JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing.
Plant J.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
We explored genetic variation by sequencing a selection of 84 tomato accessions and related wild species representative of the Lycopersicon, Arcanum, Eriopersicon and Neolycopersicon groups, which has yielded a huge amount of precious data on sequence diversity in the tomato clade. Three new reference genomes were reconstructed to support our comparative genome analyses. Comparative sequence alignment revealed group-, species- and accession-specific polymorphisms, explaining characteristic fruit traits and growth habits in the various cultivars. Using gene models from the annotated Heinz 1706 reference genome, we observed differences in the ratio between non-synonymous and synonymous SNPs (dN/dS) in fruit diversification and plant growth genes compared to a random set of genes, indicating positive selection and differences in selection pressure between crop accessions and wild species. In wild species, the number of single-nucleotide polymorphisms (SNPs) exceeds 10 million, i.e. 20-fold higher than found in most of the crop accessions, indicating dramatic genetic erosion of crop and heirloom tomatoes. In addition, the highest levels of heterozygosity were found for allogamous self-incompatible wild species, while facultative and autogamous self-compatible species display a lower heterozygosity level. Using whole-genome SNP information for maximum-likelihood analysis, we achieved complete tree resolution, whereas maximum-likelihood trees based on SNPs from ten fruit and growth genes show incomplete resolution for the crop accessions, partly due to the effect of heterozygous SNPs. Finally, results suggest that phylogenetic relationships are correlated with habitat, indicating the occurrence of geographical races within these groups, which is of practical importance for Solanum genome evolution studies.
Related JoVE Video
Epigenetic and genetic influences on DNA methylation variation in maize populations.
Plant Cell
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
DNA methylation is a chromatin modification that is frequently associated with epigenetic regulation in plants and mammals. However, genetic changes such as transposon insertions can also lead to changes in DNA methylation. Genome-wide profiles of DNA methylation for 20 maize (Zea mays) inbred lines were used to discover differentially methylated regions (DMRs). The methylation level for each of these DMRs was also assayed in 31 additional maize or teosinte genotypes, resulting in the discovery of 1966 common DMRs and 1754 rare DMRs. Analysis of recombinant inbred lines provides evidence that the majority of DMRs are heritable. A local association scan found that nearly half of the DMRs with common variation are significantly associated with single nucleotide polymorphisms found within or near the DMR. Many of the DMRs that are significantly associated with local genetic variation are found near transposable elements that may contribute to the variation in DNA methylation. Analysis of gene expression in the same samples used for DNA methylation profiling identified over 300 genes with expression patterns that are significantly associated with DNA methylation variation. Collectively, our results suggest that DNA methylation variation is influenced by genetic and epigenetic changes that are often stably inherited and can influence the expression of nearby genes.
Related JoVE Video
Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm.
Plant Cell
PUBLISHED: 12-23-2011
Show Abstract
Hide Abstract
Imprinting describes the differential expression of alleles based on their parent of origin. Deep sequencing of RNAs from maize (Zea mays) endosperm and embryo tissue 14 d after pollination was used to identify imprinted genes among a set of ~12,000 genes that were expressed and contained sequence polymorphisms between the B73 and Mo17 genotypes. The analysis of parent-of-origin patterns of expression resulted in the identification of 100 putative imprinted genes in maize endosperm, including 54 maternally expressed genes (MEGs) and 46 paternally expressed genes (PEGs). Three of these genes have been previously identified as imprinted, while the remaining 97 genes represent novel imprinted maize genes. A genome-wide analysis of DNA methylation identified regions with reduced endosperm DNA methylation in, or near, 19 of the 100 imprinted genes. The reduced levels of DNA methylation in endosperm are caused by hypomethylation of the maternal allele for both MEGs and PEGs in all cases tested. Many of the imprinted genes with reduced DNA methylation levels also show endosperm-specific expression patterns. The imprinted maize genes were compared with imprinted genes identified in genome-wide screens of rice (Oryza sativa) and Arabidopsis thaliana, and at least 10 examples of conserved imprinting between maize and each of the other species were identified.
Related JoVE Video
Heritable epigenetic variation among maize inbreds.
PLoS Genet.
PUBLISHED: 05-16-2011
Show Abstract
Hide Abstract
Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation.
Related JoVE Video
Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor.
Genome Res.
PUBLISHED: 10-29-2010
Show Abstract
Hide Abstract
Individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals within a species. Array comparative genomic hybridization (CGH) was used to compare gene content and copy number variation among 19 diverse maize inbreds and 14 genotypes of the wild ancestor of maize, teosinte. We identified 479 genes exhibiting higher copy number in some genotypes (UpCNV) and 3410 genes that have either fewer copies or are missing in the genome of at least one genotype relative to B73 (DownCNV/PAV). Many of these DownCNV/PAV are examples of genes present in B73, but missing from other genotypes. Over 70% of the CNV/PAV examples are identified in multiple genotypes, and the majority of events are observed in both maize and teosinte, suggesting that these variants predate domestication and that there is not strong selection acting against them. Many of the genes affected by CNV/PAV are either maize specific (thus possible annotation artifacts) or members of large gene families, suggesting that the gene loss can be tolerated through buffering by redundant functions encoded elsewhere in the genome. While this structural variation may not result in major qualitative variation due to genetic buffering, it may significantly contribute to quantitative variation.
