JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Design, synthesis and evaluation of benzoisothiazolones as selective inhibitors of PHOSPHO1.
Bioorg. Med. Chem. Lett.
PUBLISHED: 07-15-2014
Show Abstract
Hide Abstract
We report the discovery and characterization of a series of benzoisothiazolone inhibitors of PHOSPHO1, a newly identified soluble phosphatase implicated in skeletal mineralization and soft tissue ossification abnormalities. High-throughput screening (HTS) of a small molecule library led to the identification of benzoisothiazolones as potent and selective inhibitors of PHOSPHO1. Critical structural requirements for activity were determined, and the compounds were subsequently derivatized and measured for in vitro activity and ADME parameters including metabolic stability and permeability. On the basis of its overall profile the benzoisothiazolone analogue 2q was selected as MLPCN probe ML086.
Related JoVE Video
Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence.
J. Med. Chem.
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology.
Related JoVE Video
Alamar blue reagent interacts with cell-culture media giving different fluorescence over time: potential for false positives.
J Pharmacol Toxicol Methods
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
The cell viability assay by alamar blue is based on the principle of reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) by the intracellular reducing environment of living cells over time. In the present study, we have for the first time shown that even in the absence of cells, there occurs significant interaction between alamar blue and cell-culture media causing an increase in fluorescence.
Related JoVE Video
Design, synthesis and bioevaluation of an EphA2 receptor-based targeted delivery system.
ChemMedChem
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Because of its overexpression in a range of solid tumors, the EphA2 receptor is a validated target for cancer therapeutics. We recently described a new targeted delivery system based on specific EphA2-targeting peptides conjugated with the chemotherapeutic agent paclitaxel. Here, we investigate the chemical determinants responsible for the stability and degradation of these agents in plasma. Introducing modifications in both the peptide and the linker between the peptide and paclitaxel resulted in drug conjugates that are both long-lived in rat plasma and that markedly decrease tumor size in a prostate cancer xenograft model compared with paclitaxel alone treatment. These studies identify critical rate-limiting degradation sites on the peptide-drug conjugates, enabling the design of agents with increased stability and efficacy. These results provide support for our central hypothesis that peptide-drug conjugates targeting EphA2 represent an innovative and potentially effective strategy to selectively deliver cytotoxic drugs to cancer cells.
Related JoVE Video
Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells.
J Biomol Screen
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
We have used a "two-color" SERCA (sarco/endoplasmic reticulum calcium ATPase) biosensor and a unique high-throughput fluorescence lifetime plate reader (FLT-PR) to develop a high-precision live-cell assay designed to screen for small molecules that perturb SERCA structure. A SERCA construct, in which red fluorescent protein (RFP) was fused to the N terminus and green fluorescent protein (GFP) to an interior loop, was stably expressed in an HEK cell line that grows in monolayer or suspension. Fluorescence resonance energy transfer (FRET) from GFP to RFP was measured in the FLT-PR, which increases precision 30-fold over intensity-based plate readers without sacrificing throughput. FRET was highly sensitive to known SERCA modulators. We screened a small chemical library and identified 10 compounds that significantly affected two-color SERCA FLT. Three of these compounds reproducibly lowered FRET and inhibited SERCA in a dose-dependent manner. This assay is ready for large-scale HTS campaigns and is adaptable to many other targets.
Related JoVE Video
Identification of a selective inhibitor of murine intestinal alkaline phosphatase (ML260) by concurrent ultra-high throughput screening against human and mouse isozymes.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-14-2014
Show Abstract
Hide Abstract
Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.
Related JoVE Video
Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification.
J. Bone Miner. Res.
PUBLISHED: 05-23-2013
Show Abstract
Hide Abstract
Medial vascular calcification (MVC) is common in patients with chronic kidney disease, obesity, and aging. MVC is an actively regulated process that resembles skeletal mineralization, resulting from chondro-osteogenic transformation of vascular smooth muscle cells (VSMCs). Here, we used mineralizing murine VSMCs to study the expression of PHOSPHO1, a phosphatase that participates in the first step of matrix vesicles-mediated initiation of mineralization during endochondral ossification. Wild-type (WT) VSMCs cultured under calcifying conditions exhibited increased Phospho1 gene expression and Phospho1(-/-) VSMCs failed to mineralize in vitro. Using natural PHOSPHO1 substrates, potent and specific inhibitors of PHOSPHO1 were identified via high-throughput screening and mechanistic analysis and two of these inhibitors, designated MLS-0390838 and MLS-0263839, were selected for further analysis. Their effectiveness in preventing VSMC calcification by targeting PHOSPHO1 function was assessed, alone and in combination with a potent tissue-nonspecific alkaline phosphatase (TNAP) inhibitor MLS-0038949. PHOSPHO1 inhibition by MLS-0263839 in mineralizing WT cells (cultured with added inorganic phosphate) reduced calcification in culture to 41.8%?±?2.0% of control. Combined inhibition of PHOSPHO1 by MLS-0263839 and TNAP by MLS-0038949 significantly reduced calcification to 20.9%?±?0.74% of control. Furthermore, the dual inhibition strategy affected the expression of several mineralization-related enzymes while increasing expression of the smooth muscle cell marker Acta2. We conclude that PHOSPHO1 plays a critical role in VSMC mineralization and that "phosphatase inhibition" may be a useful therapeutic strategy to reduce MVC.
