JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
An integrative computational model for large-scale identification of metalloproteins in microbial genomes: a focus on iron-sulfur cluster proteins.
Metallomics
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
Metalloproteins represent a ubiquitous group of molecules which are crucial to the survival of all living organisms. While several metal-binding motifs have been defined, it remains challenging to confidently identify metalloproteins from primary protein sequences using computational approaches alone. Here, we describe a comprehensive strategy based on a machine learning approach to design and assess a penalized generalized linear model. We used this strategy to detect members of the iron-sulfur cluster protein family. A new category of descriptors, whose profile is based on profile hidden Markov models, encoding structural information was combined with public descriptors into a linear model. The model was trained and tested on distinct datasets composed of well-characterized iron-sulfur protein sequences, and the resulting model provided higher sensitivity compared to a motif-based approach, while maintaining a good level of specificity. Analysis of this linear model allows us to detect and quantify the contribution of each descriptor, providing us with a better understanding of this complex protein family along with valuable indications for further experimental characterization. Two newly-identified proteins, YhcC and YdiJ, were functionally validated as genuine iron-sulfur proteins, confirming the prediction. The computational model was then applied to over 550 prokaryotic genomes to screen for iron-sulfur proteomes; the results are publicly available at: . This study represents a proof-of-concept for the application of a penalized linear model to identify metalloprotein superfamilies on a large-scale. The application employed here, screening for iron-sulfur proteomes, provides new candidates for further biochemical and structural analysis as well as new resources for an extensive exploration of iron-sulfuromes in the microbial world.
Related JoVE Video
The crystal structure of Fe?S? quinolinate synthase unravels an enzymatic dehydration mechanism that uses tyrosine and a hydrolase-type triad.
J. Am. Chem. Soc.
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
Quinolinate synthase (NadA) is a Fe4S4 cluster-containing dehydrating enzyme involved in the synthesis of quinolinic acid (QA), the universal precursor of the essential nicotinamide adenine dinucleotide (NAD) coenzyme. A previously determined apo NadA crystal structure revealed the binding of one substrate analog, providing partial mechanistic information. Here, we report on the holo X-ray structure of NadA. The presence of the Fe4S4 cluster generates an internal tunnel and a cavity in which we have docked the last precursor to be dehydrated to form QA. We find that the only suitably placed residue to initiate this process is the conserved Tyr21. Furthermore, Tyr21 is close to a conserved Thr-His-Glu triad reminiscent of those found in proteases and other hydrolases. Our mutagenesis data show that all of these residues are essential for activity and strongly suggest that Tyr21 deprotonation, to form the reactive nucleophilic phenoxide anion, is mediated by the triad. NadA displays a dehydration mechanism significantly different from the one found in archetypical dehydratases such as aconitase, which use a serine residue deprotonated by an oxyanion hole. The X-ray structure of NadA will help us unveil its catalytic mechanism, the last step in the understanding of NAD biosynthesis.
Related JoVE Video
Insights into the Function of YciM, a Heat Shock Membrane Protein Required To Maintain Envelope Integrity in Escherichia coli.
J. Bacteriol.
PUBLISHED: 11-01-2013
Show Abstract
Hide Abstract
The cell envelope of Gram-negative bacteria is an essential organelle that is important for cell shape and protection from toxic compounds. Proteins involved in envelope biogenesis are therefore attractive targets for the design of new antibacterial agents. In a search for new envelope assembly factors, we screened a collection of Escherichia coli deletion mutants for sensitivity to detergents and hydrophobic antibiotics, a phenotype indicative of defects in the cell envelope. Strains lacking yciM were among the most sensitive strains of the mutant collection. Further characterization of yciM mutants revealed that they display a thermosensitive growth defect on low-osmolarity medium and that they have a significantly altered cell morphology. At elevated temperatures, yciM mutants form bulges containing cytoplasmic material and subsequently lyse. We also discovered that yciM genetically interacts with envC, a gene encoding a regulator of the activity of peptidoglycan amidases. Altogether, these results indicate that YciM is required for envelope integrity. Biochemical characterization of the protein showed that YciM is anchored to the inner membrane via its N terminus, the rest of the protein being exposed to the cytoplasm. Two CXXC motifs are present at the C terminus of YciM and serve to coordinate a redox-sensitive iron center of the rubredoxin type. Both the N-terminal membrane anchor and the C-terminal iron center of YciM are important for function.
