JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Vitamin D metabolic pathway genes and risk of multiple sclerosis in Canadians.
J. Neurol. Sci.
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is determined by interactions between genes and environment and the influence of vitamin D adequacy has been proposed. Previous studies have shown that serum 25-hydroxyvitamin D (25(OH)D) levels are genetically influenced. Polymorphisms in vitamin D pathway genes are candidates for association with MS susceptibility.
Related JoVE Video
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Genome Res.
PUBLISHED: 08-24-2010
Show Abstract
Hide Abstract
Initially thought to play a restricted role in calcium homeostasis, the pleiotropic actions of vitamin D in biology and their clinical significance are only now becoming apparent. However, the mode of action of vitamin D, through its cognate nuclear vitamin D receptor (VDR), and its contribution to diverse disorders, remain poorly understood. We determined VDR binding throughout the human genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After calcitriol stimulation, we identified 2776 genomic positions occupied by the VDR and 229 genes with significant changes in expression in response to vitamin D. VDR binding sites were significantly enriched near autoimmune and cancer associated genes identified from genome-wide association (GWA) studies. Notable genes with VDR binding included IRF8, associated with MS, and PTPN2 associated with Crohns disease and T1D. Furthermore, a number of single nucleotide polymorphism associations from GWA were located directly within VDR binding intervals, for example, rs13385731 associated with SLE and rs947474 associated with T1D. We also observed significant enrichment of VDR intervals within regions of positive selection among individuals of Asian and European descent. ChIP-seq determination of transcription factor binding, in combination with GWA data, provides a powerful approach to further understanding the molecular bases of complex diseases.
Related JoVE Video
Congenital abnormalities and multiple sclerosis.
BMC Neurol
PUBLISHED: 08-07-2010
Show Abstract
Hide Abstract
There is a strong maternal parent-of-origin effect in determining susceptibility to multiple sclerosis (MS). One hypothesis is that an abnormal intrauterine milieu leading to impaired fetal development could plausibly also result in increased susceptibility to MS. A possible marker for this intrauterine insult is the presence of a non-fatal congenital anomaly.
Related JoVE Video
Parent-of-origin effects at the major histocompatibility complex in multiple sclerosis.
Hum. Mol. Genet.
PUBLISHED: 07-15-2010
Show Abstract
Hide Abstract
Multiple sclerosis (MS) susceptibility is characterized by maternal parent-of-origin effects and increased female penetrance. In 7796 individuals from 1797 MS families (affected individuals n = 2954), we further implicate epigenetic modifications within major histocompatibility complex (MHC) class II haplotypes as mediating these phenomena. Affected individuals with the main MS-associated allele HLA-DRB1*15 had a higher female-to-male ratio versus those lacking it (P = 0.00023). Distorted transmission of MHC haplotypes by both parent-of-origin and gender-of-affected-offspring was most evident in the maternal HLA-DRB1*15 transmission to affected female offspring (OR = 3.31, 95% CI = 2.59-4.24) contrasting with similarity among maternal transmission to affected male offspring (OR = 2.13, 95% CI = 1.44-3.14), paternal transmissions to affected female (OR = 2.14, 95% CI = 1.64-2.78) and male (OR = 2.16, 95% CI = 1.37-3.39) offspring. Significant parent-of-origin effects were observed in affected females (maternal: P = 9.33 x 10(-42); paternal: P = 1.12 x 10(-15); comparison: P = 0.0014), but not in affected males (maternal: P = 6.70 x 10(-8); paternal: P = 2.54 x 10(-6); comparison: P = 0.95). Conditional logistic regression analysis revealed further differential risk of HLA diplotypes. Risks for HLA-DRB1*15 and likely for other HLA-DRB1 haplotypes were restricted by (i) parent-of-origin, (ii) gender-of-offspring and (iii) trans epistasis in offspring. These findings may illuminate the gender bias characterizing autoimmunity overall. They raise questions about the concept of restricted antigen presentation in autoimmunity and suggest that gender-specific epigenetic interactions may be the driving forces behind the MHC haplotypic associations. Haplotype-specific epigenetic modifications at MHC class II and their decay appear to be at the heart of MS pathogenesis and inheritance of risk, providing the focus for gene-environment interactions that determine susceptibility and resistance.
Related JoVE Video
Childhood cows milk allergy and the risk of multiple sclerosis: a population based study.
J. Neurol. Sci.
PUBLISHED: 01-21-2010
Show Abstract
Hide Abstract
Autoimmune mechanisms are thought to have a major role in the pathogenesis of multiple sclerosis (MS) and vitamin D is hypothesised to contribute to disease susceptibility. Cows milk allergy (CMA) is a common childhood allergy arising from an immune system imbalance and can also lead to vitamin D deficiency due to dairy food avoidance. Here, we investigated whether or not CMA influences the subsequent risk to develop MS in a population-based cohort. We identified 6638 MS index cases and 2509 spousal controls with CMA information from the Canadian Collaborative Project on Genetic Susceptibility to MS (CCPGSMS). Frequency of CMA was compared between index cases and controls. No significant differences were found. Childhood CMA thus does not appear to be a risk factor for MS.