Related JoVE Video
High-throughput fluorescence polarization assay for chemical library screening against anti-apoptotic Bcl-2 family member Bfl-1.
J Biomol Screen
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ?50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.
Related JoVE Video
Inhibition of hematopoietic protein tyrosine phosphatase augments and prolongs ERK1/2 and p38 activation.
ACS Chem. Biol.
PUBLISHED: 11-17-2011
Show Abstract
Hide Abstract
The hematopoietic protein tyrosine phosphatase (HePTP) is implicated in the development of blood cancers through its ability to negatively regulate the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Small-molecule modulators of HePTP activity may become valuable in treating hematopoietic malignancies such as T cell acute lymphoblastic leukemia (T-ALL) and acute myelogenous leukemia (AML). Moreover, such compounds will further elucidate the regulation of MAPKs in hematopoietic cells. Although transient activation of MAPKs is crucial for growth and proliferation, prolonged activation of these important signaling molecules induces differentiation, cell cycle arrest, cell senescence, and apoptosis. Specific HePTP inhibitors may promote the latter and thereby may halt the growth of cancer cells. Here, we report the development of a small molecule that augments ERK1/2 and p38 activation in human T cells, specifically by inhibiting HePTP. Structure-activity relationship analysis, in silico docking studies, and mutagenesis experiments reveal how the inhibitor achieves selectivity for HePTP over related phosphatases by interacting with unique amino acid residues in the periphery of the highly conserved catalytic pocket. Importantly, we utilize this compound to show that pharmacological inhibition of HePTP not only augments but also prolongs activation of ERK1/2 and, especially, p38. Moreover, we present similar effects in leukocytes from mice intraperitoneally injected with the inhibitor at doses as low as 3 mg/kg. Our results warrant future studies with this probe compound that may establish HePTP as a new drug target for acute leukemic conditions.
Related JoVE Video
Phosphomannose isomerase inhibitors improve N-glycosylation in selected phosphomannomutase-deficient fibroblasts.
J. Biol. Chem.
PUBLISHED: 09-26-2011
Show Abstract
Hide Abstract
Congenital disorders of glycosylation (CDG) are rare genetic disorders due to impaired glycosylation. The patients with subtypes CDG-Ia and CDG-Ib have mutations in the genes encoding phosphomannomutase 2 (PMM2) and phosphomannose isomerase (MPI or PMI), respectively. PMM2 (mannose 6-phosphate ? mannose 1-phosphate) and MPI (mannose 6-phosphate ? fructose 6-phosphate) deficiencies reduce the metabolic flux of mannose 6-phosphate (Man-6-P) into glycosylation, resulting in unoccupied N-glycosylation sites. Both PMM2 and MPI compete for the same substrate, Man-6-P. Daily mannose doses reverse most of the symptoms of MPI-deficient CDG-Ib patients. However, CDG-Ia patients do not benefit from mannose supplementation because >95% Man-6-P is catabolized by MPI. We hypothesized that inhibiting MPI enzymatic activity would provide more Man-6-P for glycosylation and possibly benefit CDG-Ia patients with residual PMM2 activity. Here we show that MLS0315771, a potent MPI inhibitor from the benzoisothiazolone series, diverts Man-6-P toward glycosylation in various cell lines including fibroblasts from CDG-Ia patients and improves N-glycosylation. Finally, we show that MLS0315771 increases mannose metabolic flux toward glycosylation in zebrafish embryos.
Related JoVE Video
An optically pure apogossypolone derivative as potent pan-active inhibitor of anti-apoptotic bcl-2 family proteins.
Front Oncol
PUBLISHED: 06-13-2011
Show Abstract
Hide Abstract
Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (-) and (+) atropisomers. Compound (-) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 76?±?5, 31?±?2, 25?±?8, and 122?±?28?nM, respectively. In a cellular assay, compound (-) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC(50) values of 0.22?±?0.08 and 0.14?±?0.02??M, respectively. Similarly, compound (-) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax(-/-)/bak(-/-) cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (-) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (-) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
Related JoVE Video
Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation Ia.
