JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A bio-catalytically driven Janus mesoporous silica cluster motor with magnetic guidance.
Chem. Commun. (Camb.)
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
A bio-catalytic Janus motor based on the mesoporous silica cluster (JMSC) is fabricated. Chemically conjugated catalase triggers the decomposition of H2O2 to produce driving force by bubble propulsion, while a metallic (Ni) coating layer allows for magnetic guidance of the motor. The JMSC motor can act as a delivery vehicle with cargo loading inside its mesopores.
Related JoVE Video
Cell microenvironment: confinement and deformation of single cells and their nuclei inside size-adapted microtubes (adv. Healthcare mater. 11/2014).
Adv Healthc Mater
PUBLISHED: 11-11-2014
Show Abstract
Hide Abstract
Biofunctionalized glass microtube structures serve as transparent cell culture scaffolds and are fabricated to impose spatial confinement on single cells on page 1753. S. Sanchez, C. K. Schmidt, and colleagues demonstrate the influence of the resulting cell deformation on the integrity of the nucleus of human osteosarcoma cells and on cell division. Their findings underline the versatility of the rolled-up microtubes for mimicking space restrictions present in physiological tissues.
Related JoVE Video
Effect of surfactants on the performance of tubular and spherical micromotors - a comparative study.
RSC Adv
PUBLISHED: 11-04-2014
Show Abstract
Hide Abstract
The development of artificial micromotors is one of the greatest challenges of modern nanotechnology. Even though many kinds of motors have been published in recent times, systematic studies on the influence of components of the fuel solution are widely missing. Therefore, the autonomous movement of Pt-microtubes and Pt-covered silica particles is comparatively observed in the presence and absence of surfactants in the medium. One representative of each of the three main surfactant classes - anionic (sodium dodecyl sulfate, SDS), cationic (benzalkonium chloride, BACl) and non-ionic (Triton X) - has been chosen and studied.
Related JoVE Video
Propulsion Mechanism of Catalytic Microjet Engines.
IEEE Trans Robot
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 ?m/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets.
Related JoVE Video
Sperm Dynamics in Tubular Confinement.
Small
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
An on-chip system that mimics tubular microenvironments is presented for the study of spermatozoa motion in confinement. Using rolled up transparent silicon oxide/dioxide microtubes, the influence of tube diameter on the velocity, directionality, and linearity of spermatozoa is investigated. Tubular microenvironments of diameters 20-45 ?m facilitate sperm migration through channels.
Related JoVE Video
Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system.
Lab Chip
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.
Related JoVE Video
Catalytic nanomotors for environmental monitoring and water remediation.
Nanoscale
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
Self-propelled nanomotors hold considerable promise for developing innovative environmental applications. This review highlights the recent progress in the use of self-propelled nanomotors for water remediation and environmental monitoring applications, as well as the effect of the environmental conditions on the dynamics of nanomotors. Artificial nanomotors can sense different analytes-and therefore pollutants, or "chemical threats"-can be used for testing the quality of water, selective removal of oil, and alteration of their speeds, depending on the presence of some substances in the solution in which they swim. Newly introduced micromotors with double functionality to mix liquids at the microscale and enhance chemical reactions for the degradation of organic pollutants greatly broadens the range of applications to that of environmental. These "self-powered remediation systems" could be seen as a new generation of "smart devices" for cleaning water in small pipes or cavities difficult to reach with traditional methods. With constant improvement and considering the key challenges, we expect that artificial nanomachines could play an important role in environmental applications in the near future.
Related JoVE Video
Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications.
Nano Lett.
PUBLISHED: 03-27-2014
Show Abstract
Hide Abstract
We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.
Related JoVE Video
Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips.
Lab Chip
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion.
Related JoVE Video
Confinement and deformation of single cells and their nuclei inside size-adapted microtubes.
Adv Healthc Mater
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Rolled-up transparent microtubes are shown to serve as cell culture scaffolds that exactly define the space available for single cell growth. Human U2OS osteosarcoma cells are confined within microtubes of different diameters and the effects of the cell deformation on the integrity of the DNA and cell survival are studied.
