JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Field detection of Tembusu virus in western Thailand by rt-PCR and vector competence determination of select culex mosquitoes for transmission of the virus.
Am. J. Trop. Med. Hyg.
PUBLISHED: 09-16-2013
Show Abstract
Hide Abstract
Tembusu virus (TMUV; Ntaya serocomplex) was detected in two pools of mosquitoes captured near Sangkhlaburi, Thailand, as well as from sera from sentinel ducks from the same area. Although TMUV has been isolated from several mosquito species in Asia, no studies have ever shown competent vectors for this virus. Therefore, we allowed mosquitoes captured near Sangkhlaburi to feed on young chickens that had been infected with TMUV. These mosquitoes were tested approximately 2 weeks later to determine infection, dissemination, and transmission rates. Culex vishnui developed high viral titers after feeding on TMUV-infected chicks and readily transmitted virus to naïve chickens. In contrast, Cx. fuscocephala seemed less susceptible to infection, and more importantly, zero of five fuscocephala with a disseminated infection transmitted virus by bite, indicating a salivary gland barrier. These results provide evidence for the involvement of Culex mosquitoes in the transmission of TMUV in the environment.
Related JoVE Video
Plasmodium falciparum: Genetic diversity and complexity of infections in an isolated village in western Thailand.
Parasitol. Int.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Genetic diversity of Plasmodium falciparum is intimately associated with morbidity, mortality and malaria control strategies. It is therefore imperative to study genetic makeup and population structure of this parasite in endemic areas. In Kong Mong Tha, an isolated village in western Thailand, the majority of P. falciparum infections are asymptomatic. In this study we investigated complexity of infections and single nucleotide polymorphisms (SNPs) in the P. falciparum population of Kong Mong Tha, and compared results with those previously obtained from Mae Sod, in northwestern Thailand, where the majority of infections were symptomatic. Using PCR-based determination of the 5 merozoite surface protein 1 gene (msp1) recombinant types, we found that 39% of 59 P. falciparum isolates from Kong Mong Tha had multiple 5 recombinant types with a mean number of 1.54. These values were much lower than those obtained from Mae Sod: 96% for multiple infections and with a mean number of 3.61. Analysis of full-length sequences of two housekeeping genes, the P-type Ca(2+)-transporting ATPase gene (n=33) plus adenylosuccinate lyase gene (n=33), and three vaccine candidate antigen genes, msp1 (n=26), the circumsporozoite protein gene, csp (n=30) and the apical membrane antigen 1 gene, ama 1 (n=32), revealed that in all of these genes within-population SNP diversity was at similar levels between Kong Mong Tha and Mae Sod, suggesting that the extent of MOI and clinical manifestations of malaria are not strongly associated with genetic diversity. Additionally, we did not detect significant genetic differentiation between the two parasite populations, as estimated by the Wrights fixation index of inter-population variance in allele frequencies, suggesting that gene flow prevented the formation of population structuring. Thus, this study highlights unique features of P. falciparum populations in Thailand. The implications of these finding are discussed.
Related JoVE Video
Impact of phlebotomine sand flies on United State military operations at Tallil Air Base, Iraq: 6. Evaluation of insecticides for the control of sand flies.
J. Med. Entomol.
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
We conducted a series of field experiments in 2003 and 2004 to evaluate the efficacy of a variety of insecticides and insecticide application technologies for the control of phlebotomine sand flies at Tallil Airbase, Iraq. During the experiments, 53,263 sand flies were collected. The experiments evaluated the following: (1) routine sand fly control operations using a variety of residual and area-wide insecticides; (2) a combination of five different insecticide application methods in and around tents; (3) residual application of lambda-cyhalothrin and ultra-low volume application of pyrethrins in houses; (4) carbaryl and lambda-cyhalothrin applied as barrier sprays; (5) a deltamethrin-impregnated fence; (6) lambda-cyhalothrin applied as a residual spray in concrete manholes; (7) deltamethrin-treated flooring in tents; and 8) ultra-low volume-applied malathion. Although some of the experiments resulted in limited reductions in the number of sand flies collected in light traps, in no instance did we completely eliminate sand flies or reduce populations for a sustained period. The implications of these findings are discussed.
Related JoVE Video
Impact of phlebotomine sand flies on United States military operations at Tallil Air Base, Iraq: 5. Impact of weather on sand fly activity.