J. Med. Chem.
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
We report the discovery and validation of a series of benzoisothiazolones as potent inhibitors of phosphomannose isomerase (PMI), an enzyme that converts mannose-6-phosphate (Man-6-P) into fructose-6-phosphate (Fru-6-P) and, more importantly, competes with phosphomannomutase 2 (PMM2) for Man-6-P, diverting this substrate from critical protein glycosylation events. In congenital disorder of glycosylation type Ia, PMM2 activity is compromised; thus, PMI inhibition is a potential strategy for the development of therapeutics. High-throughput screening (HTS) and subsequent chemical optimization led to the identification of a novel class of benzoisothiazolones as potent PMI inhibitors having little or no PMM2 inhibition. Two complementary synthetic routes were developed, enabling the critical structural requirements for activity to be determined, and the compounds were subsequently profiled in biochemical and cellular assays to assess efficacy. The most promising compounds were also profiled for bioavailability parameters, including metabolic stability, plasma stability, and permeability. The pharmacokinetic profile of a representative of this series (compound 19; ML089) was also assessed, demonstrating the potential of this series for in vivo efficacy when dosed orally in disease models.
Related JoVE Video
Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids.
ACS Med Chem Lett
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.
Related JoVE Video
Discovery of a novel series of inhibitors of lymphoid tyrosine phosphatase with activity in human T cells.
J. Med. Chem.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
The lymphoid tyrosine phosphatase LYP, encoded by the PTPN22 gene, is a critical regulator of signaling in T cells and recently emerged as a candidate target for therapy of autoimmune diseases. Here, by library screening, we identified a series of noncompetitive inhibitors of LYP that showed activity in primary T cells. Kinetic analysis confirmed that binding of the compounds to the phosphatase is nonmutually exclusive with respect to a known bidentate competitive inhibitor. The mechanism of action of the lead inhibitor compound 4e was studied by a combination of hydrogen/deuterium-exchange mass spectrometry and molecular modeling. The results suggest that the inhibitor interacts critically with a hydrophobic patch located outside the active site of the phosphatase. Targeting of secondary allosteric sites is viewed as a promising yet unexplored approach to develop pharmacological inhibitors of protein tyrosine phosphatases. Our novel scaffold could be a starting point to attempt development of "nonactive site" anti-LYP pharmacological agents.
Related JoVE Video
Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators.
ACS Chem Neurosci
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors.
Related JoVE Video
Design, synthesis, and structure-activity relationship studies of thiophene-3-carboxamide derivatives as dual inhibitors of the c-Jun N-terminal kinase.
Bioorg. Med. Chem.
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
We report comprehensive structure-activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. Intriguingly, the compounds have a dual inhibitory activity by functioning as both ATP and JIP mimetics, possibly by binding to both the ATP binding site and to the docking site of the kinase. Several of such novel compounds display potent JNK inhibitory profiles both in vitro and in cell.
Related JoVE Video
Design and synthesis of an orally active metabotropic glutamate receptor subtype-2 (mGluR2) positive allosteric modulator (PAM) that decreases cocaine self-administration in rats.
J. Med. Chem.
PUBLISHED: 12-14-2010
Show Abstract
Hide Abstract
The modification of 3-((2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yloxy)methyl)biphenyl-4-carboxylic acid (BINA, 1) by incorporating heteroatoms into the structure and replacing the cyclopentyl moiety led to the development of new mGluR2 positive allosteric modulators (PAMs) with optimized potency and superior druglike properties. These analogues are more potent than 1 in vitro and are highly selective for mGluR2 vs other mGluR subtypes. They have significantly improved pharmacokinetic (PK) properties, with excellent oral bioavailability and brain penetration. The benzisothiazol-3-one derivative 14 decreased cocaine self-administration in rats, providing proof-of-concept for the use of mGluR2 PAMs for the treatment of cocaine dependence.
Related JoVE Video
Design and NMR studies of cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH.
Chem Biol Drug Des
PUBLISHED: 11-30-2010
Show Abstract
Hide Abstract
We report on the design and evaluation of novel cyclic peptides targeting the N-terminal domain of the protein tyrosine phosphatase YopH from Yersinia. Cyclic peptides have been designed based on a short sequence from the protein SKAP-HOM [DE(pY)DDPF (pY=phosphotyrosine)], and they all contain the motif DEZXDPfK (where Z is a phosphotyrosine or a non-hydrolyzable phosphotyrosine mimetic, X is an aspartic acid or a leucine and f is a d-phenylalanine). These peptides present a head to tail architecture, enabling cyclization through formation of an amide bond in between the side chains of the first aspartic acid and the lysine residues. Chemical shift perturbation studies have been carried out to monitor the binding of these peptides to the N-terminal domain of YopH. Peptides containing a phosphotyrosine moiety exhibit binding affinities in the low micromolar range; substitution of the phosphotyrosine with one of its non-hydrolyzable derivatives dramatically reduces the binding affinities. These preliminary studies may pave the way for the discovery of more potent and selective peptide-based ligands of the YopH N-terminal domain which could be further investigated for their ability to inhibit Yersiniae infections.