Related JoVE Video
Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies.
Nano Lett.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.
Related JoVE Video
Colonization of Enterococcus faecalis in a new SiO/SiO(2)-microtube in vitro model system as a function of tubule diameter.
Dent Mater
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Endodontic pathogens can penetrate deep into dentinal tubules and therefore survive the chemo-mechanical disinfection procedures. Bacterial penetration has been mainly studies using sliced infected human teeth which, besides creating artifacts, can hinder the observation of the inner tubules due to the dense and opaque dentin structure. The aim of the present study was to develop a standardized dentin model by using artificial SiO/SiO2-microtubes of different diameters and lengths to test the penetration ability of Enterococcus faecalis.
Related JoVE Video
Stimuli-responsive microjets with reconfigurable shape.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 01-30-2014
Show Abstract
Hide Abstract
Flexible thermoresponsive polymeric microjets are formed by the self-folding of polymeric layers containing a thin Pt film used as catalyst for self-propulsion in solutions containing hydrogen peroxide. The flexible microjets can reversibly fold and unfold in an accurate manner by applying changes in temperature to the solution in which they are immersed. This effect allows microjets to rapidly start and stop multiple times by controlling the radius of curvature of the microjet. This work opens many possibilities in the field of artificial nanodevices, for fundamental studies on self-propulsion at the microscale, and also for biorelated applications.
Related JoVE Video
Wireless magnetic-based closed-loop control of self-propelled microjets.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10?¹? A.m² at magnetic field and linear velocity of 2 mT and 100 µm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 µm/s, and within an average region-of-convergence of 365 µm.
Related JoVE Video
Self-propelled micromotors for cleaning polluted water.
ACS Nano
PUBLISHED: 11-07-2013
Show Abstract
Hide Abstract
We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.
Related JoVE Video
Magnetic control of potential microrobotic drug delivery systems: Nanoparticles, magnetotactic bacteria and self-propelled microjets.
Conf Proc IEEE Eng Med Biol Soc
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
Development of targeted drug delivery systems using magnetic microrobots increases the therapeutic indices of drugs. These systems have to be incorporated with precise motion controllers. We demonstrate closed-loop motion control of microrobots under the influence of controlled magnetic fields. Point-to-point motion control of a cluster of iron oxide nanoparticles (diameter of 250 nm) is achieved by pulling the cluster towards a reference position using magnetic field gradients. Magnetotactic bacterium (MTB) is controlled by orienting the magnetic fields towards a reference position. MTB with membrane length of 5 µm moves towards the reference position using the propulsion force generated by its flagella. Similarly, self-propelled microjet with length of 50 µm is controlled by directing the microjet towards a reference position by external magnetic torque. The microjet moves along the field lines using the thrust force generated by the ejecting oxygen bubbles from one of its ends. Our control system positions the cluster of nanoparticles, an MTB and a microjet at an average velocity of 190 µm/s, 28 µm/s, 90 µm/s and within an average region-of-convergence of 132 µm, 40 µm, 235 µm, respectively.
Related JoVE Video
Thermal activation of catalytic microjets in blood samples using microfluidic chips.
Lab Chip
PUBLISHED: 10-04-2013
Show Abstract
Hide Abstract
We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.
Related JoVE Video
Corrosion of self-propelled catalytic microengines.
Chem. Commun. (Camb.)
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Here we show that rolled-up and electroplated catalytic microjet engines undergo dramatic corrosion in fuel solution.
Related JoVE Video
Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico.
J Ethnopharmacol
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
Cnidoscolus chayamansa Mc Vaugh (Euphorbiaceae) is commonly known as chaya in Central America. In South East Mexico, because of its high nutritional values, is an important part of the diet of many indigenous communities. Chaya is also used as a traditional remedy for the treatment of diabetes, rheumatism, gastrointestinal disorders and inflammation-related diseases. Although Cnidoscolus chayamansa is one of most used and valued medicinal plants, only few studies on documenting its pharmacological properties can be found.
