JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Deregulation of calcium homeostasis mediates secreted ?-synuclein-induced neurotoxicity.
Neurobiol. Aging
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
?-Synuclein (AS) plays a crucial role in Parkinsons disease pathogenesis. AS is normally secreted from neuronal cells and can thus exert paracrine effects. We have previously demonstrated that naturally secreted AS species, derived from SH-SY5Y cells inducibly overexpressing human wild type AS, can be toxic to recipient neuronal cells. In the current study, we show that application of secreted AS alters membrane fluidity and increases calcium (Ca2+) entry. This influx is reduced on pharmacological inhibition of voltage-operated Ca2+ channels. Although no change in free cytosolic Ca2+ levels is observed, a significantly increased mitochondrial Ca2+ sequestration is found in recipient cells. Application of voltage-operated Ca2+ channel blockers or Ca2+ chelators abolishes AS-mediated toxicity. AS-treated cells exhibit increased calpain activation, and calpain inhibition greatly alleviates the observed toxicity. Collectively, our data suggest that secreted AS exerts toxicity through engagement, at least in part, of the Ca2+ homeostatic machinery. Therefore, manipulating Ca2+ signaling pathways might represent a potential therapeutic strategy for Parkinsons disease.
Related JoVE Video
UTP affects the Schwannoma cell line proteome through P2Y receptors leading to cytoskeletal reorganisation.
Proteomics
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Glial cells in the peripheral nervous system, such as Schwann cells, respond to nucleotides, which play an important role in axonal regeneration and myelination. Metabotropic P2Y receptor agonists are promising therapeutic molecules for peripheral neuropathies. Nevertheless, the proteomic mechanisms involved in nucleotide action on Schwann cells remain unknown. Here, we studied intracellular protein changes in RT4-D6P2T Schwann cells after treatment with nucleotides and Nucleo CMP Forte (CMPF), a nucleotide-based drug. After treatment with CMPF, 2-D DIGE revealed 11 differential gel spots, which were all upregulated. Among these, six different proteins were identified by MS. Some of these proteins are involved in actin remodelling (actin-related protein, Arp3), membrane vesicle transport (Rab GDP dissociation inhibitor ?, Rab GDI), and the endoplasmic reticulum stress response (protein disulfide isomerase A3, PDI), which are hallmarks of a possible P2Y receptor signalling pathway. Expression of P2Y receptors in RT4-D6P2T cells was demonstrated by RT-PCR and a transient elevation of intracellular calcium measured in response to UTP. Actin reorganisation was visualized after UTP treatment using phalloidin-FITC staining and was blocked by the P2Y antagonist suramin, which also inhibited Arp3, Rab GDI, and PDI protein upregulation. Our data indicate that extracellular UTP interacts with Schwann P2Y receptors and activates molecular machinery that induces changes in the glial cell cytoskeleton.
Related JoVE Video
NAADP mediates ATP-induced Ca2+ signals in astrocytes.
FEBS Lett.
PUBLISHED: 02-21-2011
Show Abstract
Hide Abstract
Intracellular Ca(2+) signals provide astrocytes with a specific form of excitability that enables them to regulate synaptic transmission. In this study, we demonstrate that NAADP-AM, a membrane-permeant analogue of the new second messenger nicotinic acid-adenine dinucleotide phosphate (NAADP), mobilizes Ca(2+) in astrocytes and that the response is blocked by Ned-19, an antagonist of NAADP signalling. We also show that NAADP receptors are expressed in lysosome-related acidic vesicles. Pharmacological disruption of either NAADP or lysosomal signalling reduced Ca(2+) responses induced by ATP and endothelin-1, but not by bradykinin. Furthermore, ATP increased endogenous NAADP levels. Overall, our data provide evidence for NAADP being an intracellular messenger for agonist-mediated calcium signalling in astrocytes.
Related JoVE Video
Staging anti-inflammatory therapy in Alzheimers disease.
Front Aging Neurosci
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimers disease (AD) is controversial because conclusions from numerous epidemiological studies reporting delayed onset of AD in NSAID users have not been corroborated in clinical trials. The purpose of this personal view is to revise the case for NSAIDs in AD therapeutics in light of: (i) the last report from the only primary prevention trial in AD, ADAPT, which, although incomplete, points to significant protection in long-term naproxen users, and (ii) the recently proposed dynamic model of AD evolution. The model contends that there is a clinical silent phase in AD that can last up to 20?years, the duration depending on life style habits, genetic factors, or cognitive reserve. The failure of many purported disease-modifying drugs in AD clinical trials is forcing the view that treatments will only be efficacious if administered pre-clinically. Here we will argue that NSAIDs failed in clinical trials because they are disease-modifying drugs, and they should be administered in early stages of the disease. A complete prevention trial in cognitively normal individuals is thus called for. Further, the shift of anti-inflammatory treatment to early stages uncovers a knowledge void about the targets of NSAIDs in asymptomatic individuals. AD researchers have mostly relied on post-mortem analysis of A? plaque-laden brains from demented patients or animal models, thus drawing conclusions about AD pathogenesis based on late symptoms. We will discuss evidence in support that defective, not excessive, inflammation underlies AD pathogenesis, that NSAIDs are multifunctional drugs acting on inflammatory and non-inflammatory targets, and that astrocytes and microglia may play differing roles in disease progression, with an emphasis of ApoE?4 as a key, undervalued target of NSAIDs. According to a meta-analysis of epidemiological data, NSAIDs afford an average protection of 58%. If this figure is true, and translated into patient numbers, NSAID treatment may revive as a worth pursuing strategy to significantly reduce the socio-economical burden imposed by AD.