Related JoVE Video
Design, synthesis, and structure-activity relationships of 3-ethynyl-1H-indazoles as inhibitors of the phosphatidylinositol 3-kinase signaling pathway.
J. Med. Chem.
PUBLISHED: 11-09-2010
Show Abstract
Hide Abstract
A new series of 3-ethynyl-1H-indazoles has been synthesized and evaluated in both biochemical and cell-based assays as potential kinase inhibitors. Interestingly, a selected group of compounds identified from this series exhibited low micromolar inhibition against critical components of the PI3K pathway, targeting PI3K, PDK1, and mTOR kinases. A combination of computational modeling and structure-activity relationship studies reveals a possible novel mode for PI3K inhibition, resulting in a PI3K? isoform-specific compound. Hence, by targeting the most oncogenic mutant isoform of PI3K, the compound displays antiproliferative activity both in monolayer human cancer cell cultures and in three-dimensional tumor models. Because of its favorable physicochemical, in vitro ADME and drug-like properties, we propose that this novel ATP mimetic scaffold could prove useful in deriving novel selecting and multikinase inhibitors for clinical use.
Related JoVE Video
Synthesis and biological evaluation of Apogossypolone derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins.
J. Med. Chem.
PUBLISHED: 10-29-2010
Show Abstract
Hide Abstract
Overexpression of antiapoptotic Bcl-2 family proteins is commonly related with tumor maintenance, progression, and chemoresistance. Inhibition of these antiapoptotic proteins is an attractive approach for cancer therapy. Guided by nuclear magnetic resonance (NMR) binding assays, a series of 5,5 substituted compound 6a (Apogossypolone) derivatives was synthesized and identified pan-active antagonists of antiapoptotic Bcl-2 family proteins, with binding potency in the low micromolar to nanomolar range. Compound 6f inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, and Mcl-1 with IC(50) values of 3.10, 3.12, and 2.05 ?M, respectively. In a cellular assay, 6f potently inhibits cell growth in several human cancer cell lines in a dose-dependent manner. Compound 6f further displays in vivo efficacy in transgenic mice and demonstrated superior single-agent antitumor efficacy in a PPC-1 mouse xenograft model. Together with its negligible toxicity, compound 6f represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
Related JoVE Video
Inhibition of Bfl-1 with N-aryl maleimides.
Bioorg. Med. Chem. Lett.
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
High-throughput screening of 66,000 compounds using competitive binding of peptides comprising the BH3 domain to anti-apoptotic Bfl-1 led to the identification of 14 validated hits as inhibitors of Bfl-1. N-Aryl maleimide 1 was among the validated hits. A chemical library encompassing over 280 analogs of 1 was prepared following a two-step synthesis. Structure-activity studies for inhibition of Bfl-1 by analogs of N-aryl maleimide 1 revealed a preference for electron-withdrawing substituents in the N-aryl ring and hydrophilic amines appended to the maleimide core. Inhibitors of Bfl-1 are potential development candidates for anti-cancer therapeutics.
Related JoVE Video
The mGluR2 positive allosteric modulator BINA decreases cocaine self-administration and cue-induced cocaine-seeking and counteracts cocaine-induced enhancement of brain reward function in rats.
Neuropsychopharmacology
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
Metabotropic glutamate receptor 2/3 (mGluR2/3) agonists were shown previously to nonselectively decrease both cocaine- and food-maintained responding in rats. mGluR2 positive allosteric modulators (PAMs) may represent improved therapeutic compounds because of their modulatory properties and higher selectivity for mGluR2. We analyzed the effects of the selective, brain penetrant, and systemically active mGluR2 PAM potassium 3-([(2-cyclopentyl-6-7-dimethyl-1-oxo-2,3-dihydro-1H-inden-5-yl)oxy]methyl)biphenyl l-4-carboxylate (BINA) and the mGluR2/3 agonist LY379268 on intravenous cocaine self-administration and cocaine-seeking behavior in rats that had short (1 h, ShA) or long (6 h, LgA) access to cocaine. The effects of BINA on food responding and food-seeking behavior were also analyzed. Finally, we examined the effects of BINA on brain reward function and cocaine-induced reward enhancement using the intracranial self-stimulation procedure. BINA decreased cocaine self-administration in both ShA and LgA rats, with no effect on food self-administration. Alternatively, LY379268 nonselectively decreased both cocaine and food self-administration. BINA decreased cue-induced reinstatement of cocaine seeking with no effect on food seeking. The cocaine-induced enhancement of brain reward function was blocked by BINA, although the highest doses of BINA decreased brain reward function when administered alone, suggesting additive, rather than interactive, effects of BINA and cocaine. In conclusion, BINA attenuated the reinforcing and counteracted the reward-enhancing effects of cocaine and decreased cue-induced cocaine-seeking behavior, without affecting behaviors motivated by food reinforcement. The higher selectivity of BINA compared with an mGluR2/3 agonist for drug- vs food-motivated behaviors suggests a therapeutic role for mGluR2 PAMs for the treatment of cocaine addiction and possibly other drugs of abuse.