Related JoVE Video
Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery.
Nanoscale
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
Self-folded magnetic microtools with sharp ends are directed at enabling drilling and related incision operations of tissues, ex vivo, in a fluid with a viscosity similar to that of blood. These microtools change their rotation from a horizontal to a vertical one when they are immersed into a rotational magnetic field. Novel self-assembly paradigms with magnetic materials can enable the creation of remotely controlled and mass-produced tools for potential applications in minimally invasive surgery.
Related JoVE Video
Development of a sperm-flagella driven micro-bio-robot.
Adv. Mater. Weinheim
PUBLISHED: 06-03-2013
Show Abstract
Hide Abstract
A new biohybrid micro-robot is developed by capturing bovine sperm cells inside magnetic microtubes that use the motile cells as driving force. These micro-bio-robots can be remotely controlled by an external magnetic field. The performance of micro-robots is described in dependence on tube radius, cell penetration, and temperature. The combination of a biological power source and a microdevice is a compelling approach to the development of new microrobotic devices with fascinating future applications.
Related JoVE Video
High speed fracture fixation: assessing resulting fixation stability and fastener withdrawal strength.
J Biomech Eng
PUBLISHED: 05-18-2013
Show Abstract
Hide Abstract
A new method of bone fracture fixation has been developed in which fixation darts (small diameter nails/pins) are driven across a fracture site at high velocity with a pneumatically powered gun. When fixation darts are inserted oblique to one another, kinematic constraints prevent fragment motion and allow bone healing to progress. The primary aim of this study is to determine if fixation darts can provide reasonable fixation stability compared to bone screws, which were used as a benchmark since they represent a simple, yet well-established, surgical technique. The first objective was to evaluate macro-level stability using different numbers of darts inserted parallel and oblique to each other; experimental comparisons were undertaken in a bone analog model. Experimental results showed fixation darts could not be substituted for screws on a one-to-one basis, but that a plurality of fixation darts provided comparable fixation to two bone screws while allowing for faster insertion and damaging less bone. A second objective was to evaluate micro-level stability; a finite element model was created in order to provide a detailed look at the stress state surrounding the fixation darts and the evolution of the fracture gap. Even with relatively weak fixation dart configurations, the fracture gap was maintained below physiological thresholds for bone healing. Most failures of the fixed fractures were attributed to fixation dart pullout from the cancellous structure. The final objective of the study was to characterize this mode of failure with separate fixation dart and screw pullout tests conducted in Sawbones® cancellous foam and fresh porcine cancellous bone. The results showed that the cancellous foam was an acceptable substitute for real bone and provided a conservative estimate of the fixation darts performance relative to bone screws. A final comparison between experimental and numerically predicted pullout strengths provided confirmation that the model and experiments were consistent.
Related JoVE Video
Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles.
Chem. Commun. (Camb.)
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
In this work, we will show that ferromagnetic microjets can pick-up paramagnetic beads while not showing any interaction with diamagnetic silica microparticles for the active separation of microparticles in solution.
Related JoVE Video
Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.
Nanoscale
PUBLISHED: 03-02-2013
Show Abstract
Hide Abstract
Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.
Related JoVE Video
Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions.
Biochim. Biophys. Acta
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
Iron oxide nanoparticles hold great promise for future biomedical applications. To this end numerous studies on iron oxide nanoparticles have been conducted. One aspect these studies reveal is that nanoparticle size and shape can trigger different cellular responses through endocytic pathways, cell viability and early apoptosis. However, systematic studies investigating the size dependence of iron oxide nanoparticles with highly defined diameters across multiple cells lines are not available yet.
Related JoVE Video
Collective behaviour of self-propelled catalytic micromotors.
