reduced pain hypersensitivity following paw inflammation or spared nerve injury. Surprisingly, our behavioral and electrophysiological experiments also indicated defects in basal mechanical sensitivity in G(q/11) mutant mice, suggesting a novel function for G(q/11) in tonic modulation of acute nociception. Patch-clamp recordings revealed changes in voltage-dependent tetrodotoxin-resistant and tetrodotoxin-sensitive sodium channels in nociceptors upon a loss of G(q/11), whereas potassium currents remained unchanged. Our results indicate that the functional role of the G(q)/G?? branch of G-protein signaling in nociceptors in vivo not only spans sensitization mechanisms in pathological pain states, but is also operational in tonic modulation of basal nociception and acute pain.
Related JoVE Video
Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice.
J. Clin. Invest.
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
?-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type (AMPA-type) glutamate receptors (AMPARs) play an important role in plasticity at central synapses. Although there is anatomical evidence for AMPAR expression in the peripheral nervous system, the functional role of such receptors in vivo is not clear. To address this issue, we generated mice specifically lacking either of the key AMPAR subunits, GluA1 or GluA2, in peripheral, pain-sensing neurons (nociceptors), while preserving expression of these subunits in the central nervous system. Nociceptor-specific deletion of GluA1 led to disruption of calcium permeability and reduced capsaicin-evoked activation of nociceptors. Deletion of GluA1, but not GluA2, led to reduced mechanical hypersensitivity and sensitization in models of chronic inflammatory pain and arthritis. Further analysis revealed that GluA1-containing AMPARs regulated the responses of nociceptors to painful stimuli in inflamed tissues and controlled the excitatory drive from the periphery into the spinal cord. Consequently, peripherally applied AMPAR antagonists alleviated inflammatory pain by specifically blocking calcium-permeable AMPARs, without affecting physiological pain or eliciting central side effects. These findings indicate an important pathophysiological role for calcium-permeable AMPARs in nociceptors and may have therapeutic implications for the treatment chronic inflammatory pain states.
Related JoVE Video
Central mechanisms of pathological pain.
Nat. Med.
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
Chronic pain is a major challenge to clinical practice and basic science. The peripheral and central neural networks that mediate nociception show extensive plasticity in pathological disease states. Disease-induced plasticity can occur at both structural and functional levels and is manifest as changes in individual molecules, synapses, cellular function and network activity. Recent work has yielded a better understanding of communication within the neural matrix of physiological pain and has also brought important advances in concepts of injury-induced hyperalgesia and tactile allodynia and how these might contribute to the complex, multidimensional state of chronic pain. This review focuses on the molecular determinants of network plasticity in the central nervous system (CNS) and discusses their relevance to the development of new therapeutic approaches.
Related JoVE Video
Hematopoietic colony-stimulating factors: new players in tumor-nerve interactions.
J. Mol. Med.
PUBLISHED: 05-09-2010
Show Abstract
Hide Abstract
A variety of cancers are accompanied by debilitating pain, which constitutes the primary reason for poor quality of life in cancer patients. There is an urgent demand for the development of specific mechanism-based therapies against cancer pain. Recently, important advances have been made in mechanisms contributing to cancer pain. A notable finding was that the tumor-derived hematopoietic growth factors, granulocyte- and granulocyte-macrophage-colony-stimulating factors (G-CSF/GM-CSF), subserve important functions in the generation of pain hypersensitivity in tumor-affected regions. In this context, their receptors were unexpectedly found on pain-sensing nerves and were observed to be functionally linked to nociceptive sensitization and tumor-induced pain. Here, we review evidence supporting a role for G-/GM-CSF in sensitization of pain-sensing nerves, the underlying signaling pathways and the cross-talk with other pronociceptive cytokines, peptides and modulators derived from immune cells, osteoclasts and tumor cells. These findings hold implications in the therapy of pain in disease states, such as cancer and rheumatoid arthritis.
Related JoVE Video
An improved behavioural assay demonstrates that ultrasound vocalizations constitute a reliable indicator of chronic cancer pain and neuropathic pain.
