JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Prenatal development of the agouti (Dasyprocta prymnolopha Wagler, 1831): External features and growth curves.
Anim. Reprod. Sci.
PUBLISHED: 06-23-2013
Show Abstract
Hide Abstract
The gestation period in agoutis can range from 104 to 120 days. Knowledge regarding the morphological characteristics of embryos and fetuses is important as a base for studies in reproduction biotechnology, such as in vitro fertilization, embryo transfer and helps in determining congenital anomalies during the development phase. Thus, given the importance and lack of information about agouti embryology, the objective of this study was to characterize the external morphology and define the biometry of embryos and fetuses, at different days of development. Nine females were submitted to daily colpocytology to identify the estrus, confirm mating and identify day zero of the gestation. When the mating was confirmed they were weighed, underwent abdominal ultrasonography and surgery was conducted on the females at the gestational ages of 25, 30, 35, 40, 45, 50, 75 and 100 days. Sixteen embryos/fetuses were weighed and measured. Agouti embryos at 25 days after mating are "C" shaped, with primitive structures, 0.4±0.01cm crown-rump and weighed 0.06±0.01g; at 30 days after mating the crown-rump was 0.95±0.07cm and weighed 0.28±0.00g; at 35 days after mating the crown-rump was 155±0.07cm and weighed 0.38±0.01g; at 40 days after mating the crown-rump was 2.25±0.21cm and weighed 1.25±0.07g; at 45 days after mating the crown-rump was 3.45±0.35cm and weighed 2.75±0.64g; at 50 days after mating the crown-rump was 5.0±0.3cm and weighed 7.01±2.6g; at 75 days after mating, the skin was dark, the crown-rump was 10.0±0.14cm and weighed 55.2±0.07g. At 100 days after mating, the crown-rump was 13.8±0.49cm and fetuses weighed 136.7±9.40g. Based on the morphological data assessed the embryo and fetus age could be assessed and the size and average weight of agouti embryos was established.
Related JoVE Video
Kidney injury and cell therapy: Preclinical study.
Microsc. Res. Tech.
Show Abstract
Hide Abstract
The aim of this study is to show histological and immunofluorescence analysis of renal parenchyma of agoutis affected by gentamicin-induced renal disease after the infusion of bone marrow mononuclear cells (BMMC) stained with Hoechst®. Nine agoutis males were divided into three groups: Test group (TG): renal disease by gentamicin induced (n = 3), cell therapy group (CTG): renal disease by gentamicin induced and BMMC infusion (n = 3), and control group (CG): nonrenal disease and BMMC infusion (n = 3). TG and CTG were submitted to the protocol of renal disease induction using weekly application of gentamicin sulfate for 4 months. CG and CTG received a 1 × 108 BMMC stained with Hoechst and were euthanized for kidney examination 21 days after BMMC injection and samples were collected for histology and immunofluorescence analysis. Histological analysis demonstrated typical interstitial lesions in kidney similarly to human disease, as tubular necrosis, glomerular destruction, atrophy tubular, fibrotic areas, and collagen deposition. We conclude that histological analysis suggest a positive application of agoutis as a model for a gentamicin inducing of kidney disease, beyond the immunofluorescence analysis suggest a significant migration of BMMC to sites of renal injury in CTG.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.