JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling.
Curr. Opin. Microbiol.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Plant innate immune response against viruses utilizes intracellular Nucleotide Binding domain Leucine Rich Repeat (NLR) class of receptors. NLRs recognize different viral proteins termed elicitors and initiate diverse signaling processes that induce programmed cell death (PCD) in infected cells and restrict virus spread. In this review we describe the recent advances made in the study of plant NLRs that detect viruses. We describe some of the physical and functional interactions these NLRs undertake. We elaborate on the intra-molecular and homotypic association of NLRs that function in self-regulation and activation. Nuclear role for some viral NLRs is discussed as well as the emerging importance of the RNAi pathway in regulating the NLR family.
Related JoVE Video
Incorporating motif analysis into gene co-expression networks reveals novel modular expression pattern and new signaling pathways.
PLoS Genet.
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules.
Related JoVE Video
Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.
PLoS Pathog.
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.
Related JoVE Video
Arabidopsis RTNLB1 and RTNLB2 Reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor.
Plant Cell
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
Receptors localized at the plasma membrane are critical for the recognition of pathogens. The molecular determinants that regulate receptor transport to the plasma membrane are poorly understood. In a screen for proteins that interact with the FLAGELIN-SENSITIVE2 (FLS2) receptor using Arabidopsis thaliana protein microarrays, we identified the reticulon-like protein RTNLB1. We showed that FLS2 interacts in vivo with both RTNLB1 and its homolog RTNLB2 and that a Ser-rich region in the N-terminal tail of RTNLB1 is critical for the interaction with FLS2. Transgenic plants that lack RTNLB1 and RTNLB2 (rtnlb1 rtnlb2) or overexpress RTNLB1 (RTNLB1ox) exhibit reduced activation of FLS2-dependent signaling and increased susceptibility to pathogens. In both rtnlb1 rtnlb2 and RTNLB1ox, FLS2 accumulation at the plasma membrane was significantly affected compared with the wild type. Transient overexpression of RTNLB1 led to FLS2 retention in the endoplasmic reticulum (ER) and affected FLS2 glycosylation but not FLS2 stability. Removal of the critical N-terminal Ser-rich region or either of the two Tyr-dependent sorting motifs from RTNLB1 causes partial reversion of the negative effects of excess RTNLB1 on FLS2 transport out of the ER and accumulation at the membrane. The results are consistent with a model whereby RTNLB1 and RTNLB2 regulate the transport of newly synthesized FLS2 to the plasma membrane.
Related JoVE Video
SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions.
Mol. Plant Pathol.
PUBLISHED: 08-11-2010
Show Abstract
Hide Abstract
SGT1 (suppressor of G2 allele of Skp1), an interactor of SCF (Skp1-Cullin-F-box) ubiquitin ligase complexes that mediate protein degradation, plays an important role at both G1-S and G2-M cell cycle transitions in yeast, and is highly conserved throughout eukaryotes. Plant SGT1 is required for both resistance (R) gene-mediated disease resistance and nonhost resistance to certain pathogens. Using virus-induced gene silencing (VIGS) in Nicotiana benthamiana, we demonstrate that SGT1 positively regulates the process of cell death during both host and nonhost interactions with various pathovars of Pseudomonas syringae. Silencing of NbSGT1 in N. benthamiana plants delays the induction of hypersensitive response (HR)-mediated cell death against nonhost pathogens and the development of disease-associated cell death caused by the host pathogen P. syringae pv. tabaci. Our results further demonstrate that NbSGT1 is required for Erwinia carotovora- and Sclerotinia sclerotiorum-induced disease-associated cell death. Overexpression of NbSGT1 in N. benthamiana accelerates the development of HR during R gene-mediated disease resistance and nonhost resistance. Our data also indicate that SGT1 is required for pathogen-induced cell death, but is not always necessary for the restriction of bacterial multiplication in planta. Therefore, we conclude that SGT1 is an essential component affecting the process of cell death during both compatible and incompatible plant-pathogen interactions.
Related JoVE Video
Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death.
EMBO J.
PUBLISHED: 01-14-2010
Show Abstract
Hide Abstract
Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca(2+)-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca(2+)-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response.
Related JoVE Video
MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays.
Genes Dev.