Related JoVE Video
BI-97C1, an optically pure Apogossypol derivative as pan-active inhibitor of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins.
J. Med. Chem.
PUBLISHED: 05-07-2010
Show Abstract
Hide Abstract
In our continued attempts to identify novel and effective pan-Bcl-2 antagonists, we have recently reported a series of compound 2 (Apogossypol) derivatives, resulting in the chiral compound 4 (8r). We report here the synthesis and evaluation on its optically pure individual isomers. Compound 11 (BI-97C1), the most potent diastereoisomer of compound 4, inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 0.31, 0.32, 0.20, and 0.62 microM, respectively. The compound also potently inhibits cell growth of human prostate cancer, lung cancer, and lymphoma cell lines with EC(50) values of 0.13, 0.56, and 0.049 microM, respectively, and shows little cytotoxicity against bax(-/-)bak(-/-) cells. Compound 11 displays in vivo efficacy in transgenic mice models and also demonstrated superior single-agent antitumor efficacy in a prostate cancer mouse xenograft model. Therefore, compound 11 represents a potential drug lead for the development of novel apoptosis-based therapies against cancer.
Related JoVE Video
Optimization of alpha-ketoamide based p38 inhibitors through modifications to the region that binds to the allosteric site.
Bioorg. Med. Chem. Lett.
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
We have optimized a novel series of potent p38 MAP kinase inhibitors based on an alpha-ketoamide scaffold through structure based design that due to their extended molecular architecture bind, in addition to the ATP site, to an allosteric pocket. In vitro ADME, in vivo PK and efficacy studies show these compounds to have drug-like characteristics and have resulted in the nomination of a development candidate which is currently in phase II clinical trials for the oral treatment of inflammatory conditions.
Related JoVE Video
Chemical biology strategy reveals pathway-selective inhibitor of NF-kappaB activation induced by protein kinase C.
ACS Chem. Biol.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Dysregulation of NF-kappaB activity contributes to many autoimmune and inflammatory diseases. At least nine pathways for NF-kappaB activation have been identified, most of which converge on the IkappaB kinases (IKKs). Although IKKs represent logical targets for potential drug discovery, chemical inhibitors of IKKs suppress all known NF-kappaB activation pathways and thus lack the selectivity required for safe use. A unique NF-kappaB activation pathway is initiated by protein kinase C (PKC) that is stimulated by antigen receptors and many growth factor receptors. Using a cell-based high-throughput screening (HTS) assay and chemical biology strategy, we identified a 2-aminobenzimidazole compound, CID-2858522, which selectively inhibits the NF-kappaB pathway induced by PKC, operating downstream of PKC but upstream of IKKbeta, without inhibiting other NF-kappaB activation pathways. In human B cells stimulated through surface immunoglobulin, CID-2858522 inhibited NF-kappaB DNA-binding activity and expression of endogenous NF-kappaB-dependent target gene, TRAF1. Altogether, as a selective chemical inhibitor of the NF-kappaB pathway induced by PKC, CID-2858522 serves as a powerful research tool and may reveal new paths toward therapeutically useful NF-kappaB inhibitors.
Related JoVE Video
KR-003048, a potent, orally active inhibitor of p38 mitogen-activated protein kinase.
Eur. J. Pharmacol.
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
The tumor necrosis factor-alpha (TNF-alpha) cytokine, secreted by activated monocytes/macrophages and T lymphocytes, is implicated in several diseases, including rheumatoid arthritis, chronic obstructive pulmonary disease, inflammatory bowel disease, and osteoporosis. Monocyte/macrophage production of TNF-alpha is largely driven by p38alpha mitogen-activated protein kinase (MAP kinase), an intracellular soluble serine-threonine kinase. p38alpha MAP kinase is activated by growth factors, cellular stresses, and cytokines such as TNF-alpha and interleukin-l (IL-I). The primary contribution of p38alpha activation to excess TNF-alpha in settings of both chronic and acute inflammation has instigated efforts to find inhibitors of this enzyme as possible therapies for associated disease states. Analogue design, synthesis, and structure-activity studies led to the identification of 5-tert-butyl-N-cyclopropyl-2-methoxy-3-{2-[4-(2-morpholin-4-yl-ethoxy)-naphthalen-1-yl]-2-oxo-acetylamino}-benzamide (KR-003048) as a potent inhibitor of the p38 MAP kinase signaling pathway in vitro and in vivo. The inhibition in vitro of human p38alpha enzyme activity and lipopolysaccharide (LPS)-induced p38 activation and subsequent TNF-alpha release is described. KR-00348 was demonstrated to be a potent inhibitor of inflammatory cytokine production ex vivo in rat and human whole blood, and showed good oral bioavailability. Additionally, efficacy in mouse and rat models of acute and chronic inflammation was obtained. KR-003048 possessed therapeutic activity in acute models, demonstrating substantial inhibition of carrageenan-induced paw edema and in vivo LPS-induced TNF release at 30mg/kg p.o. Collagen-induced arthritis in mice was significantly inhibited by 10 and 30mg/kg doses of KR-003048. Evidence for disease-modifying activity in this model was indicated by histological evaluation of joints.