J. Med. Entomol.
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
In this study, we examined the effect of weather and moon illumination on sand fly activity, as measured by light trap collections made between 2 May 2003 and 25 October 2004 at Tallil Air Base, Iraq. Wind speed, temperature, dew point, percentage of sky cover, and moon illumination were entered into principal components analysis. The resulting principal components were entered into stepwise regression to develop a model of the impact of the weather on sand fly collections. Wind speed, percentage of sky cover, and moon illumination each had a strong inverse relationship with the number of sand flies collected, whereas temperature displayed a direct relationship to sand fly collections. Our data indicate that sand fly light trap catches at Tallil Air Base are highest on warm, clear nights with low wind speed and minimal illumination from the moon.
Related JoVE Video
Anointing chemicals and hematophagous arthropods: responses by ticks and mosquitoes to citrus (Rutaceae) peel exudates and monoterpene components.
J. Chem. Ecol.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Some birds and mammals roll on or wipe themselves with the fruits or leaves of Citrus spp. or other Rutaceae. These anointing behaviors, as with anointing in general, are thought to function in the topical acquisition of chemicals that deter consumers, including hematophagous arthropods. We measured avoidance and other responses by nymphal lone star ticks (Amblyomma americanum) and adult female yellow fever mosquitoes (Aedes aegypti) to lemon peel exudate and to 24 volatile monoterpenes (racemates and isomers), including hydrocarbons, alcohols, aldehydes, acetates, ketones, and oxides, present in citrus fruits and leaves in order to examine their potential as arthropod deterrents. Ticks allowed to crawl up vertically suspended paper strips onto a chemically treated zone avoided the peel exudate and geraniol, citronellol, citral, carveol, geranyl acetate, ?-terpineol, citronellyl acetate, and carvone. Ticks confined in chemically treated paper packets subsequently were impaired in climbing and other behaviors following exposure to the peel exudate and, of the compounds tested, most impaired to carveol. Mosquitoes confined in chambers with chemically treated feeding membranes landed and fed less, and flew more, when exposed to the peel exudate than to controls, and when exposed to aldehydes, oxides, or alcohols versus most hydrocarbons or controls. However, attraction by mosquitoes in an olfactometer was not inhibited by either lemon peel exudate or most of the compounds we tested. Our results support the notion that anointing by vertebrates with citrus-derived chemicals deters ticks. We suggest that some topically applied compounds are converted into more potent arthropod deterrents when oxidized on the integument of anointed animals.
Related JoVE Video
Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini.
Southeast Asian J. Trop. Med. Public Health
PUBLISHED: 07-16-2010
Show Abstract
Hide Abstract
Illustrated keys for the identification of the fourth-instar larvae and adult females of the mosquito species of tribe Aedini in Thailand are presented, along with the geographic distribution of the species and the known habitats of their immature stages. The keys are the first to encompass the recent revisionary studies of tribe Aedini. One hundred and seventy-five species of Aedini belonging to 38 genera and 18 subgenera are recognized in Thailand. Two species of genus Armigeres, two of genus Collessius, and one of genus Downsiomyia are undescribed. Himalaius simlensis [formerly Aedes (Finlaya) simlensis], Hopkinsius (Yamada) albocinctus [formerly Aedes (Finlaya) albocinctus], Downsiomyia nipponica and Downsiomyia saperoi [formerly species of Aedes (Finlaya)], and Hulecoeteomyia pallirostris [formerly Ochlerotatus (Finlaya) pallirostris] are new country records. Aedimorphus (formerly a subgenus of Aedes), Cancraedes, and Rhinoskusea (formerly subgenera of Ochlerotatus) are recognized as genera, and genus Petermattinglyius includes species previously included in Diceromyia (formerly a subgenus of Aedes) in Thailand. Heteraspidion, Huangmyia, Stegomyia, and Xyele are newly recognized subgenera of genus Stegomyia (formerly a subgenus of Aedes), which includes eight species without subgeneric placement. Two unidentified and unplaced species were discovered in Thailand.
Related JoVE Video
Orally administered P22 phage tailspike protein reduces salmonella colonization in chickens: prospects of a novel therapy against bacterial infections.
PLoS ONE
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI) tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps). Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in humans.
Related JoVE Video
Use of vector diagnostics during military deployments: recent experience in Iraq and Afghanistan.
Mil Med
PUBLISHED: 09-29-2009
Show Abstract
Hide Abstract
Vector-borne diseases such as malaria, dengue, and leishmaniasis are a threat to military forces deployed outside of the United States. The availability of specific information on the vector-borne disease threat (e.g., presence or absence of a specific disease agent, temporal and geographic distribution of competent vectors, and vector infection rates) allows for effective implementation of appropriate measures to protect our deployed military forces. Vector diagnostics can provide critical, real-time information crucial to establishing effective vector prevention/control programs. In this article we provide an overview of current vector diagnostic capabilities, evaluate the use of vector diagnostics in Operation Enduring Freedom and Operation Iraqi Freedom, and discuss the concept of operations under which vector diagnostics are employed.