Nanoscale
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
Biology widely employs catalytic reactions to power biomotors and cells. These dynamic entities can self-organize into swarms or self-assemble into functional micro- or nanostructures. Synthetic micro-/nanojet engines and nanomotors, driven by catalytic reactions, can move with high power and perform multiple tasks. Collective behavior of these microengines has recently been observed which includes swarming activities and the formation of multiconstituent entities. This feature article discusses recent developments, presents new discoveries on collective motion of self-propelled microjet engines and suggests next steps to undertake in the field of collective micromachines.
Related JoVE Video
Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics.
Adv Physiol Educ
PUBLISHED: 12-06-2011
Show Abstract
Hide Abstract
As part of a 3-wk intersession workshop funded by a National Science Foundation Expeditions in Computing award, 15 undergraduate students from the City University of New York(1) collaborated on a study aimed at characterizing the voltage dynamics and arrhythmogenic behavior of cardiac cells for a broad range of physiologically relevant conditions using an in silico model. The primary goal of the workshop was to cultivate student interest in computational modeling and analysis of complex systems by introducing them through lectures and laboratory activities to current research in cardiac modeling and by engaging them in a hands-on research experience. The success of the workshop lay in the exposure of the students to active researchers and experts in their fields, the use of hands-on activities to communicate important concepts, active engagement of the students in research, and explanations of the significance of results as the students generated them. The workshop content addressed how spiral waves of electrical activity are initiated in the heart and how different parameter values affect the dynamics of these reentrant waves. Spiral waves are clinically associated with tachycardia, when the waves remain stable, and with fibrillation, when the waves exhibit breakup. All in silico experiments were conducted by simulating a mathematical model of cardiac cells on graphics processing units instead of the standard central processing units of desktop computers. This approach decreased the run time for each simulation to almost real time, thereby allowing the students to quickly analyze and characterize the simulated arrhythmias. Results from these simulations, as well as some of the background and methodology taught during the workshop, is presented in this article along with the programming code and the explanations of simulation results in an effort to allow other teachers and students to perform their own demonstrations, simulations, and studies.
Related JoVE Video
Superfast motion of catalytic microjet engines at physiological temperature.
J. Am. Chem. Soc.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
There is a great interest in reducing the toxicity of the fuel used to self-propel artificial nanomachines. Therefore, a method to increase the efficiency of the conversion of chemicals into mechanical energy is desired. Here, we employed temperature control to increase the efficiency of microjet engines while simultaneously reducing the amount of peroxide fuel needed. At physiological temperatures, i.e. 37 °C, only 0.25% H(2)O(2) is needed to propel the microjets at 140 ?m s(-1), which corresponds to three body lengths per second. In addition, at 5% H(2)O(2), the microjets acquire superfast speeds, reaching 10 mm s(-1). The dynamics of motion is altered when the speed is increased; i.e., the motion deviates from linear to curvilinear trajectories. The observations are modeled empirically.
Related JoVE Video
The smallest man-made jet engine.
Chem Rec
PUBLISHED: 07-05-2011
Show Abstract
Hide Abstract
The design of catalytic engines powered by chemical fuels is an exciting and emerging field in multidisciplinary scientific communities. Recent progress in nanotechnology has enabled scientists to shrink the size of macroengines down to microscopic, but yet powerful, engines. Since a couple of years ago, we have reported our progress towards the control and application of catalytic microtubular engines powered by the breakdown of hydrogen peroxide fuel which produces a thrust of oxygen bubbles. Efforts were undertaken in our group to prove whether the fabrication of nanoscale jets is possible. Indeed, the smallest jet engine (600 nm in diameter and 1 picogram of weight) was synthesized based on heteroepitaxially grown layers. These nanojets are able to self-propel in hydrogen peroxide solutions and are promising for the realisation of multiple tasks.
Related JoVE Video
Microbots swimming in the flowing streams of microfluidic channels.
J. Am. Chem. Soc.
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
We describe the motion of self-propelled catalytic Ti/Fe/Pt rolled-up microtubes (microbots) in the microchannels of a microfluidics system. Their motion is precisely controlled by a small magnetic field, and the transport of multiple spherical microparticles into desired locations is achieved. The microbots are powerful enough to propel themselves against flowing streams. The integration of “smart and powerful” microbots into microchip systems can lead to multiple lab-on-a-chip functions such as separation of cells and biosensing.