Related JoVE Video
beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1.
J. Neurosci.
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Activity-dependent gene expression mediating changes of synaptic efficacy is important for memory storage, but the mechanisms underlying gene transcriptional changes in age-related memory disorders are poorly understood. In this study, we report that gene transcription mediated by the cAMP-response element binding protein (CREB)-regulated transcription coactivator CRTC1 is impaired in neurons and brain from an Alzheimers disease (AD) transgenic mouse expressing the human beta-amyloid precursor protein (APP(Sw,Ind)). Suppression of CRTC1-dependent gene transcription by beta-amyloid (Abeta) in response to cAMP and Ca(2+) signals is mediated by reduced calcium influx and disruption of PP2B/calcineurin-dependent CRTC1 dephosphorylation at Ser151. Consistently, expression of CRTC1 or active CRTC1 S151A and calcineurin mutants reverse the deficits on CRTC1 transcriptional activity in APP(Sw,Ind) neurons. Inhibition of calcium influx by pharmacological blockade of L-type voltage-gated calcium channels (VGCCs), but not by blocking NMDA or AMPA receptors, mimics the decrease on CRTC1 transcriptional activity observed in APP(Sw,Ind) neurons, whereas agonists of L-type VGCCs reverse efficiently these deficits. Consistent with a role of CRTC1 on Abeta-induced synaptic and memory dysfunction, we demonstrate a selective reduction of CRTC1-dependent genes related to memory (Bdnf, c-fos, and Nr4a2) coinciding with hippocampal-dependent spatial memory deficits in APP(Sw,Ind) mice. These findings suggest that CRTC1 plays a key role in coupling synaptic activity to gene transcription required for hippocampal-dependent memory, and that Abeta could disrupt cognition by affecting CRTC1 function.
Related JoVE Video
JNK and ceramide kinase govern the biogenesis of lipid droplets through activation of group IVA phospholipase A2.
J. Biol. Chem.
PUBLISHED: 09-24-2009
Show Abstract
Hide Abstract
The biogenesis of lipid droplets (LD) induced by serum depends on group IVA phospholipase A(2) (cPLA(2)alpha). This work dissects the pathway leading to cPLA(2)alpha activation and LD biogenesis. Both processes were Ca(2+)-independent, as they took place after pharmacological blockade of Ca(2+) transients elicited by serum or chelation with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid tetrakis(acetoxymethyl ester). The single mutation D43N in cPLA(2)alpha, which abrogates its Ca(2+) binding capacity and translocation to membranes, did not affect enzyme activation and formation of LD. In contrast, the mutation S505A did not affect membrane relocation of the enzyme in response to Ca(2+) but prevented its phosphorylation, activation, and the appearance of LD. Expression of specific activators of different mitogen-activated protein kinases showed that phosphorylation of cPLA(2)alpha at Ser-505 is due to JNK. This was confirmed by pharmacological inhibition and expression of a dominant-negative form of the upstream activator MEKK1. LD biogenesis was accompanied by increased synthesis of ceramide 1-phosphate. Overexpression of its synthesizing enzyme ceramide kinase increased phosphorylation of cPLA(2)alpha at Ser-505 and formation of LD, and its down-regulation blocked the phosphorylation of cPLA(2)alpha and LD biogenesis. These results demonstrate that LD biogenesis induced by serum is regulated by JNK and ceramide kinase.
Related JoVE Video
BM88/Cend1 regulates stimuli-induced intracellular calcium mobilization.