Related JoVE Video
In vivo [Fe-S] cluster acquisition by IscR and NsrR, two stress regulators in Escherichia coli.
Mol. Microbiol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
The multi-proteins Isc and Suf systems catalyse the biogenesis of [Fe-S] proteins. Here we investigate how NsrR and IscR, transcriptional regulators that sense NO and [Fe-S] homeostasis, acquire their [Fe-S] clusters under both normal and iron limitation conditions. Clusters directed at the apo-NsrR and apo-IscR proteins are built on either of the two scaffolds, IscU or SufB. However, differences arise in [Fe-S] delivery steps. In the case of NsrR, scaffolds deliver clusters to either one of the two ATCs, IscA and SufA, and, subsequently, to the non-Isc non-Suf ATC, ErpA. Nevertheless, a high level of SufA can bypass the requirement for ErpA. In the case of IscR, several routes occur. One does not include assistance of any ATC. Others implicate ATCs IscA or ErpA, but, surprisingly, SufA was totally absent from any IscR maturation pathways. Both IscR and NsrR have the intrinsic capacity to sense iron limitation. However, NsrR appeared to be efficiently matured by Isc and Suf, thereby preventing NsrR to act as a physiologically relevant iron sensor. This work emphasizes that different maturation pathways arise as a function of the apo-target considered, possibly in relation with the type of cluster, [2Fe-2S] versus [4Fe-4S], it binds.
Related JoVE Video
Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly.
J. Am. Chem. Soc.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Iron-sulfur (Fe-S) cluster-containing proteins are essential components of cells. In eukaryotes, Fe-S clusters are synthesized by the mitochondrial iron-sulfur cluster (ISC) machinery and the cytosolic iron-sulfur assembly (CIA) system. In the mammalian ISC machinery, preassembly of the Fe-S cluster on the scaffold protein (ISCU) involves a cysteine desulfurase complex (NFS1/ISD11) and frataxin (FXN), the protein deficient in Friedreichs ataxia. Here, by comparing the biochemical and spectroscopic properties of quaternary (ISCU/NFS1/ISD11/FXN) and ternary (ISCU/NFS1/ISD11) complexes, we show that FXN stabilizes the quaternary complex and controls iron entry to the complex through activation of cysteine desulfurization. Furthermore, we show for the first time that in the presence of iron and L-cysteine, an [Fe(4)S(4)] cluster is formed within the quaternary complex that can be transferred to mammalian aconitase (mACO2) to generate an active enzyme. In the absence of FXN, although the ternary complex can assemble an Fe-S cluster, the cluster is inefficiently transferred to ACO2. Taken together, these data help to unravel further the Fe-S cluster assembly process and the molecular basis of Friedreichs ataxia.
Related JoVE Video
Iron-sulfur (Fe-S) cluster assembly: the SufBCD complex is a new type of Fe-S scaffold with a flavin redox cofactor.
J. Biol. Chem.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
Assembly of iron-sulfur (Fe-S) clusters and maturation of Fe-S proteins in vivo require complex machineries. In Escherichia coli, under adverse stress conditions, this process is achieved by the SUF system that contains six proteins as follows: SufA, SufB, SufC, SufD, SufS, and SufE. Here, we provide a detailed characterization of the SufBCD complex whose function was so far unknown. Using biochemical and spectroscopic analyses, we demonstrate the following: (i) the complex as isolated exists mainly in a 1:2:1 (B:C:D) stoichiometry; (ii) the complex can assemble a [4Fe-4S] cluster in vitro and transfer it to target proteins; and (iii) the complex binds one molecule of flavin adenine nucleotide per SufBC(2)D complex, only in its reduced form (FADH(2)), which has the ability to reduce ferric iron. These results suggest that the SufBC(2)D complex functions as a novel type of scaffold protein that assembles an Fe-S cluster through the mobilization of sulfur from the SufSE cysteine desulfurase and the FADH(2)-dependent reductive mobilization of iron.
Related JoVE Video
The CsdA cysteine desulphurase promotes Fe/S biogenesis by recruiting Suf components and participates to a new sulphur transfer pathway by recruiting CsdL (ex-YgdL), a ubiquitin-modifying-like protein.
Mol. Microbiol.