PUBLISHED: 01-31-2009
Show Abstract
Hide Abstract
Signaling through mitogen-activated protein kinases (MPKs) cascades is a complex and fundamental process in eukaryotes, requiring MPK-activating kinases (MKKs) and MKK-activating kinases (MKKKs). However, to date only a limited number of MKK-MPK interactions and MPK phosphorylation substrates have been revealed. We determined which Arabidopsis thaliana MKKs preferentially activate 10 different MPKs in vivo and used the activated MPKs to probe high-density protein microarrays to determine their phosphorylation targets. Our analyses revealed known and novel signaling modules encompassing 570 MPK phosphorylation substrates; these substrates were enriched in transcription factors involved in the regulation of development, defense, and stress responses. Selected MPK substrates were validated by in planta reconstitution experiments. A subset of activated and wild-type MKKs induced cell death, indicating a possible role for these MKKs in the regulation of cell death. Interestingly, MKK7- and MKK9-induced death requires Sgt1, a known regulator of cell death induced during plant innate immunity. Our predicted MKK-MPK phosphorylation network constitutes a valuable resource to understand the function and specificity of MPK signaling systems.
Related JoVE Video
Guidelines for the use and interpretation of assays for monitoring autophagy.
Daniel J Klionsky, Fábio C Abdalla, Hagai Abeliovich, Robert T Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, Maria Agnello, Patrizia Agostinis, Julio A Aguirre-Ghiso, Hyung Jun Ahn, Ouardia Ait-Mohamed, Slimane Ait-Si-Ali, Takahiko Akematsu, Shizuo Akira, Hesham M Al-Younes, Munir A Al-Zeer, Matthew L Albert, Roger L Albin, Javier Alegre-Abarrategui, Maria Francesca Aleo, Mehrdad Alirezaei, Alexandru Almasan, Maylin Almonte-Becerril, Atsuo Amano, Ravi Amaravadi, Shoba Amarnath, Amal O Amer, Nathalie Andrieu-Abadie, Vellareddy Anantharam, David K Ann, Shailendra Anoopkumar-Dukie, Hiroshi Aoki, Nadezda Apostolova, Giuseppe Arancia, John P Aris, Katsuhiko Asanuma, Nana Y O Asare, Hisashi Ashida, Valerie Askanas, David S Askew, Patrick Auberger, Misuzu Baba, Steven K Backues, Eric H Baehrecke, Ben A Bahr, Xue-Yuan Bai, Yannick Bailly, Robert Baiocchi, Giulia Baldini, Walter Balduini, Andrea Ballabio, Bruce A Bamber, Edward T W Bampton, Gábor Bánhegyi, Clinton R Bartholomew, Diane C Bassham, Robert C Bast, Henri Batoko, Boon-Huat Bay, Isabelle Beau, Daniel M Béchet, Thomas J Begley, Christian Behl, Christian Behrends, Soumeya Bekri, Bryan Bellaire, Linda J Bendall, Luca Benetti, Laura Berliocchi, Henri Bernardi, Francesca Bernassola, Sébastien Besteiro, Ingrid Bhatia-Kiššová, Xiaoning Bi, Martine Biard-Piechaczyk, Janice S Blum, Lawrence H Boise, Paolo Bonaldo, David L Boone, Beat C Bornhauser, Karina R Bortoluci, Ioannis Bossis, Fréderic Bost, Jean-Pierre Bourquin, Patricia Boya, Michaël Boyer-Guittaut, Peter