Related JoVE Video
Magnetic microhelix coil structures.
Phys. Rev. Lett.
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
Together with the well-known ferro- and antiferromagnetic ordering, nature has created a variety of complex helical magnetic configurations. Here, we design and investigate three-dimensional microhelix coil structures that are radial-, corkscrew-, and hollow-bar-magnetized. The magnetization configurations of the differently magnetized coils are experimentally revealed by probing their specific dynamic response to an external magnetic field. Helix coils offer an opportunity to realize microscale geometries of the magnetic toroidal moment, observed so far only in bulk multiferroic materials.
Related JoVE Video
Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide.
Phys Chem Chem Phys
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Catalytic micropumps consisting of Ti/Cr/Pt microtubes with diameters of 5-10 ?m and tunable lengths in the range of 20-1000 ?m are reported. Micropumps were fabricated by rolling up metallic nanomembranes into microtubes with an inner platinum layer. When immersed into a solution of hydrogen peroxide, the micropumps are activated by the catalytic decomposition of peroxide into oxygen microbubbles and water. Fluid pumping is demonstrated by the movement of polystyrene particles with a diameter of 1 ?m through the catalytic microtubes. Concentrations from 0.009 to 11% H(2)O(2) were employed to study the catalytic generation of microbubbles in micropumps with different lengths. A minimum concentration of 0.06% fuel was determined to be sufficient to actuate the micropumps. Such devices based on rolled-up nanomembranes hold great promise for the integration into Lab-on-a-chip systems for sensing, sorting of particles and drug delivery.
Related JoVE Video
Integrated sensitive on-chip ion field effect transistors based on wrinkled InGaAs nanomembranes.
Nanoscale Res Lett
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
Self-organized wrinkling of pre-strained nanomembranes into nanochannels is used to fabricate a fully integrated nanofluidic device for the development of ion field effect transistors (IFETs). Constrained by the structure and shape of the membrane, the deterministic wrinkling process leads to a versatile variation of channel types such as straight two-way channels, three-way branched channels, or even four-way intersection channels. The fabrication of straight channels is well controllable and offers the opportunity to integrate multiple IFET devices into a single chip. Thus, several IFETs are fabricated on a single chip using a III-V semiconductor substrate to control the ion separation and to measure the ion current of a diluted potassium chloride electrolyte solution.
Related JoVE Video
Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines.
Chem Soc Rev
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
In this tutorial review we describe the recent progress on catalytic microtubular engines fabricated by rolled-up nanotech on polymers. We summarize the technical aspects of the technology and the basic principles that cause the catalytic microengines to self-propel in fuel solutions. The control over speed, directionality and interactions of the microengines to perform tasks such as cargo transportation is also discussed. We compare this technology to other fabrication techniques of catalytic micro-/nanomotors and outline challenges and opportunities for such engines in future studies. Since rolled-up nanotech on polymers can easily integrate almost any type of inorganic material, huge potential and advanced performance such as high speed, cargo delivery, motion control, and dynamic assembly are foreseen--ultimately promising a practical way to construct versatile and intelligent catalytic tubular microrobots.
Related JoVE Video
Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors.
Nano Lett.
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
We report a method for the precise capturing of embryonic fibroblast mouse cells into rolled-up microtube resonators. The microtubes contain a nanometer-sized gap in their wall which defines a new type of optofluidic sensor, i.e., a flexible split-wall microtube resonator sensor, employed as a label-free fully integrative detection tool for individual cells. The sensor action works through peak sharpening and spectral shifts of whispering gallery modes within the microresonators under light illumination.
Related JoVE Video
Controlled manipulation of multiple cells using catalytic microbots.
Chem. Commun. (Camb.)
PUBLISHED: 11-19-2010
Show Abstract
Hide Abstract
Self-propelled microjet engines (microbots) can transport multiple cells into specific locations in a fluid. The motion is externally controlled by a magnetic field which allows to selectively load, transport and deliver the cells.
