JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-labeled peptides for PET imaging.
J. Nucl. Med.
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Gastrin-releasing peptide receptors (GRPrs) are overexpressed on a variety of human cancers, providing the opportunity for peptide receptor targeting via radiolabeled bombesin-based peptides. As part of our ongoing investigations into the development of improved GRPr antagonists, this study aimed at verifying whether and how N-terminal modulations improve the affinity and pharmacokinetics of radiolabeled GRPr antagonists.
Related JoVE Video
PEG spacers of different length influence the biological profile of bombesin-based radiolabeled antagonists.
Nucl. Med. Biol.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
The gastrin-releasing peptide receptor (GRPR) was shown to be expressed with high density on several types of cancers. Radiolabeled peptides for imaging and targeted radionuclide therapy have been developed. In this study, we evaluated the potential of statine-based bombesin antagonists, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) through oligoethyleneglycol spacers, labeled with (177)Lu and we determined the effect of polyethyleneglycol (PEG) spacer length on in vitro and in vivo properties.
Related JoVE Video
Synergism of peptide receptor-targeted Auger electron radiation therapy with anti-angiogenic compounds in a mouse model of neuroendocrine tumors.
EJNMMI Res
PUBLISHED: 01-31-2014
Show Abstract
Hide Abstract
Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy.
Related JoVE Video
Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment.
Int J Nanomedicine
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The use of micelle aggregates formed from peptide amphiphiles (PAs) as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV) infection are reported here. The PAs were based on epitopes gB409-505 and gD301-309, selected from HSV envelope glycoprotein B (gB) and glycoprotein D (gD), that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 ? 10(-7) mol ? Kg(-1); hydrodynamic radii (RH) between 50-80 nm, and a zeta potential (?) around - 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 ?M, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL)-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP)-2-, and tumor necrosis factor (TNF)-?-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide.
Related JoVE Video
Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist--from mice to men.
Theranostics
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Ex vivo studies have shown that the gastrin releasing peptide receptor (GRPr) is overexpressed on almost all primary prostate cancers, making it a promising target for prostate cancer imaging and targeted radiotherapy.
Related JoVE Video
Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting.
J. Am. Chem. Soc.
PUBLISHED: 10-31-2013
Show Abstract
Hide Abstract
Radiolabeled hybrid ligands with defined distances between an agonist and an antagonist for the gastrin-releasing peptide receptor were found to have excellent tumor-targeting properties. Oligoprolines served as rigid scaffolds that allowed for tailoring distances of 10, 20, and 30 Å between the recognition elements. In vitro and in vivo studies revealed that the hybrid ligand with a distance of 20 Å between the recognition elements exhibits the highest yet observed tumor cell uptake and retention time in prostate cancer cells.
Related JoVE Video
Influence of d-glutamine and d-glutamic acid sequences in optical peptide probes targeted against the cholecystokinin-2/gastrin-receptor on binding affinity, specificity and pharmacokinetic properties.
EJNMMI Res
PUBLISHED: 09-04-2013
Show Abstract
Hide Abstract
Image-based diagnosis of tumours can be advanced and improved by targeted strategies addressing malignant molecular structures. A promising molecular target is the cholecystokinin-2-receptor (CCK2R) which can be targeted by high-affinity peptides called minigastrins. Here we present how the imaging properties of minigastrins tagged with near-infrared fluorescence (NIRF) dyes can be modulated by the introduction of different spacer sequences. We identify interactions of different probe variants with regard to target affinity, specificity and pharmacokinetic properties to optimize early detection of CCK2R-expressing tumours under clinical conditions.
Related JoVE Video
Targeting GRPR in urological cancers--from basic research to clinical application.
Nat Rev Urol
PUBLISHED: 03-19-2013
Show Abstract
Hide Abstract
Gastrin releasing peptide (GRP) is a regulatory peptide that acts through its receptor (GRPR) to regulate physiological functions in various organs. GRPR is overexpressed in neoplastic cells of most prostate cancers and some renal cell cancers and in the tumoral vessels of urinary tract cancers. Thus, targeting these tumours with specifically designed GRP analogues has potential clinical application. Potent and specific radioactive, cytotoxic or nonradioactive GRP analogues have been designed and tested in various animal tumour models with the aim of receptor targeting for tumour diagnosis or therapy. All three categories of compound were found suitable for tumour targeting in animal models. The cytotoxic and nonradioactive GRP analogues have not yet shown convincing tumour-reducing effects in human trials; however, the first clinical studies of radioactive GRP analogues--both agonists and antagonists--suggest promising opportunities for both diagnostic tumour imaging and radiotherapy of prostate and other GRPR-expressing cancers.