V Bozhkov, Nathan R Brady, Claudio Brancolini, Andreas Brech, Jay E Brenman, Ana Brennand, Emery H Bresnick, Patrick Brest, Dave Bridges, Molly L Bristol, Paul S Brookes, Eric J Brown, John H Brumell, Nicola Brunetti-Pierri, Ulf T Brunk, Dennis E Bulman, Scott J Bultman, Geert Bultynck, Lena F Burbulla, Wilfried Bursch, Jonathan P Butchar, Wanda Buzgariu, Sérgio P Bydlowski, Ken Cadwell, Monika Cahova, Dongsheng Cai, Jiyang Cai, Qian Cai, Bruno Calabretta, Javier Calvo-Garrido, Nadine Camougrand, Michelangelo Campanella, Jenny Campos-Salinas, Eleonora Candi, Lizhi Cao, Allan B Caplan, Simon R Carding, Sandra M Cardoso, Jennifer S Carew, Cathleen R Carlin, Virginie Carmignac, Leticia A M Carneiro, Serena Carra, Rosario A Caruso, Giorgio Casari, Caty Casas, Roberta Castino, Eduardo Cebollero, Francesco Cecconi, Jean Celli, Hassan Chaachouay, Han-Jung Chae, Chee-Yin Chai, David C Chan, Edmond Y Chan, Raymond Chuen-Chung Chang, Chi-Ming Che, Ching-Chow Chen, Guang-Chao Chen, Guo-Qiang Chen, Min Chen, Quan Chen, Steve S-L Chen, WenLi Chen, Xi Chen, Xiangmei Chen, Xiequn Chen, Ye-Guang Chen, Yingyu Chen, Yongqiang Chen, Yu-Jen Chen, Zhixiang Chen, Alan Cheng, Christopher H K Cheng, Yan Cheng, Heesun Cheong, Jae-Ho Cheong, Sara Cherry, Russ Chess-Williams, Zelda H Cheung, Eric Chevet, Hui-Ling Chiang, Roberto Chiarelli, Tomoki Chiba, Lih-Shen Chin, Shih-Hwa Chiou, Francis V Chisari, Chi Hin Cho, Dong-Hyung Cho, Augustine M K Choi, DooSeok Choi, Kyeong Sook Choi, Mary E Choi, Salem Chouaib, Divaker Choubey, Vinay Choubey, Charleen T Chu, Tsung-Hsien Chuang, Sheau-Huei Chueh, Taehoon Chun, Yong-Joon Chwae, Mee-Len Chye, Roberto Ciarcia, Maria R Ciriolo, Michael J Clague, Robert S B Clark, Peter G H Clarke, Robert Clarke, Patrice Codogno, Hilary A Coller, María I Colombo, Sergio Comincini, Maria Condello, Fabrizio Condorelli, Mark R Cookson, Graham H Coombs, Isabelle Coppens, Ramón Corbalán, Pascale Cossart, Paola Costelli, Safia Costes, Ana Coto-Montes, Eduardo Couve, Fraser P Coxon, James M Cregg, José L Crespo, Marianne J Cronjé, Ana Maria Cuervo, Joseph J Cullen, Mark J Czaja, Marcello D'Amelio, Arlette Darfeuille-Michaud, Lester M Davids, Faith E Davies, Massimo De Felici, John F de Groot, Cornelis A M de Haan, Luisa De Martino, Angelo De Milito, Vincenzo De Tata, Jayanta Debnath, Alexei Degterev, Benjamin Dehay, Lea M D Delbridge, Francesca Demarchi, Yi Zhen Deng, Jörn Dengjel, Paul Dent, Donna Denton, Vojo Deretic, Shyamal D Desai, Rodney J Devenish, Mario Di Gioacchino, Gilbert Di Paolo, Chiara Di Pietro, Guillermo Díaz-Araya, Inés Díaz-Laviada, Maria T Diaz-Meco, Javier Diaz-Nido, Ivan Dikic, Savithramma P Dinesh-Kumar, Wen-Xing Ding, Clark W Distelhorst, Abhinav Diwan, Mojgan Djavaheri-Mergny, Svetlana Dokudovskaya, Zheng Dong, Frank C Dorsey, Victor Dosenko, James J Dowling, Stephen Doxsey, Marlène Dreux, Mark E Drew, Qiuhong Duan, Michel A Duchosal, Karen Duff, Isabelle