Mol Pain
PUBLISHED: 03-26-2010
Show Abstract
Hide Abstract
On-going pain is one of the most debilitating symptoms associated with a variety of chronic pain disorders. An understanding of mechanisms underlying on-going pain, i.e. stimulus-independent pain has been hampered so far by a lack of behavioural parameters which enable studying it in experimental animals. Ultrasound vocalizations (USVs) have been proposed to correlate with pain evoked by an acute activation of nociceptors. However, literature on the utility of USVs as an indicator of chronic pain is very controversial. A majority of these inconsistencies arise from parameters confounding behavioural experiments, which include novelty, fear and stress due to restrain, amongst others.
Related JoVE Video
R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids.
PLoS ONE
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear.
Related JoVE Video
A key role for gp130 expressed on peripheral sensory nerves in pathological pain.
J. Neurosci.
PUBLISHED: 10-30-2009
Show Abstract
Hide Abstract
Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.e., on neurons activated by painful stimuli). We found indeed that the IL-6/gp130 ligand-receptor complex induced heat hypersensitivity both in vitro and in vivo. This process was mediated by activation of PKC-delta via Gab1/2/PI(3)K and subsequent regulation of TRPV1, a member of the transient receptor potential (TRP) family of ion channels. To assess the relevance of this direct pain promoting effect of IL-6, we generated conditional knock-out mice, which lack gp130 specifically in nociceptors, and tested them in models of inflammatory and tumor-induced pain. These mice showed significantly reduced levels of inflammatory and tumor-induced pain but no changes in immune reactions or tumor growth. Our results uncover the significance of gp130 expressed in peripheral pain sensing neurons in the pathophysiology of major clinical pain disorders and suggest their use as novel pain relieving agents in inflammatory and tumor pain.
Related JoVE Video
Inhibitor kappaB Kinase beta deficiency in primary nociceptive neurons increases TRP channel sensitivity.
J. Neurosci.
PUBLISHED: 10-16-2009
Show Abstract
Hide Abstract
Inhibitor kappaB kinase (IKK) regulates the activity of the transcription factor nuclear factor-kappa B that normally protects neurons against excitotoxicity. Constitutively active IKK is enriched at axon initial segments and nodes of Ranvier (NR). We used mice with a Cre-loxP-mediated specific deletion of IKKbeta in sensory neurons of the dorsal root ganglion (SNS-IKKbeta(-/-)) to evaluate whether IKK plays a role in sensory neuron excitability and nociception. We observed increased sensitivity to mechanical, cold, noxious heat and chemical stimulation in SNS-IKKbeta(-/-) mice, with normal proprioceptive and motor functions as revealed by gait analysis. This was associated with increased calcium influx and increased inward currents in small- and medium-sized primary sensory neurons of SNS-IKKbeta(-/-) mice during stimulation with capsaicin or Formalin, specific activators of transient receptor potentials TRPV1 and TRPA1 calcium channels, respectively. In vitro stimulation of saphenous nerve preparations of SNS-IKKbeta(-/-) mice showed increased neuronal excitability of A- and C-fibers but unchanged A- and C-fiber conduction velocities, normal voltage-gated sodium channel currents, and normal accumulation of ankyrin G and the sodium channels Nav1.6 at NR. The results suggest that IKKbeta functions as a negative modulator of sensory neuron excitability, mediated at least in part by modulation of TRP channel sensitivity.
Related JoVE Video
The semaphorin 4D-plexin-B signalling complex regulates dendritic and axonal complexity in developing neurons via diverse pathways.
Eur. J. Neurosci.
