JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Human chemokines as antimicrobial peptides with direct parasiticidal effect on Leishmania mexicana in vitro.
PLoS ONE
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.
Related JoVE Video
Primary Klebsiella pneumoniae Liver Abscess with Metastatic Spread to Lung and Eye, a North-European Case Report of an Emerging Syndrome.
Open Microbiol J
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
A syndrome of community acquired liver abscess caused by highly virulent hypermucoviscous, rmpA positive Klebsiella pneumoniae strains occurs with high incidence in Asia. We here report a case complicated by metastatic infection, to our knowledge, the first one described in Northern Europe. This and other recently reported cases indicate the emergence of this severe syndrome outside of Asia.
Related JoVE Video
Clinical isolates of Enterococcus faecalis aggregate human platelets.
Microbes Infect.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Many endocarditis pathogens activate human platelets and this has been proposed to contribute to virulence. Here we report for the first time that many clinical isolates of Enterococcus faecalis, a common pathogen in infective endocarditis, aggregate human platelets. 84 isolates from human blood and urine were screened for their ability to aggregate platelets from four different donors. Platelet aggregation occurred for between 11 and 65% of isolates depending on the donor. In one donor, a significantly larger proportion of isolates from blood than from urine caused platelet aggregation. Median time to aggregation was 11 min and had a tendency to be shorter for blood isolates as compared to urine isolates. Immunoglobulin G (IgG) was shown to be essential in mediating activation and aggregation. Platelet aggregation could be abolished by an IgG-specific proteinase (IdeS), by an antibody blocking FcRgammaIIa on platelets, or by preabsorption of plasma with an E. faecalis isolate. Fibrinogen binding to bacteria or platelets does not contribute to platelet activation or aggregation under our experimental conditions. These results indicate that platelet activation and aggregation by E. faecalis is dependent on both host and bacterial factors and that it may be involved in the pathogenesis of invasive disease with this organism.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.