JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies.
Bone
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
High doses of zoledronic acid (ZOL), one of the most potent inhibitors of bone resorption, are currently evaluated in phase III clinical trials in Europe for the treatment of malignant pediatric primary bone tumors. The impact of such an intensive treatment on the craniofacial skeleton growth is a critical question in the context of patients with actively growing skeleton; in particular, in light of our previous studies evidencing that endochondral bone formation was transiently disturbed by high doses of ZOL. Two protocols adapted from pediatric treatments were developed for newborn mice (a total of 5 or 10 injections of ZOL 50?g/kg every two days). Their impact on skull bones and teeth growth was analyzed by X-rays, microCT and histology up to 3months after the last injection. ZOL administrations induced a transient delay of skull bone growth and an irreversible delay in incisor, first molar eruption and root elongation. Other teeth were affected, but most were erupted by 3months. Root histogenesis was severely impacted for all molars and massive odontogenic tumor-like structures were observed in all mandibular incisors. High doses of ZOL irreversibly disturbed teeth eruption and elongation, and delayed skull bone formation. These preclinical observations are essential for the follow-up of onco-pediatric patients treated with ZOL.
Related JoVE Video
BYL719, a new ?-specific PI3K inhibitor: Single administration and in combination with conventional chemotherapy for the treatment of osteosarcoma.
Int. J. Cancer
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
It has been established that disturbances in intracellular signaling pathways play a considerable part in the oncologic process. Phosphatidylinositol-3-kinase (PI3K) has become of key interest in cancer therapy because of its high mutation frequency and/or gain in function of its catalytic subunits in cancer cells. We investigated the therapeutic value of BYL719, a new specific PI3K? inhibitor that blocks the ATP site, on osteosarcoma and bone cells. The in vitro effects of BYL719 on proliferation, apoptosis, and cell cycle were assessed in human and murine osteosarcoma cell. Its impact on bone cells was determined using human mesenchymal stem cells (hMSC) and human CD14(+) osteoclast precursors. Two different murine preclinical models of osteosarcoma were used to analyze the in vivo biological activities of BYL719. BYL719 decreased cell proliferation by blocking cell cycle in G0/G1 phase with no outstanding effects on apoptosis cell death in HOS and MOS-J tumor cells. BYL719 inhibited cell migration and can thus be considered as a cytostatic drug for osteosarcoma. In murine preclinical models of osteosarcoma, BYL719 significantly decreased tumor progression and tumor ectopic bone formation as shown by a decrease of Ki67(+) cells and tumor vascularization. To explore the maximum therapeutic potential of BYL719, the drug was studied in combination with conventional chemotherapeutic drugs, revealing promising efficacy with ifosfamide. BYL719 also exhibited dual activities on osteoblast and osteoclast differentiation. Overall, the present work shows that BYL719 is a promising drug in either a single or multidrug approach to curing bone sarcoma.
Related JoVE Video
Zoledronic acid inhibits pulmonary metastasis dissemination in a preclinical model of Ewing's sarcoma via inhibition of cell migration.
BMC Cancer
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
Ewing's sarcoma (ES) is the second most frequent primitive malignant bone tumor in adolescents with a very poor prognosis for high risk patients, mainly when lung metastases are detected (overall survival <15% at 5 years). Zoledronic acid (ZA) is a potent inhibitor of bone resorption which induces osteoclast apoptosis. Our previous studies showed a strong therapeutic potential of ZA as it inhibits ES cell growth in vitro and ES primary tumor growth in vivo in a mouse model developed in bone site. However, no data are available on lung metastasis. Therefore, the aim of this study was to determine the effect of ZA on ES cell invasion and metastatic properties.
Related JoVE Video
Oxytocin reverses ovariectomy-induced osteopenia and body fat gain.