Related JoVE Video
Dynamics of biocatalytic microengines mediated by variable friction control.
J. Am. Chem. Soc.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
We describe the motion of self-propelled hybrid microengines containing catalase enzyme covalently bound to the cavity of rolled-up microtubes. The high efficiency of these hybrid microengines allows them to move at a very low concentration of peroxide fuel. The dynamics of the catalytic engines is mediated by the generation of front-side bubbles, which increase the drag force and make them turn. The specific modification of the inner layer of microtubes with biomolecules can lead to other configurations to generate motion from different chemical fuels.
Related JoVE Video
Detection of biomarkers with carbon nanotube-based immunosensors.
Methods Mol. Biol.
PUBLISHED: 04-28-2010
Show Abstract
Hide Abstract
A facile and capable method of preparation of sensitive carbon nanotube (CNT)/polysulfone/RIgG immunosensor is discussed in this chapter. The immunosensor is based on the modification of disposable screen-printed electrodes by phase inversion method. CNT/polysulfone membrane acts as the reservoir of immunomolecules as well as a transducer. This configuration offers large surface area, elevated porosity, and mechanical flexibility. The comparison with graphite/polysulfone/RIgG immunosensors shows a significantly improved sensitivity for those prepared with CNTs coupled with polysulfone (PSf). The immunosensing scheme is based on the competitive assay between free and labeled anti-RIgG for the available binding sites of immobilized rabbit IgG (RIgG). The RIgG is incorporated into the PSf immunosensor using a phase inversion method. Horseradish peroxidase enzyme is used as label and hydroquinone as electrochemical mediator. The limit of detection for competitive assay is 1.66 microg/mL. The sensitivity is six times higher for MWCNT-based than for graphite-based electrodes.
Related JoVE Video
Carbon nanotube/polysulfone soft composites: preparation, characterization and application for electrochemical sensing of biomarkers.
Phys Chem Chem Phys
PUBLISHED: 12-03-2009
Show Abstract
Hide Abstract
Multi-walled carbon nanotube/polysulfone soft composites (MWCNT/PSf) prepared via phase inversion are a novel platform for electrochemical and electroanalytical purposes with practical applications in the design of screen-printed electrodes for electrochemical sensing. We present here a thorough characterization of the morphological, physical, chemical and electrochemical properties of this material. These composites constitute a robust mesoporous network with high specific surface area, which is beneficial for trapping bioanalytes and increasing the electrochemical sensitivity. We highlight the advantages of these soft composites by comparing them with analogous graphite composites.
Related JoVE Video
Nanorobots: the ultimate wireless self-propelled sensing and actuating devices.
Chem Asian J
PUBLISHED: 07-22-2009
Show Abstract
Hide Abstract
Natural motor proteins, "bionanorobots," have inspired researchers to develop artificial nanomachines (nanorobots) able to move autonomously by the conversion of chemical to mechanical energy. Such artificial nanorobots are self-propelled by the electrochemical decomposition of the fuel (up to now, hydrogen peroxide). Several approaches have been developed to provide nanorobots with some functionality, such as for controlling their movement, increasing their power output, or transporting different cargo. In this Focus Review we will discuss the recent advances in nanorobots based on metallic nanowires, which can sense, deliver, and actuate in complex environments, looking towards real applications in the not-too-distant future.
Related JoVE Video
Electrochemical activation of carbon nanotube/polymer composites.
Phys Chem Chem Phys
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Electrochemical activation of carbon nanotube/polysulfone composite electrodes for enhanced heterogeneous electron transfer is studied. The physicochemical insight into the electrochemical activation of carbon nanotube/polymer composites was provided by transmission electron microscopy, Raman spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Dopamine, ascorbic acid, NADH, and ferricyanide are used as a model redox system for evaluating the performance of activated carbon nanotube/polymer composite electrodes. We demonstrate that polymer wrapping of carbon nanotubes is subject to defects and to partial removal during activation. Such tunable activation of electrodes would enable on-demand activation of electrodes for satisfying the needs of sensing or energy storage devices.