Related JoVE Video
Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin.
J. Nucl. Med.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
The gastrin-releasing peptide receptor (GRPr) is overexpressed in prostate cancer and is an attractive target for radionuclide therapy. In addition, inhibition of the protein kinase mammalian target of rapamycin (mTOR) has been shown to sensitize various cancer cells to the effects of radiotherapy.
Related JoVE Video
Multifactorial diagnostic NIR imaging of CCK2R expressing tumors.
Biomaterials
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
Optical imaging-based diagnostics identify malignancies based on molecular changes instead of morphological criteria in a non-invasive, irradiation free process. The aim of this study was to improve imaging efficiency by the development of a new Cholecystokinin-2-receptor targeted fluorescent peptide that matches the clinical needs regarding biodistribution and pharmacokinetics while displaying superior target specificity. Furthermore we performed multifactorial imaging of Cholecystokinin-2-receptor and tumor metabolism, since simultaneous targeting of various tumor biomarkers could intensely increase tumor identification and characterization. Affinity and specificity of the fluorescent Cholecystokinin-2-receptor targeted minigastrin (dQ-MG-754) were tested in vitro. We conducted in vivo imaging of the dQ-MG-754 probe alone and in a multifactorial approach with a GLUT-1 targeted probe (IR800 2-DG) on subcutaneous xenograft bearing athymic nude mice up to 24 h after intravenous injection (n = 5/group), followed by ex vivo biodistribution analysis and histological examination. We found specific, high affinity binding (Kd = 1.77 nM ± 0.6 nM) of dQ-MG-754 to Cholecystokinin-2-receptor expressing cells and xenografts as well as favorable pharmacokinetics for fluorescence-guided endoscopy. We successfully performed multifactorial imaging for the simultaneous detection of the Cholecystokinin-2-receptor and GLUT-1 targeted probe. Prominent differences in uptake patterns of the two contrast agents could be detected. The results were validated by histological examinations. The multifactorial imaging approach presented in this study could facilitate cancer detection in diagnostic imaging and intraoperative and endoscopic applications. Especially the dQ-MG-754 probe bears great potential for translation to clinical endoscopy imaging, because it combines specific high affinity binding with renal elimination and a favorable biodistribution.
Related JoVE Video
Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors.
J. Nucl. Med.
PUBLISHED: 11-11-2011
Show Abstract
Hide Abstract
Bombesin receptors are overexpressed on a variety of human tumors. In particular, the gastrin-releasing peptide receptor (GRPr) has been identified on prostate and breast cancers and on gastrointestinal stromal tumors. The current study aims at developing clinically translatable bombesin antagonist-based radioligands for SPECT and PET of GRPr-positive tumors.
Related JoVE Video
PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference.
J. Nucl. Med.
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
Somatostatin-based radiolabeled peptides have been successfully introduced into the clinic for targeted imaging and radionuclide therapy of somatostatin receptor (sst)-positive tumors, especially of subtype 2 (sst2). The clinically used peptides are exclusively agonists. Recently, we showed that radiolabeled antagonists may be preferable to agonists because they showed better pharmacokinetics, including higher tumor uptake. Factors determining the performance of radioantagonists have only scarcely been studied. Here, we report on the development and evaluation of four (64)Cu or (68)Ga radioantagonists for PET of sst2-positive tumors.
Related JoVE Video
Comparison of the binding and internalization properties of 12 DOTA-coupled and ¹¹¹In-labelled CCK2/gastrin receptor binding peptides: a collaborative project under COST Action BM0607.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project.
Related JoVE Video
Highly improved metabolic stability and pharmacokinetics of indium-111-DOTA-gastrin conjugates for targeting of the gastrin receptor.
J. Med. Chem.
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
The development of metabolically stable radiolabeled gastrin analogues with suitable pharmacokinetics is a topic of recent research activity. These imaging vectors are of interest because the gastrin/CCK2 receptor is highly overexpressed in different tumors such as medullary thyroid cancer, neuroendocrine tumors, and SCLC. The drawback of current targeting agents is either their metabolic instability or their high kidney uptake. We present the synthesis and in vitro and in vivo evaluation of 11 (111)In-labeled DOTA-conjugated peptides that differ by their spacer between the peptide and the chelate. We introduced uncharged but hydrophilic spacers such as oligoethyleneglycol, serine, and glutamine. The affinity of all radiopeptides was high with IC(50) values between 0.5 and 4.8 nM. The improvement of human serum stability is 500-fold within this series of compounds. In addition the kidney uptake could be lowered distinctly and the tumor-to-kidney ratio improved almost 60-fold if compared with radiotracers having charged spacers such as glutamic acid.