Related JoVE Video
Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP).
J. Med. Chem.
PUBLISHED: 10-14-2009
Show Abstract
Hide Abstract
We report the characterization and optimization of drug-like small molecule inhibitors of tissue-nonspecific alkaline phosphatase (TNAP), an enzyme critical for the regulation of extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) of a small molecule library led to the identification of arylsulfonamides as potent and selective inhibitors of TNAP. Critical structural requirements for activity were determined, and the compounds were subsequently profiled for in vitro activity and bioavailability parameters including metabolic stability and permeability. The plasma levels following subcutaneous administration of a member of the lead series in rat was determined, demonstrating the potential of these TNAP inhibitors as systemically active therapeutic agents to target various diseases involving soft tissue calcification. A representative member of the series was also characterized in mechanistic and kinetic studies.
Related JoVE Video
Synthesis and optimization of thiadiazole derivatives as a novel class of substrate competitive c-Jun N-terminal kinase inhibitors.
Bioorg. Med. Chem.
PUBLISHED: 09-22-2009
Show Abstract
Hide Abstract
A series of thiadiazole derivatives has been designed as potential allosteric, substrate competitive inhibitors of the protein kinase JNK. We report on the synthesis, characterization and evaluation of a series of compounds that resulted in the identification of potent and selective JNK inhibitors targeting its JIP-1 docking site.
Related JoVE Video
Apogossypol derivatives as pan-active inhibitors of antiapoptotic B-cell lymphoma/leukemia-2 (Bcl-2) family proteins.
J. Med. Chem.
PUBLISHED: 06-27-2009
Show Abstract
Hide Abstract
Guided by nuclear magnetic resonance (NMR) binding assays and computational docking studies, a series of 5,5 substituted apogossypol derivatives was synthesized that resulted in potent pan-active inhibitors of antiapoptotic Bcl-2 family proteins. Compound 8r inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 0.76, 0.32, 0.28, and 0.73 microM, respectively. The compound also potently inhibits cell growth of human lung cancer and BP3 human B-cell lymphoma cell lines with EC(50) values of 0.33 and 0.66 microM, respectively. Compound 8r shows little cytotoxicity against bax(-/-)bak(-/-) cells, indicating that it kills cancers cells via the intended mechanism. The compound also displays in vivo efficacy in transgenic mice in which Bcl-2 is overexpressed in splenic B-cells. Together with its improved chemical, plasma, and microsomal stability relative to compound 2 (apogossypol), compound 8r represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
Related JoVE Video
In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I.
Mol. Cancer Ther.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
Protein geranylgeranyltransferase-I (GGTase-I) catalyzes protein geranylgeranylation, which is critical for the function of proteins such as Rho, Rac, and Ral. We previously identified several small-molecule inhibitors of GGTase-I from an allenoate-derived compound library and showed that these compounds exhibit specific inhibition of GGTase-I resulting in the inhibition of proliferation associated with the induction of G(1) cell cycle arrest of a variety of cancer cell lines. Because inhibition of GGTase-I is expected to suppress tumor growth, we investigated in vivo effects of one of these GGTase-I inhibitors (GGTI), P61A6, by using a human pancreatic cancer xenograft model in mice. The new compound GGTI P61A6 showed an excellent antitumor effect. I.p. administration of P61A6 significantly suppressed tumor growth of the PANC-1 xenograft. Even once per week administration of GGTI was enough to suppress tumor growth. Immunohistochemical examination indicated the inhibition of cell proliferation in the tumors by P61A6 treatment, but neither apoptosis nor antiangiogenesis was observed. Increased cytosolic localization of proteins such as Rap1 and RhoA in tumors was observed. In addition, the enzyme activity of GGTase-I in tumors was inhibited. Pharmacokinetic analysis showed that the plasma half-life of GGTI is ?6 h, suggesting its prolonged effect. These data suggest that the novel GGTI compound P61A6 is an excellent chemotherapeutic drug candidate for human pancreatic cancer. They also provide evidence that protein GGTase-I may be a valid target for cancer therapy.