Related JoVE Video
Impact of phlebotomine sand flies on U.S. military operations at Tallil Air Base, Iraq: 4. Detection and identification of leishmania parasites in sand flies.
J. Med. Entomol.
PUBLISHED: 06-06-2009
Show Abstract
Hide Abstract
Sand flies collected between April 2003 and November 2004 at Tallil Air Base, Iraq, were evaluated for the presence of Leishmania parasites using a combination of a real-time Leishmania-generic polymerase chain reaction (PCR) assay and sequencing of a 360-bp fragment of the glucose-6-phosphate-isomerase (GPI) gene. A total of 2,505 pools containing 26,574 sand flies were tested using the real-time PCR assay. Leishmania DNA was initially detected in 536 pools; however, after extensive retesting with the real-time PCR assay, a total of 456 pools were considered positive and 80 were considered indeterminate. A total of 532 samples were evaluated for Leishmania GPI by sequencing, to include 439 PCR-positive samples, 80 PCR-indeterminate samples, and 13 PCR-negative samples. Leishmania GPI was detected in 284 samples that were sequenced, to include 281 (64%) of the PCR-positive samples and 3 (4%) of the PCR-indeterminate samples. Of the 284 sequences identified as Leishmania, 261 (91.9%) were L. tarentolae, 18 (6.3%) were L. donovani-complex parasites, 3 (1.1%) were L. tropica, and 2 were similar to both L. major and L. tropica. Minimum field infection rates were 0.09% for L. donovani-complex parasites, 0.02% for L. tropica, and 0.01% for the L. major/tropica-like parasite. Subsequent sequencing of a 600-bp region of the "Hyper" gene of 12 of the L. donovani-complex parasites showed that all 12 parasites were L. infantum. These data suggest that L. infantum was the primary leishmanial threat to U.S. military personnel deployed to Tallil Air Base. The implications of these findings are discussed.
Related JoVE Video
The role of the United States military in the development of vector control products, including insect repellents, insecticides, and bed nets.
J. Vector Ecol.
PUBLISHED: 06-01-2009
Show Abstract
Hide Abstract
Arthropod-borne diseases such as malaria, dengue, scrub typhus, and leishmaniasis continue to pose a significant threat to U.S. military forces deployed in support of operational and humanitarian missions. These diseases are transmitted by a variety of arthropods, including mosquitoes, ticks, chiggers, sand flies, and biting midges. In addition to disease threats, biting arthropods can cause dermatitis, allergic reactions, and sleep loss; therefore, monitoring of vector impact and integrated use of personal protective measures (PPM) and methods to reduce the vector populations are needed to protect service members. The U.S. military has played a vital role in vector identification tools and the development and testing of many of the most effective PPM and vector control products available today, including the topical repellent DEET and the repellent/insecticide permethrin, which is applied to clothing and bed nets. Efforts to develop superior products are ongoing. Although the U.S. military often needs vector control products with rather specific properties (e.g., undetectable, long-lasting in multiple climates) in order to protect its service members, many Department of Defense vector control products have had global impacts on endemic disease control.
Related JoVE Video
Leishmania detection in sand flies using a field-deployable real-time analytic system.
Mil Med
Show Abstract
Hide Abstract
We describe here the development and evaluation of advanced vector surveillance analytic technologies for real-time leishmaniasis risk assessment. Leishmania genus and visceral leishmaniasis causative agent--specific dual fluorogenic-probe hydrolysis (TaqMan), thermally stable (freeze-dried) polymerase chain reaction assays were developed using field-durable analytic instrumentation. In laboratory testing with a panel of diverse Leishmania species from culture and infected sand flies, the sensitivity and specificity of both assays were 100% concordant with DNA sequencing. In specificity testing with Leishmania genetic near neighbors, clinically significant organisms, and human genomic DNA, no detectable fluorescence above background was observed. Field evaluation was conducted in southern Iraq using wild sand flies. In field testing, Leishmania genus assay was 100% sensitive and 96% specific with a single false-positive result. The visceral leishmaniasis genotype assay was 100% sensitive and 100% specific compared to DNA sequencing. Thermally stable polymerase chain reaction assays vastly simplified transportation and storage. Assay preparation and analysis required less than 2 hours.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.