Related JoVE Video
Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT.
J. Nucl. Med.
PUBLISHED: 07-03-2010
Show Abstract
Hide Abstract
Strong overexpression of glucagonlike peptide-1 (GLP-1) receptors in human insulinoma provides an attractive target for imaging. The first clinical trials demonstrated that GLP-1 receptor SPECT/CT using [Lys(40)(Ahx [6-aminohexanoic acid]-DOTA-(111)In)NH(2)]-exendin-4 can localize hardly detectable insulinomas. However, [Lys(40)(Ahx-DOTA-(111)In)NH(2)]-exendin-4 imaging has drawbacks related to the use of (111)In in that it is costly and carries a relatively high radiation burden for the patient. The aim of this study was the preclinical evaluation of [Lys(40)(Ahx-DOTA-(68)Ga)NH(2)]-exendin-4 for PET/CT and [Lys(40)(Ahx-hydrazinonicotinamide [HYNIC]-(99m)Tc)NH(2)]-exendin-4 for SPECT/CT.
Related JoVE Video
Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours.
Eur. J. Nucl. Med. Mol. Imaging
PUBLISHED: 05-28-2010
Show Abstract
Hide Abstract
Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH(2) via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as (111)In and (68)Ga.
Related JoVE Video
Peptide modified nanocarriers for selective targeting of bombesin receptors.
Mol Biosyst
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
The present work describes new supramolecular aggregates obtained by co-assembling two different amphiphilic molecules, one containing the bioactive bombesin peptide (BN), or a scramble sequence, and the other, the DOTA chelating agent, (C18)(2)DOTA, capable of forming stable complexes with the radioactive (111)In(III) isotope. The peptide in the amphiphilic monomer is spaced by the lipophilic moiety through ethoxylic spacers of different length: a shorter spacer with five units of dioxoethylene moieties in (C18)(2)L5-peptide, or a longer spacer consisting of a Peg3000 residue in (C18)(2)Peg3000-peptide. Structural characterization by SANS and DLS techniques indicates that, independently from the presence of the peptide containing monomer in the final composition, the predominant aggregates are liposomes of similar shape and size with a hydrodynamic radius R(h) around 200 nm and bilayer thickness, d, of 4 nm. In vitro data show specific binding of the (111)In-(C18)(2)DOTA/(C18)(2)L5-[7-14]BN 90:10 liposomes in receptor expressing cells. However, the presence of the Peg3000 unit on the external liposomal surface, could hide the peptide and prevent the receptor binding. In vivo experiments using (111)In-(C18)(2)DOTA/(C18)(2)L5-[7-14]BN show the expected biological behavior of aggregates of such size and molecular composition, moreover there is an increase in concentration of the GRPR targeting aggregate in the tumors compared to control at the 48 h time point evaluated (2.4% ID/g versus 1.6% ID/g).
Related JoVE Video
Tetraamine-derived bifunctional chelators for technetium-99m labelling: synthesis, bioconjugation and evaluation as targeted SPECT imaging probes for GRP-receptor-positive tumours.