Related JoVE Video
Apogossypol derivatives as antagonists of antiapoptotic Bcl-2 family proteins.
Mol. Cancer Ther.
PUBLISHED: 04-18-2009
Show Abstract
Hide Abstract
Guided by a combination of nuclear magnetic resonance binding assays and computational docking studies, we synthesized a library of 5,5 substituted Apogossypol derivatives as potent Bcl-XL antagonists. Each compound was subsequently tested for its ability to inhibit Bcl-XL in an in vitro fluorescence polarization competition assay and exert single-agent proapoptotic activity in human cancer cell lines. The most potent compound BI79D10 binds to Bcl-XL, Bcl-2, and Mcl-1 with IC50 values of 190, 360, and 520 nmol/L, respectively, and potently inhibits cell growth in the H460 human lung cancer cell line with an EC50 value of 680 nmol/L, expressing high levels of Bcl-2. BI79D10 also effectively induces apoptosis of the RS11846 human lymphoma cell line in a dose-dependent manner and shows little cytotoxicity against bax-/-bak-/- mouse embryonic fibroblast cells, in which antiapoptotic Bcl-2 family proteins lack a cytoprotective phenotype, implying that BI79D10 has little off-target effects. BI79D10 displays in vivo efficacy in transgenic mice, in which Bcl-2 is overexpressed in splenic B cells. Together with its improved plasma and microsomal stability relative to Apogossypol, BI79D10 represents a lead compound for the development of novel apoptosis-based therapies for cancer.
Related JoVE Video
Discovery and binding studies on a series of novel Pin1 ligands.
Chem Biol Drug Des
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
Pin1 plays a key role in various biological cellular processes via the recognition of phosphorylated Ser/Thr-Proline motifs. Moreover, high expression levels of Pin1 are correlated to tumorgenesis in some cancer types. Here, we identify a novel series of small molecular weight compounds with a core structure mimicking the phoshorylated serine. The binding affinity and binding mode of the compounds for Pin1 are analyzed via NMR spectroscopy and computational studies. The reported chemical probes and relative binding data to Pin1 represent valuable stepping stones for the validation of Pin1 as target for drug discovery and for eventually the development of possible lead compounds.
Related JoVE Video
Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase.
J. Med. Chem.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
We report comprehensive structure-activity relationship studies on a novel series of c-Jun N-terminal kinase (JNK) inhibitors. The compounds are substrate competitive inhibitors that bind to the docking site of the kinase. The reported medicinal chemistry and structure-based optimizations studies resulted in the discovery of selective and potent thiadiazole JNK inhibitors that display promising in vivo activity in mouse models of insulin insensitivity.
Related JoVE Video
Discovery of 2-(5-nitrothiazol-2-ylthio)benzo[d]thiazoles as novel c-Jun N-terminal kinase inhibitors.
Bioorg. Med. Chem.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
A new series of 2-thioether-benzothiazoles has been synthesized and evaluated for JNK inhibition. The SAR studies led to the discovery of potent, allosteric JNK inhibitors with selectivity against p38.
Related JoVE Video
Orally active metabotropic glutamate subtype 2 receptor positive allosteric modulators: structure-activity relationships and assessment in a rat model of nicotine dependence.
J. Med. Chem.
Show Abstract
Hide Abstract
Compounds that modulate metabotropic glutamate subtype 2 (mGlu(2)) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu(2) receptor positive allosteric modulators (PAMs). The effects of N-substitution (R(1)) and substitutions on the aryl ring (R(2)) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu(2) receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans.
Related JoVE Video
High-throughput FRET assay yields allosteric SERCA activators.
J Biomol Screen
Show Abstract
Hide Abstract
Using fluorescence resonance energy transfer (FRET), we performed a high-throughput screen (HTS) in a reconstituted membrane system, seeking compounds that reverse inhibition of sarcoplasmic reticulum Ca-ATPase (SERCA) by its cardiac regulator, phospholamban (PLB). Such compounds have long been sought to correct aberrant Ca(2+) regulation in heart failure. Donor-SERCA was reconstituted in phospholipid membranes with or without acceptor-PLB, and FRET was measured in a steady-state fluorescence microplate reader. A 20 000-compound library was tested in duplicate. Compounds that decreased FRET by more than three standard deviations were considered hits. From 43 hits (0.2%), 31 (72%) were found to be false-positives upon more thorough FRET testing. The remaining 12 hits were tested in assays of Ca-ATPase activity, and six of these activated SERCA significantly, by as much as 60%, and several also enhanced cardiomyocyte contractility. These compounds directly activated SERCA from heart and other tissues. These results validate our FRET approach and set the stage for medicinal chemistry and preclinical testing. We were concerned about the high rate of false-positives, resulting from the low precision of steady-state fluorescence. Preliminary studies with a novel fluorescence lifetime plate reader show 20-fold higher precision. This instrument can dramatically increase the quality of future HTS.
