JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Long-range enhancers regulating Myc expression are required for normal facial morphogenesis.
Nat. Genet.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Cleft lip with or without cleft palate (CL/P) is one of the most common congenital malformations observed in humans, with 1 occurrence in every 500-1,000 births. A 640-kb noncoding interval at 8q24 has been associated with increased risk of non-syndromic CL/P in humans, but the genes and pathways involved in this genetic susceptibility have remained elusive. Using a large series of rearrangements engineered over the syntenic mouse region, we show that this interval contains very remote cis-acting enhancers that control Myc expression in the developing face. Deletion of this interval leads to mild alteration of facial morphology in mice and, sporadically, to CL/P. At the molecular level, we identify misexpression of several downstream genes, highlighting combined impact on the craniofacial developmental network and the general metabolic capacity of cells contributing to the future upper lip. This dual molecular etiology may account for the prominent influence of variants in the 8q24 region on human facial dysmorphologies.
Related JoVE Video
Functional and topological characteristics of mammalian regulatory domains.
Genome Res.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles.
Related JoVE Video
TRACER: a resource to study the regulatory architecture of the mouse genome.
BMC Genomics
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
Mammalian genes are regulated through the action of multiple regulatory elements, often distributed across large regions. The mechanisms that control the integration of these diverse inputs into specific gene expression patterns are still poorly understood. New approaches enabling the dissection of these mechanisms in vivo are needed.
Related JoVE Video
An integrated holo-enhancer unit defines tissue and gene specificity of the Fgf8 regulatory landscape.
Dev. Cell
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Fgf8 encodes a key signaling factor, and its precise regulation is essential for embryo patterning. Here, we identified the regulatory modules that control Fgf8 expression during mammalian embryogenesis. These enhancers are interspersed with unrelated genes along a large region of 220 kb; yet they act on Fgf8 only. Intriguingly, this region also contains additional genuine enhancer activities that are not transformed into gene expression. Using genomic engineering strategies, we showed that these multiple and distinct regulatory modules act as a coherent unit and influence genes depending on their position rather than on their promoter sequence. These findings highlight how the structure of a locus regulates the autonomous intrinsic activities of the regulatory elements it contains and contributes to their tissue and target specificities. We discuss the implications of such regulatory systems regarding the evolution of gene expression and the impact of human genomic structural variations.
Related JoVE Video
Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor.
Nat. Genet.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
We present here a Sleeping Beauty-based transposition system that offers a simple and efficient way to investigate the regulatory architecture of mammalian chromosomes in vivo. With this system, we generated several hundred mice and embryos, each with a regulatory sensor inserted at a random genomic position. This large sampling of the genome revealed the widespread presence of long-range regulatory activities along chromosomes, forming overlapping blocks with distinct tissue-specific expression potentials. The presence of tissue-restricted regulatory activities around genes with widespread expression patterns challenges the gene-centric view of genome regulation and suggests that most genes are modulated in a tissue-specific manner. The local hopping property of Sleeping Beauty provides a dynamic approach to map these regulatory domains at high resolution and, combined with Cre-mediated recombination, allows for the determination of their functions by engineering mice with specific chromosomal rearrangements.
Related JoVE Video
Rac GTPases play critical roles in early T-cell development.
Blood
PUBLISHED: 05-09-2009
Show Abstract
Hide Abstract
The Rac1 and Rac2 GTPases play important roles in many processes including cytoskeletal reorganization, proliferation, and survival, and are required for B-cell development. Previous studies had shown that deficiency in Rac2 did not affect T-cell development, whereas the function of Rac1 in this process has not been investigated. We now show that simultaneous absence of both GTPases resulted in a very strong developmental block at the pre-TCR checkpoint and in defective positive selection. Unexpectedly, deficiency of Rac1 and Rac2 also resulted in the aberrant survival of thymocytes lacking expression of TCR beta, showing hallmarks of hyperactive Notch signaling. Furthermore, we found a similar novel phenotype in the absence of Vav1, Vav2, and Vav3, which function as guanine nucleotide exchange factors for Rac1 and Rac2. These results show that a pathway containing Vav and Rac proteins may negatively regulate Notch signaling during early thymic development.
Related JoVE Video
Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status.
Genes Chromosomes Cancer
PUBLISHED: 01-14-2009
Show Abstract
Hide Abstract
Follicular lymphoma (FL) is characterized by a large number of chromosomal aberrations. However, their exact genomic extension and involved target genes remain to be determined. For this purpose, we used array-based intermediate-high resolution genomic profiling in combination with Affymetrix gene expression analysis. Tumor specimens from 128 FL patients were analyzed for the presence of genomic aberrations and the results were correlated to clinical data sets and mRNA expression levels. In 114 (89%) of the 128 analyzed cases, a total of 688 genomic aberrations (384 gains/amplifications and 304 losses) were detected. Frequent genomic aberrations were: -1p36 (18%), +2p15 (24%), -3q (14%), -6q (25%), +7p (19%), +7q (23%), +8q (14%), -9p (16%), -11q (15%), +12q (20%), -13q (11%), -17p (16%), +18p (18%), and +18q (28%). Critical segments of these imbalances were delineated to genomic fragments with a minimum size down to 0.2 Mb. By comparison of these with mRNA gene expression data, putative candidate genes were identified. Moreover, we found that deletions affecting the tumor suppressor gene CDKN2A/B on 9p21 were detected in nontransformed FL grade I-II. For this aberration as well as for -6q25 and -6q26, an association with inferior survival was observed.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.