Chemistry
PUBLISHED: 01-13-2010
Show Abstract
Hide Abstract
Owing to its optimal nuclear properties, ready availability, low cost and favourable dosimetry, (99m)Tc continues to be the ideal radioisotope for medical-imaging applications. Bifunctional chelators based on a tetraamine framework exhibit facile complexation with Tc(V)O(2) to form monocationic species with high in vivo stability and significant hydrophilicity, which leads to favourable pharmacokinetics. The synthesis of a series of 1,4,8,11-tetraazaundecane derivatives (01-06) containing different functional groups at the 6-position for the conjugation of biomolecules and subsequent labelling with (99m)Tc is described herein. The chelator 01 was used as a starting material for the facile synthesis of chelators functionalised with OH (02), N(3) (04) and O-succinyl ester (05) groups. A straightforward and easy synthesis of carboxyl-functionalised tetraamine-based chelator 06 was achieved by using inexpensive and commercially available starting materials. Conjugation of 06 to a potent bombesin-antagonist peptide and subsequent labelling with (99m)Tc afforded the radiotracer (99m)Tc-N4-BB-ANT, with radiolabelling yields of >97% at a specific activity of 37 GBq micromol(-1). An IC(50) value of (3.7+/-1.3) nM was obtained, which confirmed the high affinity of the conjugate to the gastrin-releasing-peptide receptor (GRPr). Immunofluorescence and calcium mobilisation assays confirmed the strong antagonist properties of the conjugate. In vivo pharmacokinetic studies of (99m)Tc-N4-BB-ANT showed high and specific uptake in PC3 xenografts and in other GRPr-positive organs. The tumour uptake was (22.5+/-2.6)% injected activity per gram (% IA g(-1)) at 1 h post injection (p.i.). and increased to (29.9+/-4.0)% IA g(-1) at 4 h p.i. The SPECT/computed tomography (CT) images showed high tumour uptake, clear background and negligible radioactivity in the abdomen. The promising preclinical results of (99m)Tc-N4-BB-ANT warrant its potential candidature for clinical translation.
Related JoVE Video
Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides.
Clin. Cancer Res.
PUBLISHED: 08-11-2009
Show Abstract
Hide Abstract
G protein-coupled receptor agonists are being used as radiolabeled vectors for in vivo localization and therapy of tumors. Recently, somatostatin-based antagonists were shown to be superior to agonists. Here, we compare the new [111In/68Ga]-labeled bombesin-based antagonist RM1 with the agonist [111In]-AMBA for targeting the gastrin-releasing peptide receptor (GRPR).
Related JoVE Video
Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on cancer cells.
J Drug Target
Show Abstract
Hide Abstract
Purpose: This study addresses novel peptide modified liposomal doxorubicin to specifically target tissues overexpressing bombesin (BN) receptors. Methods: DOTA-(AEEA)(2)-peptides containing the [7-14]bombesin and the new BN-AA1 sequence have been synthesized to compare their binding properties and in serum stabilities. The amphiphilic peptide derivative (MonY-BN-AA1) containing BN-AA1, a hydrophobic moiety, polyethylenglycole (PEG), and diethylenetriaminepentaacetate (DTPA), has been synthesized. Liposomes have been obtained by mixing of MonY-BN-AA1 with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Results: Both (111)In labeled peptide derivatives present nanomolar Kd to PC-3 cells. (177)Lu labeled peptide DOTA-(AEEA)(2)-BN-AA1 is very stable (half-life 414.1?h), while DOTA-(AEEA)(2)-BN, shows a half-life of 15.5?h. In vivo studies on the therapeutic efficacy of DSPC/MonY-BN-AA1/Dox in comparison to DSPC/MonY-BN/Dox, were performed in PC-3 xenograft bearing mice. Both formulations showed similar tumor growth inhibition (TGI) compared to control animals treated with non-targeted DSPC/Dox liposomes or saline solution. For DSPC/MonY-BN-AA1/Dox the maximum effect was observed 19 days after treatment. Conclusions: DSPC/MonY-BN-AA1/Dox nanovectors confirm the ability to selectively target and provide therapeutic efficacy in mice. The lack of receptor activation and possible acute biological side effects provided by using the AA1 antagonist bombesin sequence should provide safe working conditions for further development of this class of drug delivery vehicles.
Related JoVE Video
Activation of monocytic cells by immunostimulatory lipids conjugated to peptide antigens.
Mol Biosyst
Show Abstract
Hide Abstract
Bacterial derived lipoproteins constitute potent macrophage activators in vivo and are effective stimuli, enhancing the immune response especially with respect to low or non-immunogenic compounds. In the present study we have prepared branched lipopeptide constructs in which different (B- and T-cell) epitopes of Herpes simplex virus type 1, derived from glycoproteins B (gB) and D (gD), are linked to a synthetic lipid core. The ability of the lipid core peptide (LCP) constructs (LCP-gB and LCP-gD) to induce cytokine expression and activate the mitogen-activated protein kinase cascade has been evaluated and compared with the behaviour of the isolated epitopes and the lipid core. In this respect, the use of LCP technology coupled with the use of three different gB or gD peptide epitopes in the same branched constructs could represent an interesting approach in order to obtain efficient delivery systems in the development of a synthetic multiepitopic vaccine for the prevention of viral infections.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.