Neuropharmacology
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
In neurogenesis, little is known about signal transduction pathways upstream of gene expression however, mounting evidence suggests that calcium release from internal stores plays a critical role. We have previously demonstrated that BM88 is a neuronal lineage-specific regulator of cell cycle exit and differentiation; we now report a link between BM88 and calcium signaling. Calcium imaging experiments revealed that P2Y-induced calcium mobilization is diminished in mouse neuroblastoma Neuro 2a cells stably transfected with BM88 (N2A-BM88 cells) as compared with N2A cells or N2A cells differentiated with retinoic acid. This effect is not restricted to N2A cells but is also observed in HeLa cells that are transiently transfected with BM88, indicating that cells of both neural and non-neural origin respond similarly. Further, activation of P2Y1 but not purinergic P2X receptors induces proliferation of N2A and to a lesser extent of N2A-BM88 cells. Conversely, knockdown of BM88 facilitates N2A cell proliferation both under stimulating and non-stimulating conditions. Importantly, N2A-BM88 cells are less susceptible to apoptosis triggered by C2-ceramide and exhibit reduced C2-ceramide-induced intracellular calcium release. Higher calcium uptake from mitochondria and/or lower calcium levels inside the endoplasmic reticulum may explain the reduced calcium mobilization in response to BM88. Overall, our data reveal a novel signaling mechanism by which BM88 interferes with calcium release from inositol 1,4,5-trisphosphate-sensitive stores and exerts anti-proliferative and anti-apoptotic functions.
Related JoVE Video
Lipid droplet biogenesis induced by stress involves triacylglycerol synthesis that depends on group VIA phospholipase A2.
J. Biol. Chem.
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
This work investigates the metabolic origin of triacylglycerol (TAG) formed during lipid droplet (LD) biogenesis induced by stress. Cytotoxic inhibitors of fatty acid synthase induced TAG synthesis and LD biogenesis in CHO-K1 cells, in the absence of external sources of fatty acids. TAG synthesis was required for LD biogenesis and was sensitive to inhibition and down-regulation of the expression of group VIA phospholipase A(2) (iPLA(2)-VIA). Induction of stress with acidic pH, C(2)-ceramide, tunicamycin, or deprivation of glucose also stimulated TAG synthesis and LD formation in a manner dependent on iPLA(2)-VIA. Overexpression of the enzyme enhanced TAG synthesis from endogenous fatty acids and LD occurrence. During stress, LD biogenesis but not TAG synthesis required phosphorylation and activation of group IVA PLA(2) (cPLA(2)alpha). The results demonstrate that iPLA(2)-VIA provides fatty acids for TAG synthesis while cPLA(2)alpha allows LD biogenesis. LD biogenesis during stress may be a survival strategy, recycling structural phospholipids into energy-generating substrates.
Related JoVE Video
?-Adrenergic receptor signaling increases NAADP and cADPR levels in the heart.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Evidence suggests that ?-Adrenergic receptor signaling increases heart rate and force through not just cyclic AMP but also the Ca(2+)-releasing second messengers NAADP (nicotinic acid adenine dinucleotide phosphate) and cADPR (cyclic ADP-ribose). Nevertheless, proof of the physiological relevance of these messengers requires direct measurements of their levels in response to receptor stimulation. Here we report that in intact Langendorff-perfused hearts ?-adrenergic stimulation increased both messengers, with NAADP being transient and cADPR being sustained. Both NAADP and cADPR have physiological and therefore pathological relevance by providing alternative drug targets in the ?-adrenergic receptor signaling pathway.
Related JoVE Video
ATP and noradrenaline activate CREB in astrocytes via noncanonical Ca(2+) and cyclic AMP independent pathways.
Glia
Show Abstract
Hide Abstract
In neurons, it is well established that CREB contributes to learning and memory by orchestrating the translation of experience into the activity-dependent (i.e., driven by neurotransmitters) transcription of plasticity-related genes. The activity-dependent CREB-triggered transcription requires the concerted action of cyclic AMP/protein kinase A and Ca(2+) /calcineurin via the CREB-regulated transcription co-activator (CRTC). It is not known, however, whether a comparable molecular sequence occurs in astrocytes, despite the unquestionable contribution of these cells to brain plasticity. Here we sought to determine whether and how ATP and noradrenaline cause CREB-dependent transcription in rat cortical astrocyte cultures. Both transmitters induced CREB phosphorylation (Western Blots), CREB-dependent transcription (CRE-luciferase reporter assays), and the transcription of Bdnf, a canonical regulator of synaptic plasticity (quantitative RT-PCR). We indentified a Ca(2+) and diacylglycerol-independent protein kinase C at the uppermost position of the cascade leading to CREB-dependent transcription. Notably, CREB-dependent transcription was partially dependent on ERK1/2 and CRTC, but independent of cyclic AMP/protein kinase A or Ca(2+) /calcineurin. We conclude that ATP and noradrenaline activate CREB-dependent transcription in cortical astrocytes via an atypical protein kinase C. It is of relevance that the signaling involved be starkly different to the one described in neurons since there is no convergence of Ca(2+) and cyclic AMP-dependent pathways on CRTC, which, moreover, exerts a modulatory rather than a central role. Our data thus point to the existence of an alternative, non-neuronal, glia-based role of CREB in plasticity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.