Related JoVE Video
Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-20-2009
Show Abstract
Hide Abstract
Multiple sclerosis (MS), a common central nervous system inflammatory disease, has a major heritable component. Susceptibility is associated with the MHC class II region, especially HLA-DRB5*0101-HLA-DRB1*1501-HLA-DQA1*0102-HLA-DQB1*0602 haplotypes(hereafter DR2), which dominate genetic contribution to MS risk. Marked linkage disequilibrium (LD) among these loci makes identification of a specific locus difficult. The once-leading candidate, HLA-DRB1*15, localizes to risk, neutral, and protective haplotypes. HLA-DRB1*15 and HLA-DQB1*0602, nearly always located together on a small ancestral chromosome segment, are strongly MS-associated. One intervening allele on this haplotype, viz. HLA-DQA1*0102, shows no primary MS association. Two Canadian cohorts (n = 830 and n = 438 trios) genotyped for HLA-DRB1, HLA-DQA1 and HLA-DQB1 alleles were tested for association using TDT. To evaluate epistasis involving HLA-DRB1*15, transmissions from HLA-DRB1*15-negative parents were stratified by the presence/absence of HLA-DRB1*15 in affected offspring. All 3 alleles contribute to MS susceptibility through novel epistatic interactions. HLA-DQA1*0102 increased disease risk when combined with HLA-DRB1*1501 in trans, thereby unambiguously implicating HLA-DQ in MS susceptibility. Three-locus haplotypes demonstrated that HLA-DRB1*1501 and HLA-DQB1*0602 each influence risk. Transmissions of rare morcellated DR2 haplotypes showed no interaction with HLA-DQA1*0102. Incomplete haplotypes bearing only HLA-DRB1*1501 or HLA-DQB1*0602 did not predispose to MS. Balanced reciprocal transmission distortion can mask epistatic allelic association. These findings implicate epistasis among HLA class II alleles in human immune responses generally, provide partial explanation for intense linkage disequilibrium in the MHC, have relevance to animal models, and demonstrate key roles for DR2-specific interactions in MS susceptibility. MHC disease associations may be more generally haplotypic or diplotypic.
Related JoVE Video
Variants in ST8SIA1 do not play a major role in susceptibility to multiple sclerosis in Canadian families.
J. Neuroimmunol.
PUBLISHED: 02-21-2009
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex trait with a significant genetic component. Recent work has implicated the ST8SIA1 gene, encoding a ganglioside synthase, in susceptibility to the disease, perhaps with a parent-of-origin effect. In this investigation of 1318 MS patients from 756 Canadian families, we analysed the transmission of the four single nucleotide polymorphisms in ST8SIA previously shown to be associated with MS. No significant association was found in the entire sample or when stratifying by transmitting parent, indicating that this gene plays little or no role in susceptibility to MS in the Canadian population.
Related JoVE Video
Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D.
PLoS Genet.
PUBLISHED: 01-05-2009
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex trait in which allelic variation in the MHC class II region exerts the single strongest effect on genetic risk. Epidemiological data in MS provide strong evidence that environmental factors act at a population level to influence the unusual geographical distribution of this disease. Growing evidence implicates sunlight or vitamin D as a key environmental factor in aetiology. We hypothesised that this environmental candidate might interact with inherited factors and sought responsive regulatory elements in the MHC class II region. Sequence analysis localised a single MHC vitamin D response element (VDRE) to the promoter region of HLA-DRB1. Sequencing of this promoter in greater than 1,000 chromosomes from HLA-DRB1 homozygotes showed absolute conservation of this putative VDRE on HLA-DRB1*15 haplotypes. In contrast, there was striking variation among non-MS-associated haplotypes. Electrophoretic mobility shift assays showed specific recruitment of vitamin D receptor to the VDRE in the HLA-DRB1*15 promoter, confirmed by chromatin immunoprecipitation experiments using lymphoblastoid cells homozygous for HLA-DRB1*15. Transient transfection using a luciferase reporter assay showed a functional role for this VDRE. B cells transiently transfected with the HLA-DRB1*15 gene promoter showed increased expression on stimulation with 1,25-dihydroxyvitamin D3 (P = 0.002) that was lost both on deletion of the VDRE or with the homologous "VDRE" sequence found in non-MS-associated HLA-DRB1 haplotypes. Flow cytometric analysis showed a specific increase in the cell surface expression of HLA-DRB1 upon addition of vitamin D only in HLA-DRB1*15 bearing lymphoblastoid cells. This study further implicates vitamin D as a strong environmental candidate in MS by demonstrating direct functional interaction with the major locus determining genetic susceptibility. These findings support a connection between the main epidemiological and genetic features of this disease with major practical implications for studies of disease mechanism and prevention.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.