PUBLISHED: 09-29-2009
Show Abstract
Hide Abstract
Semaphorins and their receptors, plexins, have emerged as key regulators of various aspects of neuronal development. In contrast to the Plexin-A family, the cellular functions of Plexin-B family proteins in developing neurons are only poorly understood. An activation of Plexin-B1 via its ligand, semaphorin 4D (Sema4D), produces an acute collapse of axonal growth cones in hippocampal and retinal neurons over the early stages of neurite outgrowth. However, the functional role of Sema4D-Plexin-B interactions over subsequent stages of neurite development, differentiation and maturation has not been characterized. Here we addressed this question using morphogenetic assays and time-lapse imaging on developing rat hippocampal neurons as a model system. Interestingly, Sema4D treatment over several hours was observed to promote branching and complexity in hippocampal neurons via the activation of Plexin-B1. The activation of receptor tyrosine kinases and the Rho kinase following Sema4D treatment was found to control dendritic and axonal morphogenesis by differentially regulating branching and extension. Phosphoinositide-3-kinase, but not extracellular signal-regulated kinase 1/2, was observed to be important for the stimulatory effects of Sema4D on dendritic branching. Furthermore, we observed that the mammalian target of rapamycin is activated downstream of Plexin-B1 and contributes to Sema4D-induced effects on dendritic branching. In contrast, glycogen synthase kinase-3 beta, another effector of phosphoinositide-3-kinase signalling, was not involved. Thus, our results show that Sema4D-Plexin-B interactions modulate dendritic and axonal arborizations of developing neurons by co-ordinated and concerted activation of diverse signalling pathways.
Related JoVE Video
Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo.
Mol Pain
PUBLISHED: 08-19-2009
Show Abstract
Hide Abstract
gamma-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. GABA(B) receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABA(B) receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABA(B) receptors is unclear.
Related JoVE Video
Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex.
Mol Pain
PUBLISHED: 07-17-2009
Show Abstract
Hide Abstract
Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure. Recent studies using genetic and physiological approaches have demonstrated that the investigation of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA) receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been less investigated. Here, we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in the ACC.
Related JoVE Video
Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion.
Pain
PUBLISHED: 06-26-2009
Show Abstract
Hide Abstract
The peptide endothelin-1 (ET1), which was originally identified as a vasoconstrictor, has emerged as a critical regulator of a number of painful conditions, including inflammatory pain and tumor-associated pain. There is considerable pharmacological evidence supporting a role for endothelin A receptors (ET(A)) in mediating ET1-induced pro-algesic functions. ET(A) receptors are expressed in small-diameter nociceptive neurons, but also found in a variety of other cell types in peripheral tissues, including immune cells, keratinocytes, endothelial cells, which have the potential to modulate nociception. To elucidate the functional contribution of ET(A) receptors expressed in sensory neurons towards the functions of the ET1 axis in pathological pain states, we undertook a conditional gene deletion approach to selectively deplete expression of ET(A) in sensory nerves, preserving expression in non-neural peripheral tissues; the expression of ET(B) remained unchanged. Behavioural and pharmacological experiments showed that only late nociceptive hypersensitivity caused by ET1 is abrogated upon a loss of ET(A) receptors on nociceptors and further suggest that ET1-induced early nociceptive hypersensitivity involves activation of ET(A) as well as ET(B) receptors in non-neural peripheral cells. Furthermore, in the context of alleviation of cancer pain and chronic inflammatory pain by ET(A) receptor antagonists, we observed in corresponding mouse models that the contribution of ET(A) receptors expressed in nociceptors is most significant. These results help understand the role of ET(A) receptors in complex biological processes and peripheral cell-cell interactions involved in inflammatory and tumor-associated pain.
Related JoVE Video
Mice lacking Plexin-B3 display normal CNS morphology and behaviour.
Mol. Cell. Neurosci.
PUBLISHED: 05-19-2009
Show Abstract
Hide Abstract
Semaphorins and their receptors, plexins, have emerged as important regulators of a multitude of biological processes. Plexin-B3 has been shown to be selectively expressed in postnatal oligodendrocytes. In contrast to the well-characterized Plexin-A family and the Plexin-B family members Plexin-B1 and -B2, no data are available on the functional role of Plexin-B3 in the central nervous system in vivo. Here we have elucidated the functional significance of Plexin-B3 by generating and analyzing constitutive knock-out mice. Plexin-B3-deficient mice were found to be viable and fertile. A systematic histological analysis revealed no morphological defects in the brain or spinal cord of mutant animals. In detailed behavioural analyses of locomotor activity, motor coordination, motor learning, and anxiety levels Plexin-B3-deficient mice were indistinguishable from wild-type controls. Thus we conclude that under physiological conditions Plexin-B3 is not essential for the development and function of the central nervous system.