Related JoVE Video
Micromotors with built-in compasses.
Chem. Commun. (Camb.)
Show Abstract
Hide Abstract
We demonstrate here that iron containing rolled-up microtubular engines can be magnetized and act as compass needles - they sense the direction of an external magnetic field from afar and align the directionalities of their movements according to the external field, in a similar fashion to magnetotactic bacteria.
Related JoVE Video
Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
Lab Chip
Show Abstract
Hide Abstract
The fabrication of tubular rolled-up optofluidic ring resonators (RU-OFRRs) based on glass (SiO(2)) material with high quality factors is reported. A novel methodology combining lab-on-a-chip fabrication methods and rolled-up nanotech is presented for the fabrication of fully integrated tubular optofluidic sensors. The microfluidic integration of several RU-OFRRs on one chip is solved by enclosing the microtubes with a patterned robust SU-8 polymeric matrix. A viewport on each microtube enables exact excitation and monitoring of whispering gallery modes with a photoluminescence spectroscopy system under constant ambient conditions, while exchanging the content of the RU-OFRR with liquids of different refractive indices. The refractrometric sensor capabilities are investigated regarding signal stability, sensitivity and reliability. The sensitivity of the integrated RU-OFRR, which is the response of the modes to the change in refractive index of the liquid, is up to 880 nm/refractive index units (RIU).
Related JoVE Video
Lab-in-a-tube: ultracompact components for on-chip capture and detection of individual micro-/nanoorganisms.
Lab Chip
Show Abstract
Hide Abstract
A review of present and future on-chip rolled-up devices, which can be used to develop lab-in-a-tube total analysis systems, is presented. Lab-in-a-tube is the integration of numerous rolled-up components into a single device constituting a microsystem of hundreds/thousands of independent units on a chip, each individually capable of sorting, detecting and analyzing singular organisms. Such a system allows for a scale-down of biosensing systems, while at the same time increasing the data collection through a large, smart array of individual biosensors. A close look at these ultracompact components which have been developed over the past decade is given. Methods for the capture of biomaterial are laid out and progress of cell culturing in three-dimensional scaffolding is detailed. Rolled-up optical sensors based on photoluminescence, optomechanics, optofluidics and metamaterials are presented. Magnetic sensors are introduced as well as electrical components including heating, energy storage and resistor devices.
Related JoVE Video
Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery.
ACS Nano
Show Abstract
Hide Abstract
We fabricated self-powered colloidal Janus motors combining catalytic and magnetic cap structures, and demonstrated their performance for manipulation (uploading, transportation, delivery) and sorting of microobjects on microfluidic chips. The specific magnetic properties of the Janus motors are provided by ultrathin multilayer films that are designed to align the magnetic moment along the main symmetry axis of the cap. This unique property allows a deterministic motion of the Janus particles at a large scale when guided in an external magnetic field. The observed directional control of the motion combined with extensive functionality of the colloidal Janus motors conceptually opens a straightforward route for targeted delivery of species, which are relevant in the field of chemistry, biology, and medicine.
Related JoVE Video
Self-propelled nanotools.
ACS Nano
Show Abstract
Hide Abstract
We describe nanoscale tools in the form of autonomous and remotely guided catalytically self-propelled InGaAs/GaAs/(Cr)Pt tubes. These rolled-up tubes with diameters in the range of 280-600 nm move in hydrogen peroxide solutions with speeds as high as 180 ?m s(-1). The effective transfer of chemical energy to translational motion has allowed these tubes to perform useful tasks such as transport of cargo. Furthermore, we observed that, while cylindrically rolled-up tubes move in a straight line, asymmetrically rolled-up tubes move in a corkscrew-like trajectory, allowing these tubes to drill and embed themselves into biomaterials. Our observations suggest that shape and asymmetry can be utilized to direct the motion of catalytic nanotubes and enable mechanized functions at the nanoscale.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.