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
Cysteine desulphurases are primary sources of sulphur that can eventually be used for Fe/S biogenesis or thiolation of various cofactors and tRNA. Escherichia coli contains three such enzymes, IscS, SufS and CsdA. The importance of IscS and SufS in Fe/S biogenesis is well established. The physiological role of CsdA in contrast remains uncertain. We provide here additional evidences for a functional redundancy between the three cysteine desulphurases in vivo. In particular, we show that a deficiency in isoprenoid biosynthesis is the unique cause of the lethality of the iscS sufS mutant. Moreover, we show that CsdA is engaged in two separate sulphur transfer pathways. In one pathway, CsdA interacts functionally with SufE-SufBCD proteins to assist Fe/S biogenesis. In another pathway, CsdA interacts with CsdE and a newly discovered protein, which we called CsdL, resembling E1-like proteins found in ubiquitin-like modification systems. We propose this new pathway to allow synthesis of an as yet to be discovered thiolated compound.
Related JoVE Video
Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes.
J. Am. Chem. Soc.
PUBLISHED: 04-16-2009
Show Abstract
Hide Abstract
Iron-sulfur (Fe-S) clusters are versatile biological cofactors that require biosynthetic systems in vivo to be assembled. In Escherichia coli, the Isc (iscRSUA-hscBA-fdx-iscX) and Suf (sufABCDSE) pathways fulfill this function. Despite extensive biochemical and genetic analysis of these two pathways, the physiological function of the A-type proteins of each pathway (IscA and SufA) is still unclear. Studies conducted in vitro suggest two possible functions for A-type proteins, as Fe-S scaffold/transfer proteins or as iron donors during cluster assembly. To resolve this issue, SufA was coexpressed in vivo with its cognate partner proteins from the suf operon, SufBCDSE. Native SufA purified anaerobically using this approach was unambiguously demonstrated to be a [2Fe-2S] protein by biochemical analysis and UV-vis, Mossbauer, resonance Raman, and EPR spectroscopy. Furthermore, native [2Fe-2S] SufA can transfer its Fe-S cluster to both [2Fe-2S] and [4Fe-4S] apoproteins. These results clearly show that A-type proteins form Fe-S clusters in vivo and are competent to function as Fe-S transfer proteins as purified. This study resolves the contradictory results from previous in vitro studies and demonstrates the critical importance of providing in vivo partner proteins during protein overexpression to allow correct biochemical maturation of metalloproteins.
Related JoVE Video
Molecular organization, biochemical function, cellular role and evolution of NfuA, an atypical Fe-S carrier.
Mol. Microbiol.
Show Abstract
Hide Abstract
Biosynthesis of iron-sulphur (Fe-S) proteins is catalysed by multi-protein systems, ISC and SUF. However, non-ISC, non-SUF Fe-S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a non-ISC, non SUF component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a degenerate A-type carrier domain (ATC*) lacking Fe-S cluster co-ordinating Cys ligands. The Nfu domain binds a [4Fe-4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo-NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe-S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe-S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.
Related JoVE Video
Studies of inhibitor binding to the [4Fe-4S] cluster of quinolinate synthase.
Angew. Chem. Int. Ed. Engl.
Show Abstract
Hide Abstract
Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de?novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in?vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.
Related JoVE Video
Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Iron/sulfur cluster (ISC)-containing proteins are essential components of cells. In most eukaryotes, Fe/S clusters are synthesized by the mitochondrial ISC machinery, the cytosolic iron/sulfur assembly system, and, in photosynthetic species, a plastid sulfur-mobilization (SUF) system. Here we show that the anaerobic human protozoan parasite Blastocystis, in addition to possessing ISC and iron/sulfur assembly systems, expresses a fused version of the SufC and SufB proteins of prokaryotes that it has acquired by lateral transfer from an archaeon related to the Methanomicrobiales, an important lineage represented in the human gastrointestinal tract microbiome. Although components of the Blastocystis ISC system function within its anaerobic mitochondrion-related organelles and can functionally replace homologues in Trypanosoma brucei, its SufCB protein has similar biochemical properties to its prokaryotic homologues, functions within the parasites cytosol, and is up-regulated under oxygen stress. Blastocystis is unique among eukaryotic pathogens in having adapted to its parasitic lifestyle by acquiring a SUF system from nonpathogenic Archaea to synthesize Fe/S clusters under oxygen stress.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.