Endocrinology
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Osteoporosis and overweight/obesity constitute major worldwide public health burdens that are associated with aging. A high proportion of women develop osteoporosis and increased intraabdominal adiposity after menopause. which leads to bone fractures and metabolic disorders. There is no efficient treatment without major side effects for these 2 diseases. We previously showed that the administration of oxytocin (OT) normalizes ovariectomy-induced osteopenia and bone marrow adiposity in mice. Ovariectomized mice, used as an animal model mimicking menopause, were treated with OT or vehicle. Trabecular bone parameters and fat mass were analyzed using micro-computed tomography. Herein, we show that this effect on trabecular bone parameters was mediated through the restoration of osteoblast/osteoclast cross talk via the receptor activator of nuclear factor-?B ligand /osteoprotegerin axis. Moreover, the daily administration of OT normalized body weight and intraabdominal fat depots in ovariectomized mice. Intraabdominal fat mass is more sensitive to OT that sc fat depots, and this inhibitory effect is mediated through inhibition of adipocyte precursor's differentiation with a tendency to lower adipocyte size. OT treatment did not affect food intake, locomotors activity, or energy expenditure, but it did promote a shift in fuel utilization favoring lipid oxidation. In addition, the decrease in fat mass resulted from the inhibition of the adipose precursor's differentiation. Thus, OT constitutes an effective strategy for targeting osteopenia, overweight, and fat mass redistribution without any detrimental effects in a mouse model mimicking the menopause.
Related JoVE Video
NVP-BEZ235, a dual PI3K/mTOR inhibitor, inhibits osteosarcoma cell proliferation and tumor development in vivo with an improved survival rate.
Cancer Lett.
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
Despite recent improvements in chemotherapy and surgery, the problem of non-response osteosarcoma to chemotherapy remains, and is a parameter that is critical for prognosis. The present work investigated the therapeutic value of NVP-BEZ235, a dual class I PI3K/mTOR inhibitor. NVP-BEZ235 inhibited osteosarcoma cell proliferation by inducing G0/G1 cell cycle arrest with no caspase activation. In murine pre-clinical models, NVP-BEZ235 significantly slowed down tumor progression and ectopic tumor bone formation with decreased numbers of Ki67(+) cells and reduced tumor vasculature. Finally, NVP-BEZ235 considerably improved the survival rate of mice with osteosarcoma. Taken together, the results of the present work show that NVP-BEZ235 exhibits therapeutic interest in osteosarcoma and may be a promising adjuvant drug for bone sarcomas.
Related JoVE Video
Formulated siRNAs targeting Rankl prevent osteolysis and enhance chemotherapeutic response in osteosarcoma models.
J. Bone Miner. Res.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
The development of osteosarcoma, the most common malignant primary bone tumor is characterized by a vicious cycle established between tumor proliferation and paratumor osteolysis. This osteolysis is mainly regulated by the receptor activator of nuclear factor ?B ligand (RANKL). Preclinical studies have demonstrated that Rankl blockade by soluble receptors is an effective strategy to prevent osteolytic lesions leading to osteosarcoma inhibition. A new therapeutic option could be to directly inhibit Rankl expression by small interfering RNAs (Rkl-siRNAs) and combine these molecules with chemotherapy to counteract the osteosarcoma development more efficiently. An efficient siRNA sequence directed against both mouse and rat mRNAs coding Rankl was first validated in vitro and tested in two models of osteosarcoma: a syngenic osteolytic POS-1 model induced in immunocompetent mice and a xenograft osteocondensant model of rat OSRGA in athymic mice. Intratumor injections of Rankl-directed siRNAs in combination with the cationic liposome RPR209120/DOPE reduced the local and systemic Rankl production and protected bone from paratumor osteolysis. Although Rkl-siRNAs alone had no effect on tumor development in both osteosarcoma models, it significantly blocked tumor progression when combined with ifosfamide compared with chemotherapy alone. Our results indicate that siRNAs could be delivered using cationic liposomes and thereby could inhibit Rankl production in a specific manner in osteosarcoma models. Moreover, the Rankl inhibition mediated by RNA interference strategy improves the therapeutic response of primary osteosarcoma to chemotherapy.
Related JoVE Video
Impact of oncopediatric dosing regimen of zoledronic acid on bone growth: preclinical studies and case report of an osteosarcoma pediatric patient.