Dugail, Madeleine Durbeej, Michael Duszenko, Charles L Edelstein, Aimee L Edinger, Gustavo Egea, Ludwig Eichinger, N Tony Eissa, Suhendan Ekmekcioglu, Wafik S El-Deiry, Zvulun Elazar, Mohamed Elgendy, Lisa M Ellerby, Kai Er Eng, Anna-Mart Engelbrecht, Simone Engelender, Jekaterina Erenpreisa, Ricardo Escalante, Audrey Esclatine, Eeva-Liisa Eskelinen, Lucile Espert, Virginia Espina, Huizhou Fan, Jia Fan, Qi-Wen Fan, Zhen Fan, Shengyun Fang, Yongqi Fang, Manolis Fanto, Alessandro Fanzani, Thomas Farkas, Jean-Claude Farré, Mathias Faure, Marcus Fechheimer, Carl G Feng, Jian Feng, Qili Feng, Youji Feng, László Fésüs, Ralph Feuer, Maria E Figueiredo-Pereira, Gian Maria Fimia, Diane C Fingar, Steven Finkbeiner, Toren Finkel, Kim D Finley, Filomena Fiorito, Edward A Fisher, Paul B Fisher, Marc Flajolet, Maria L Florez-McClure, Salvatore Florio, Edward A Fon, Francesco Fornai, Franco Fortunato, Rati Fotedar, Daniel H Fowler, Howard S Fox, Rodrigo Franco, Lisa B Frankel, Marc Fransen, José M Fuentes, Juan Fueyo, Jun Fujii, Kozo Fujisaki, Eriko Fujita, Mitsunori Fukuda, Ruth H Furukawa, Matthias Gaestel, Philippe Gailly, Malgorzata Gajewska, Brigitte Galliot, Vincent Galy, Subramaniam Ganesh, Barry Ganetzky, Ian G Ganley, Fen-Biao Gao, George F Gao, Jinming Gao, Lorena Garcia, Guillermo Garcia-Manero, Mikel Garcia-Marcos, Marjan Garmyn, Andrei L Gartel, Evelina Gatti, Mathias Gautel, Thomas R Gawriluk, Matthew E Gegg, Jiefei Geng, Marc Germain, Jason E Gestwicki, David A Gewirtz, Saeid Ghavami, Pradipta Ghosh, Anna M Giammarioli, Alexandra N Giatromanolaki, Spencer B Gibson, Robert W Gilkerson, Michael L Ginger, Henry N Ginsberg, Jakub Golab, Michael S Goligorsky, Pierre Golstein, Candelaria Gomez-Manzano, Ebru Goncu, Céline Gongora, Claudio D Gonzalez, Ramon Gonzalez, Cristina González-Estévez, Rosa Ana González-Polo, Elena Gonzalez-Rey, Nikolai V Gorbunov, Sharon Gorski, Sandro Goruppi, Roberta A Gottlieb, Devrim Gozuacik, Giovanna Elvira Granato, Gary D Grant, Kim N Green, Aleš Gregorc, Frédéric Gros, Charles Grose, Thomas W Grunt, Philippe Gual, Jun-Lin Guan, Kun-Liang Guan, Sylvie M Guichard, Anna S Gukovskaya, Ilya Gukovsky, Jan Gunst, Asa B Gustafsson, Andrew J Halayko, Amber N Hale, Sandra K Halonen, Maho Hamasaki, Feng Han, Ting Han, Michael K Hancock, Malene Hansen, Hisashi Harada, Masaru Harada, Stefan E Hardt, J Wade Harper, Adrian L Harris, James Harris, Steven D Harris, Makoto Hashimoto, Jeffrey A Haspel, Shin-Ichiro Hayashi, Lori A Hazelhurst, Congcong He, You-Wen He, Marie-Josee Hebert, Kim A Heidenreich, Miep H Helfrich, Gudmundur V Helgason, Elizabeth P Henske, Brian Herman, Paul K Herman, Claudio Hetz, Sabine Hilfiker, Joseph A Hill, Lynne J Hocking, Paul Hofman, Thomas G Hofmann, Jörg Höhfeld, Tessa L Holyoake, Ming-Huang Hong, David A Hood, Gökhan S Hotamisligil, Ewout J Houwerzijl, Maria Høyer-Hansen, Bingren Hu, Chien-An A Hu, Hong-Ming Hu, Ya Hua, Canhua Huang, Ju