Related JoVE Video
Hematopoietic colony-stimulating factors mediate tumor-nerve interactions and bone cancer pain.
Nat. Med.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
Pain is one of the most severe and debilitating symptoms associated with several forms of cancer. Various types of carcinomas and sarcomas metastasize to skeletal bones and cause spontaneous bone pain and hyperalgesia, which is accompanied by bone degradation and remodeling of peripheral nerves. Despite recent advances, the molecular mechanisms underlying the development and maintenance of cancer-evoked pain are not well understood. Several types of non-hematopoietic tumors secrete hematopoietic colony-stimulating factors that act on myeloid cells and tumor cells. Here we report that receptors and signaling mediators of granulocyte- and granulocyte-macrophage colony-stimulating factors (G-CSF and GM-CSF) are also functionally expressed on sensory nerves. GM-CSF sensitized nerves to mechanical stimuli in vitro and in vivo, potentiated CGRP release and caused sprouting of sensory nerve endings in the skin. Interruption of G-CSF and GM-CSF signaling in vivo led to reduced tumor growth and nerve remodeling, and abrogated bone cancer pain. The key significance of GM-CSF signaling in sensory neurons was revealed by an attenuation of tumor-evoked pain following a sensory nerve-specific knockdown of GM-CSF receptors. These results show that G-CSF and GM-CSF are important in tumor-nerve interactions and suggest that their receptors on primary afferent nerve fibers constitute potential therapeutic targets in cancer pain.
Related JoVE Video
Pain in experimental autoimmune encephalitis: a comparative study between different mouse models.
J Neuroinflammation
Show Abstract
Hide Abstract
Pain can be one of the most severe symptoms associated with multiple sclerosis (MS) and develops with varying levels and time courses. MS-related pain is difficult to treat, since very little is known about the mechanisms underlying its development. Animal models of experimental autoimmune encephalomyelitis (EAE) mimic many aspects of MS and are well-suited to study underlying pathophysiological mechanisms. Yet, to date very little is known about the sensory abnormalities in different EAE models. We therefore aimed to thoroughly characterize pain behavior of the hindpaw in SJL and C57BL/6 mice immunized with PLP139-151 peptide or MOG35-55 peptide respectively. Moreover, we studied the activity of pain-related molecules and plasticity-related genes in the spinal cord and investigated functional changes in the peripheral nerves using electrophysiology.
Related JoVE Video
Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination.
Brain
Show Abstract
Hide Abstract
Mutations in dynamin 2 (DNM2) lead to dominant intermediate Charcot-Marie-Tooth neuropathy type B, while a different set of DNM2 mutations cause autosomal dominant centronuclear myopathy. In this study, we aimed to elucidate the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B and to find explanations for the tissue-specific defects that are associated with different DNM2 mutations in dominant intermediate Charcot-Marie-Tooth neuropathy type B versus autosomal dominant centronuclear myopathy. We used tissue derived from Dnm2-deficient mice to establish an appropriate peripheral nerve model and found that dominant intermediate Charcot-Marie-Tooth neuropathy type B-associated dynamin 2 mutants, but not autosomal dominant centronuclear myopathy mutants, impaired myelination. In contrast to autosomal dominant centronuclear myopathy mutants, Schwann cells and neurons from the peripheral nervous system expressing dominant intermediate Charcot-Marie-Tooth neuropathy mutants showed defects in clathrin-mediated endocytosis. We demonstrate that, as a consequence, protein surface levels are altered in Schwann cells. Furthermore, we discovered that myelination is strictly dependent on Dnm2 and clathrin-mediated endocytosis function. Thus, we propose that altered endocytosis is a major contributing factor to the disease mechanisms in dominant intermediate Charcot-Marie-Tooth neuropathy type B.
Related JoVE Video
Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity.
PLoS Biol.
Show Abstract
Hide Abstract
Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/-) mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I(-/-) mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/-) mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.