Related JoVE Video
A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924.
Cell Rep
Show Abstract
Hide Abstract
Inhibition of NEDD8-activating enzyme (NAE) has emerged as a highly promising approach to treat cancer through the adenosine sulfamate analog MLN4924. Here, we show that selective pressure results in HCT116 colorectal carcinoma cells with decreased MLN4924 sensitivity and identify a single-nucleotide transition that changes alanine 171 to threonine (A171T) of the NAE subunit UBA3. This reduces the enzymes affinity for MLN4924 and ATP while increasing NEDD8 activation at physiological ATP concentrations. Expression of UBA3 A171T is sufficient to decrease MLN4924 sensitivity of naive HCT116 cells, indicating that it is a dominant suppressor of MLN4924-mediated cell death. Our data suggest that the on-target potency of MLN4924 selects for a point mutation in NAE that overcomes the molecules inhibitory effects, allowing cancer cell survival.
Related JoVE Video
Endoplasmic reticulum protein BI-1 regulates Ca²?-mediated bioenergetics to promote autophagy.
Genes Dev.
Show Abstract
Hide Abstract
Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²? mediated by inositol triphosphate receptors (IP?Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP?R-dependent manner. By reducing steady-state levels of ER Ca²? via IP?Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1s ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²? signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.
Related JoVE Video
LYP inhibits T-cell activation when dissociated from CSK.
Nat. Chem. Biol.
Show Abstract
Hide Abstract
Lymphoid tyrosine phosphatase (LYP) and C-terminal Src kinase (CSK) are negative regulators of signaling mediated through the T-cell antigen receptor (TCR) and are thought to act in a cooperative manner when forming a complex. Here we studied the spatiotemporal dynamics of the LYP-CSK complex in T cells. We demonstrate that dissociation of this complex is necessary for recruitment of LYP to the plasma membrane, where it downmodulates TCR signaling. Development of a potent and selective chemical probe of LYP confirmed that LYP inhibits T-cell activation when removed from CSK. Our findings may explain the reduced TCR-mediated signaling associated with a single-nucleotide polymorphism that confers increased risk for certain autoimmune diseases, including type 1 diabetes and rheumatoid arthritis, and results in expression of a mutant LYP that is unable to bind CSK. Our compound also represents a starting point for the development of a LYP-based treatment of autoimmunity.
Related JoVE Video
Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth.
Cancer Res.
Show Abstract
Hide Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a promising drug target in malignancy. The structure of MT1-MMP includes the hemopexin domain (PEX) that is distinct from and additional to the catalytic domain. Current MMP inhibitors target the conserved active site in the catalytic domain and, as a result, repress the proteolytic activity of multiple MMPs instead of MT1-MMP alone. In our search for noncatalytic inhibitors of MT1-MMP, we compared the protumorigenic activity of wild-type MT1-MMP with an MT1-MMP mutant lacking PEX (?PEX). In contrast to MT1-MMP, ?PEX did not support tumor growth in vivo, and its expression resulted in small fibrotic tumors that contained increased levels of collagen. Because these findings suggested an important role for PEX in tumor growth, we carried out an inhibitor screen to identify small molecules targeting the PEX domain of MT1-MMP. Using the Developmental Therapeutics Program (National Cancer Institute/NIH), virtual ligand screening compound library as a source and the X-ray crystal structure of PEX as a target, we identified and validated a novel PEX inhibitor. Low dosage, intratumoral injections of PEX inhibitor repressed tumor growth and caused a fibrotic, ?PEX-like tumor phenotype in vivo. Together, our findings provide a preclinical proof of principle rationale for the development of novel and selective MT1-MMP inhibitors that specifically target the PEX domain.
Related JoVE Video
Novel targeted system to deliver chemotherapeutic drugs to EphA2-expressing cancer cells.
J. Med. Chem.
Show Abstract
Hide Abstract
The efficacy of anticancer drugs is often limited by their systemic toxicities and adverse side effects. We report that the EphA2 receptor is overexpressed preferentially in several human cancer cell lines compared to normal tissues and that an EphA2 targeting peptide (YSAYPDSVPMMS) can be effective in delivering anticancer agents to such tumors. Hence, we report on the synthesis and characterizations of a novel EphA2-targeting agent conjugated with the chemotherapeutic drug paclitaxel. We found that the peptide-drug conjugate is dramatically more effective than paclitaxel alone at inhibiting tumor growth in a prostate cancer xenograft model, delivering significantly higher levels of drug to the tumor site. We believe these studies open the way to the development of a new class of therapeutic compounds that exploit the EphA2 receptor for drug delivery to cancer cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.