JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
EVpedia: A Community Web Portal for Extracellular Vesicles Research.
Dae-Kyum Kim, Jaewook Lee, Sae Rom Kim, Dong-Sic Choi, Yae Jin Yoon, Ji Hyun Kim, Gyeongyun Go, Dinh Nhung, Kahye Hong, Su Chul Jang, Si-Hyun Kim, Kyong-Su Park, Oh Youn Kim, Hyun Taek Park, Ji Hye Seo, Elena Aikawa, Monika Baj-Krzyworzeka, Bas W M van Balkom, Mattias Belting, Lionel Blanc, Vincent Bond, Antonella Bongiovanni, Francesc E Borràs, Luc Buée, Edit I Buzás, Lesley Cheng, Aled Clayton, Emanuele Cocucci, Charles S Dela Cruz, Dominic M Desiderio, Dolores Di Vizio, Karin Ekström, Juan M Falcon-Perez, Chris Gardiner, Bernd Giebel, David W Greening, Julia Christina Gross, Dwijendra Gupta, An Hendrix, Andrew F Hill, Michelle M Hill, Esther Nolte-'t Hoen, Do Won Hwang, Jameel Inal, Medicharla V Jagannadham, Muthuvel Jayachandran, Young-Koo Jee, Malene Jørgensen, Kwang Pyo Kim, Yoon-Keun Kim, Thomas Kislinger, Cecilia Lässer, Dong Soo Lee, Hakmo Lee, Johannes van Leeuwen, Thomas Lener, Ming-Lin Liu, Jan Lötvall, Antonio Marcilla, Suresh Mathivanan, Andreas Möller, Jess Morhayim, François Mullier, Irina Nazarenko, Rienk Nieuwland, Diana N Nunes, Ken Pang, Jaesung Park, Tushar Patel, Gabriella Pocsfalvi, Hernando Del Portillo, Ulrich Putz, Marcel I Ramirez, Marcio L Rodrigues, Tae-Young Roh, Felix Royo, Susmita Sahoo, Raymond Schiffelers, Shivani Sharma, Pia Siljander, Richard J Simpson, Carolina Soekmadji, Philip Stahl, Allan Stensballe, Ewa Stępień, Hidetoshi Tahara, Arne Trummer, Hadi Valadi, Laura J Vella, Sun Nyunt Wai, Kenneth Witwer, María Yáñez-Mó, Hyewon Youn, Reinhard Zeidler, Yong Song Gho.
Bioinformatics
PUBLISHED: 11-13-2014
Show Abstract
Hide Abstract
Extracellular vesicles are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for extracellular vesicle-related publications and vesicular components are currently challenging.
Related JoVE Video
In vivo Kinetic Biodistribution of Nano-Sized Outer Membrane Vesicles Derived from Bacteria.
Small
PUBLISHED: 06-20-2014
Show Abstract
Hide Abstract
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter-species, and inter-kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)-bacterial extracellular vesicles-with immune-modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF-? and IL-6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM-1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post-injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.
Related JoVE Video
Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 05-30-2013
Show Abstract
Hide Abstract
Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.
Related JoVE Video
Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE.
J. Virol.
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Epstein-Barr Virus (EBV) generates a variety of viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. BART miRNAs are expressed in all cells latently infected with EBV, but the functions of most BART miRNAs remain unknown. The results of a cell proliferation assay revealed that miR-BART15-3p inhibited cell proliferation. Fluorescence-activated cell sorting following staining with annexin V or propidium iodide showed that miR-BART15-3p promoted apoptosis. Furthermore, the inhibitor for miR-BART15-3p increased cell growth and reduced apoptosis in EBV-infected cells. Using bioinformatic analyses, we predicted that miR-BART15-3p may target the antiapoptotic B-cell lymphoma 2 (BCL2), BCL2L2, DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 (DDX42), and baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) mRNAs. The luciferase reporter assay showed that only the 3 untranslated region (UTR) of BRUCE was affected by miR-BART15-3p. Two putative seed-matched sites for miR-BART15-3p were evident on the BRUCE 3 UTR. The results of a mutation study indicated that miR-BART15-3p hybridized only with the first seed-matched site on the BRUCE 3 UTR. miR-BART15-3p downregulated the BRUCE protein in EBV-negative cells, while the inhibitor for miR-BART15-3p upregulated the BRUCE protein in EBV-infected cells without affecting the BRUCE mRNA level. miR-BART15-3p was secreted from EBV-infected gastric carcinoma cells, and the level of miR-BART15-3p was 2- to 16-fold higher in exosomes than in the corresponding cells. Our data suggest that miR-BART15-3p can induce apoptosis partially by inhibiting the translation of the apoptosis inhibitor BRUCE. Further study is warranted to understand the role of miR-BART15-3p in the EBV life cycle.
Related JoVE Video
EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles.
J Extracell Vesicles
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20-1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.
Related JoVE Video
Effects of chronic alcohol consumption on expression levels of APP and A?-producing enzymes.
BMB Rep
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
Chronic alcohol consumption contributes to numerous diseases, including cancers, cardiovascular diseases, and liver cirrhosis. Epidemiological studies have shown that excessive alcohol consumption is a risk factor for dementia. Along this line, Alzheimers disease (AD) is the most common form of dementia and is caused by the accumulation of amyloid-? (A? plaques in neurons. In this study, we hypothesized that chronic ethanol consumption is associated with pathological processing of APP in AD. To investigate the relationship between chronic alcohol consumption and A? production, brain samples from rats fed an alcohol liquid diet for 5 weeks were analyzed. We show that the expression levels of APP, BACE1, and immature nicastrin were increased in the cerebellum, hippocampus, and striatum of the alcohol-fed group compared to the control group. Total nicastrin and PS1 levels were induced in the hippocampus of alcohol-fed rats. These data suggest that the altered expression of APP and A?-producing enzymes possibly contributes to the chronic alcohol consumption-mediated pathogenesis of AD.
Related JoVE Video
New sensitive moisture getter system by using aluminium complex and polyacetylene containing silyl group for display.
J Nanosci Nanotechnol
PUBLISHED: 11-14-2009
Show Abstract
Hide Abstract
In this study, a novel moisture getter was fabricated from a new desiccant triethylaluminum [TEA] and a porous material poly(1-trimethylsilylpropyne) [PTMSP] as a binder and then was applied to organic light-emitting diode (OLED). After forming a film of 1.5 cm x 2.0 cm with 50 mg of PTMSP by a film-casting method, its property was measured. As a result, PTMSP (Mn:50 K) created a film with a relatively high porosity. PTMSP (60%) and TEA (40%) were mixed to fabricate a getter system with a good transmittance of over 80%. The fabricated getter, adopted in a OLED device, showed excellent features, as a level of commercialization: 490-hour shelf lifetime under the conditions of 60 degrees C and 90% RH.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.