J. Bone Miner. Res.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Osteosarcoma and Ewing sarcoma represent the two most frequent primary bone tumors that arise in the pediatric population. Despite recent improvement in their therapeutic management, no improvement in survival rate has been achieved since early 1980?s. Among new therapeutic approaches, bisphosphonates are promising candidates as potent inhibitors of bone resorption. However, their effects on bone growth must be studied at dosing regimen corresponding to pediatric protocols. To this aim, several protocols using zoledronic acid (ZOL) were developed in growing mice (50?µg/kg every 2 days?×?10). Parameters of bone remodeling and bone growth were investigated by radiography, micro-computed tomography, histology, and biologic analyses. Extramedullar hematopoiesis was searched for in spleen tissue. A transient inhibitory effect of ZOL was observed on bone length, with a bone-growth arrest during treatment owing to an impressive increase in bone formation at the growth plate level (8- to 10-fold increase in BV/TV). This sclerotic band then shifted into the diaphysis as soon as endochondral bone formation started again after the end of ZOL treatment, revealing that osteoclasts and osteoblasts are still active at the growth plate. In conclusion, endochondral bone growth is transiently disturbed by high doses of ZOL corresponding to the pediatric treatment of primary bone tumors. These preclinical observations were confirmed by a case report in a pediatric patient treated in the French OS2006 protocol over 10 months who showed a growth arrest during the ZOL treatment period with normal gain in size after the end of treatment.
Related JoVE Video
Carotid and femoral atherosclerotic plaques show different morphology.
Atherosclerosis
PUBLISHED: 01-23-2011
Show Abstract
Hide Abstract
Results of endovascular repair vary according to the arterial bed. We hypothesized that these differences may be related to the plaque features. To explore this hypothesis, we designed a prospective study that compared carotid and femoral atheroma.
Related JoVE Video
Direct anti-cancer effect of oncostatin M on chondrosarcoma.
Int. J. Cancer
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
The cytokine Oncostatin M (OSM) is cytostatic, pro-apoptotic and induces differentiation of osteosarcoma cells into osteocytes, suggesting new adjuvant treatment for these bone-forming sarcomas. However, OSM systemic over-expression could lead to adverse side effects such as generalized inflammation, neoangiogenesis and osteolysis. We determine here the effect of OSM on chondrosarcoma, another primary bone sarcoma characterized by the production of cartilage matrix and altered bone remodelling. Chondrosarcomas are resistant to conventional chemotherapy and radiotherapy, and wide surgical excision remains the only available treatment. We found that OSM blocked the cell cycle in four of five chondrosarcoma cell lines, independently of p53 and presumably through the JAK3/STAT1 pathway. In two tested cell lines, OSM induced a hypertrophic chondrocyte differentiation, with an induced Cbfa1/SOX9 ratio and induced Coll10, matrix metalloproteinase 13 (MMP13) and RANKL expression. Adenoviral gene transfer of OSM (AdOSM) in the Swarm rat chondrosarcoma (SRC) model indicated that local intra-tumoral OSM over-expression reduces chondrosarcoma development not only with reduced tumor proliferation and enhanced apoptosis but also with enhanced RANKL expression, osteoclast formation and reduced bone volumes. Flu-like symptoms were induced by the AdOSM, but there was no effect on tumor angiogenesis. Therefore, OSM could be considered as a new adjuvant anti-cancer agent for chondrosarcomas. A local application of this cytokine is presumably needed to overcome the poor vascularization of these tumors and to limit the deleterious effect on other tissues. Its side effect on bone remodeling could be managed with anti-resorption agents, thus offering potential new lines of therapeutic interventions.
Related JoVE Video
Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process.
Cancer Res.