Huang, Shengbing Huang, Wei-Pang Huang, Tobias B Huber, Won-Ki Huh, Tai-Ho Hung, Ted R Hupp, Gang Min Hur, James B Hurley, Sabah N A Hussain, Patrick J Hussey, Jung Jin Hwang, Seungmin Hwang, Atsuhiro Ichihara, Shirin Ilkhanizadeh, Ken Inoki, Takeshi Into, Valentina Iovane, Juan L Iovanna, Nancy Y Ip, Yoshitaka Isaka, Hiroyuki Ishida, Ciro Isidoro, Ken-Ichi Isobe, Akiko Iwasaki, Marta Izquierdo, Yotaro Izumi, Panu M Jaakkola, Marja Jäättelä, George R Jackson, William T Jackson, Bassam Janji, Marina Jendrach, Ju-Hong Jeon, Eui-Bae Jeung, Hong Jiang, Hongchi Jiang, Jean X Jiang, Ming Jiang, Qing Jiang, Xuejun Jiang, Alberto Jiménez, Meiyan Jin, Shengkan Jin, Cheol O Joe, Terje Johansen, Daniel E Johnson, Gail V W Johnson, Nicola L Jones, Bertrand Joseph, Suresh K Joseph, Annie M Joubert, Gábor Juhász, Lucienne Juillerat-Jeanneret, Chang Hwa Jung, Yong-Keun Jung, Kai Kaarniranta, Allen Kaasik, Tomohiro Kabuta, Motoni Kadowaki, Katarina Kågedal, Yoshiaki Kamada, Vitaliy O Kaminskyy, Harm H Kampinga, Hiromitsu Kanamori, Chanhee Kang, Khong Bee Kang, Kwang Il Kang, Rui Kang, Yoon-A Kang, Tomotake Kanki, Thirumala-Devi Kanneganti, Haruo Kanno, Anumantha G Kanthasamy, Arthi Kanthasamy, Vassiliki Karantza, Gur P Kaushal, Susmita Kaushik, Yoshinori Kawazoe, Po-Yuan Ke, John H Kehrl, Ameeta Kelekar, Claus Kerkhoff, David H Kessel, Hany Khalil, Jan A K W Kiel, Amy A Kiger, Akio Kihara, Deok Ryong Kim, Do-Hyung Kim, Dong-Hou Kim, Eun-Kyoung Kim, Hyung-Ryong Kim, Jae-Sung Kim, Jeong Hun Kim, Jin Cheon Kim, John K Kim, Peter K Kim, Seong Who Kim, Yong-Sun Kim, Yonghyun Kim, Adi Kimchi, Alec C Kimmelman, Jason S King, Timothy J Kinsella, Vladimir Kirkin, Lorrie A Kirshenbaum, Katsuhiko Kitamoto, Kaio Kitazato, Ludger Klein, Walter T Klimecki, Jochen Klucken, Erwin Knecht, Ben C B Ko, Jan C Koch, Hiroshi Koga, Jae-Young Koh, Young Ho Koh, Masato Koike, Masaaki Komatsu, Eiki Kominami, Hee Jeong Kong, Wei-jia Kong, Viktor I Korolchuk, Yaichiro Kotake, Michael I Koukourakis, Juan B Kouri Flores, Attila L Kovács, Claudine Kraft, Dimitri Krainc, Helmut Krämer, Carole Kretz-Remy, Anna M Krichevsky, Guido Kroemer, Rejko Krüger, Oleg Krut, Nicholas T Ktistakis, Chia-Yi Kuan, Róza Kucharczyk, Ashok Kumar, Raj Kumar, Sharad Kumar, Mondira Kundu, Hsing-Jien Kung, Tino Kurz, Ho Jeong Kwon, Albert R La Spada, Frank Lafont, Trond Lamark, Jacques Landry, Jon D Lane, Pierre Lapaquette, Jocelyn F Laporte, Lajos László, Sergio Lavandero, Josée N Lavoie, Robert Layfield, Pedro A Lazo, Weidong Le, Laurent Le Cam, Daniel J Ledbetter, Alvin J X Lee, Byung-Wan Lee, Gyun Min Lee, Jongdae Lee, Ju-Hyun Lee, Michael Lee, Myung-Shik Lee, Sug Hyung Lee, Christiaan Leeuwenburgh, Patrick Legembre, Renaud Legouis, Michael Lehmann, Huan-Yao Lei, Qun-Ying Lei, David A Leib, José Leiro, John J Lemasters, Antoinette Lemoine, Maciej S Lesniak, Dina Lev, Victor V Levenson, Beth Levine, Efrat Levy, Faqiang Li, Jun-lin Li, Lian Li, Sheng