Related JoVE Video
Repeat subtraction-mediated sequence capture from a complex genome.
Plant J.
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Sequence capture technologies, pioneered in mammalian genomes, enable the resequencing of targeted genomic regions. Most capture protocols require blocking DNA, the production of which in large quantities can prove challenging. A blocker-free, two-stage capture protocol was developed using NimbleGen arrays. The first capture depletes the library of repetitive sequences, while the second enriches for target loci. This strategy was used to resequence non-repetitive portions of an approximately 2.2 Mb chromosomal interval and a set of 43 genes dispersed in the 2.3 Gb maize genome. This approach achieved approximately 1800-3000-fold enrichment and 80-98% coverage of targeted bases. More than 2500 SNPs were identified in target genes. Low rates of false-positive SNP predictions were obtained, even in the presence of captured paralogous sequences. Importantly, it was possible to recover novel sequences from non-reference alleles. The ability to design novel repeat-subtraction and target capture arrays makes this technology accessible in any species.
Related JoVE Video
Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids.
Science
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
Heterosis refers to the superior performance of hybrid progeny relative to their inbred parents, but the mechanisms responsible are unknown. Hybrids between the maize inbred lines B73 and Mo17 exhibit heterosis regardless of cross direction. These reciprocal hybrids differ from each other phenotypically, and 30 to 50% of their genes are differentially expressed. We identified approximately 4000 expression quantitative trait loci (eQTL) that allowed us to identify markers linked to variation in expression. We found that over three-quarters of these eQTL act in trans (78%) and that 86% of these differentially regulate transcript accumulation in a manner consistent with gene expression in the hybrid being regulated exclusively by the paternally transmitted allele. This result suggests that widespread imprinting contributes to the regulation of gene expression in maize hybrids.
Related JoVE Video
Reshaping of the maize transcriptome by domestication.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Through domestication, humans have substantially altered the morphology of Zea mays ssp. parviglumis (teosinte) into the currently recognizable maize. This system serves as a model for studying adaptation, genome evolution, and the genetics and evolution of complex traits. To examine how domestication has reshaped the transcriptome of maize seedlings, we used expression profiling of 18,242 genes for 38 diverse maize genotypes and 24 teosinte genotypes. We detected evidence for more than 600 genes having significantly different expression levels in maize compared with teosinte. Moreover, more than 1,100 genes showed significantly altered coexpression profiles, reflective of substantial rewiring of the transcriptome since domestication. The genes with altered expression show a significant enrichment for genes previously identified through population genetic analyses as likely targets of selection during maize domestication and improvement; 46 genes previously identified as putative targets of selection also exhibit altered expression levels and coexpression relationships. We also identified 45 genes with altered, primarily higher, expression in inbred relative to outcrossed teosinte. These genes are enriched for functions related to biotic stress and may reflect responses to the effects of inbreeding. This study not only documents alterations in the maize transcriptome following domestication, identifying several genes that may have contributed to the evolution of maize, but highlights the complementary information that can be gained by combining gene expression with population genetic analyses.
Related JoVE Video
Changes in genome content generated via segregation of non-allelic homologs.
Plant J.
Show Abstract
Hide Abstract
A careful analysis of two maize recombinant inbred lines (RILs) relative to their inbred parents revealed the presence of several hundred apparently de novo copy number variants (CNVs). These changes in genome content were validated via both PCR and whole exome-array capture-and-sequencing experiments. One hundred and eighty-five genomic regions, which overlap with 38 high-confidence genes, exhibited apparently de novo copy number variation (CNV) in these two RILs and in many instances the same apparently de novo CNV events were observed in multiple RILs. Further analyses revealed that these recurrent apparently de novo CNVs were caused by segregation of single-copy homologous sequences that are located in non-allelic positions in the two parental inbred lines. F(1) individuals derived from these inbred lines will be hemizygous for each of these non-allelic homologs but RIL genotypes will contain these sequences at zero, one or two genomic loci. Hence, the segregation of non-allelic homologs may contribute to transgressive segregation. Indeed, statistical associations between phenotypic quantitative trait loci and genomic losses were observed for two of 14 tested pairs of non-allelic homologs.
Related JoVE Video
Comparative population genomics of maize domestication and improvement.
Nat. Genet.
Show Abstract
Hide Abstract
Domestication and plant breeding are ongoing 10,000-year-old evolutionary experiments that have radically altered wild species to meet human needs. Maize has undergone a particularly striking transformation. Researchers have sought for decades to identify the genes underlying maize evolution, but these efforts have been limited in scope. Here, we report a comprehensive assessment of the evolution of modern maize based on the genome-wide resequencing of 75 wild, landrace and improved maize lines. We find evidence of recovery of diversity after domestication, likely introgression from wild relatives, and evidence for stronger selection during domestication than improvement. We identify a number of genes with stronger signals of selection than those previously shown to underlie major morphological changes. Finally, through transcriptome-wide analysis of gene expression, we find evidence both consistent with removal of cis-acting variation during maize domestication and improvement and suggestive of modern breeding having increased dominance in expression while targeting highly expressed genes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.