PUBLISHED: 10-22-2010
Show Abstract
Hide Abstract
Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants new strategies still needed to improve overall patient survival. In this study, we investigated in vivo the effects of RAD001 (Everolimus), a new orally available mTOR inhibitor, on the growth of human and mouse osteosarcoma cells either alone or in combination with zoledronate (ZOL), an anti-osteoporotic drug used to treat bone metastases. RAD001 inhibited osteosarcoma cell proliferation in a dose- and time-dependent manner with no modification of cell-cycle distribution. Combination with ZOL augmented this inhibition of cell proliferation, decreasing PI3K/mTOR signaling compared with single treatments. Notably, in contrast to RAD001, ZOL downregulated isoprenylated membrane-bound Ras concomitantly with an increase of nonisoprenylated cytosolic Ras in sensitive and resistant osteosarcoma cell lines to both drugs. Moreover, ZOL and RAD001 synergized to decrease Ras isoprenylation and GTP-bound Ras levels. Further, the drug combination reduced tumor development in two murine models of osteoblastic or osteolytic osteosarcoma. We found that ZOL could reverse RAD001 resistance in osteosarcoma, limiting osteosarcoma cell growth in combination with RAD001. Our findings rationalize further study of the applications of mTOR and mevalonate pathway inhibitors that can limit protein prenylation pathways.
Related JoVE Video
Zoledronic acid as a new adjuvant therapeutic strategy for Ewings sarcoma patients.
Cancer Res.
PUBLISHED: 09-14-2010
Show Abstract
Hide Abstract
Ewings sarcoma (ES) is the second most frequent pediatric bone tumor also arising in soft tissues (15% of cases). The prognosis of patients with clinically detectable metastases at diagnosis, not responding to therapy or with disease relapse, is still very poor. Among new therapeutic approaches, bisphosphonates represent promising adjuvant molecules to chemotherapy to limit the osteolytic component of bone tumors and to protect from bone metastases. The combined effects of zoledronic acid and mafosfamide were investigated on cell proliferation, viability, apoptosis, and cell cycle distribution of human ES cell lines differing in their p53 and p16/ink4 status. ES models were developed to reproduce both soft tissue and intraosseous tumor development. Mice were treated with 100 ?g/kg zoledronic acid (two or four times per week) and/or ifosfamide (30 mg/kg, one to three cycles of three injections). ES cell lines showed different sensitivities to zoledronic acid and mafosfamide at the cell proliferation level, with no correlation with their molecular status. Both drugs induced cell cycle arrest, but in the S or G(2)M phase, respectively. In vivo, zoledronic acid had no effect on soft tissue tumor progression, although it dramatically inhibited ES development in bone. When combined with ifosfamide, zoledronic acid exerted synergistic effects in the soft tissue model: Its combination with one cycle of ifosfamide resulted in an inhibitory effect similar to three cycles of ifosfamide alone. This very promising result could allow clinicians to diminish the doses of chemotherapy.
Related JoVE Video
Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells.
PLoS ONE
Show Abstract
Hide Abstract
Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation.
Related JoVE Video
Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds.
Cytokine
Show Abstract
Hide Abstract
Recent works demonstrated the difference of calcification genesis between carotid and femoral plaques, femoral plaques being more calcified. It has been clearly demonstrated that the molecular triad osteoprotegerin (OPG)/Receptor Activator of NFkB (RANK)/RANK Ligand (RANKL) exerts its activities in the osteoimmunology and vascular system. The aim of this study was to determine their expression and their potential role in calcifications of the atheromatous plaques located in two different peripheral arterial beds, carotid and femoral. The expression of OPG, RANK and RANKL was analyzed by immunochemistry in 40 carotid and femoral samples. Blood OPG and RANKL were quantified using specific ELISA assays. OPG staining was more frequently observed in carotid than in femoral plaques, especially in lipid core. Its expression correlated with macrophage infiltration more abundantly observed in carotid specimens. Surprisingly, serum OPG concentration was significantly lower in carotid population compared to femoral population while RANK and RANKL were equally expressed in both arterial beds. Carotid plaques that are less rich in calcium than femoral specimens, express more frequently OPG, this expression being correlated with the abundance of macrophages in the lesions. These data strengthen the key role played by OPG in the differential calcification in carotid and femoral plaques.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.