Li, Weijie Li, Xue-Jun Li, Yan-Bo Li, Yi-Ping Li, Chengyu Liang, Qiangrong Liang, Yung-Feng Liao, Pawel P Liberski, Andrew Lieberman, Hyunjung J Lim, Kah-Leong Lim, Kyu Lim, Chiou-Feng Lin, Fu-Cheng Lin, Jian Lin, Jiandie D Lin, Kui Lin, Wan-Wan Lin, Weei-Chin Lin, Yi-Ling Lin, Rafael Linden, Paul Lingor, Jennifer Lippincott-Schwartz, Michael P Lisanti, Paloma B Liton, Bo Liu, Chun-Feng Liu, Kaiyu Liu, Leyuan Liu, Qiong A Liu, Wei Liu, Young-Chau Liu, Yule Liu, Richard A Lockshin, Chun-Nam Lok, Sagar Lonial, Benjamin Loos, Gabriel Lopez-Berestein, Carlos Lopez-Otin, Laura Lossi, Michael T Lotze, Péter Low, Binfeng Lu, Bingwei Lu, Bo Lu, Zhen Lu, Fredéric Luciano, Nicholas W Lukacs, Anders H Lund, Melinda A Lynch-Day, Yong Ma, Fernando Macian, Jeff P MacKeigan, Kay F Macleod, Frank Madeo, Luigi Maiuri, Maria Chiara Maiuri, Davide Malagoli, May Christine V Malicdan, Walter Malorni, Na Man, Eva-Maria Mandelkow, Stéphen Manon, Irena Manov, Kai Mao, Xiang Mao, Zixu Mao, Philippe Marambaud, Daniela Marazziti, Yves L Marcel, Katie Marchbank, Piero Marchetti, Stefan J Marciniak, Mateus Marcondes, Mohsen Mardi, Gabriella Marfè, Guillermo Mariño, Maria Markaki, Mark R Marten, Seamus J Martin, Camille Martinand-Mari, Wim Martinet, Marta Martinez-Vicente, Matilde Masini, Paola Matarrese, Saburo Matsuo, Raffaele Matteoni, Andreas Mayer, Nathalie M Mazure, David J McConkey, Melanie J McConnell, Catherine McDermott, Christine McDonald, Gerald M McInerney, Sharon L McKenna, BethAnn McLaughlin, Pamela J McLean, Christopher R McMaster, G Angus McQuibban, Alfred J Meijer, Miriam H Meisler, Alicia Meléndez, Thomas J Melia, Gerry Melino, Maria A Mena, Javier A Menendez, Rubem F S Menna-Barreto, Manoj B Menon, Fiona M Menzies, Carol A Mercer, Adalberto Merighi, Diane E Merry, Stefania Meschini, Christian G Meyer, Thomas F Meyer, Chao-Yu Miao, Jun-Ying Miao, Paul A M Michels, Carine Michiels, Dalibor Mijaljica, Ana Milojkovic, Saverio Minucci, Clelia Miracco, Cindy K Miranti, Ioannis Mitroulis, Keisuke Miyazawa, Noboru Mizushima, Baharia Mograbi, Simin Mohseni, Xavier Molero, Bertrand Mollereau, Faustino Mollinedo, Takashi Momoi, Iryna Monastyrska, Martha M Monick, Mervyn J Monteiro, Michael N Moore, Rodrigo Mora, Kevin Moreau, Paula I Moreira, Yuji Moriyasu, Jorge Moscat, Serge Mostowy, Jeremy C Mottram, Tomasz Motyl, Charbel E-H Moussa, Sylke Müller, Sylviane Muller, Karl Münger, Christian Münz, Leon O Murphy, Maureen E Murphy, Antonio Musarò, Indira Mysorekar, Eiichiro Nagata, Kazuhiro Nagata, Aimable Nahimana, Usha Nair, Toshiyuki Nakagawa, Kiichi Nakahira, Hiroyasu Nakano, Hitoshi Nakatogawa, Meera Nanjundan, Naweed I Naqvi, Derek P Narendra, Masashi Narita, Miguel Navarro, Steffan T Nawrocki, Taras Y Nazarko, Andriy Nemchenko, Mihai G Netea, Thomas P Neufeld, Paul A Ney, Ioannis P Nezis, Huu Phuc Nguyen, Daotai Nie, Ichizo Nishino, Corey Nislow, Ralph A Nixon, Takeshi Noda, Angelika A Noegel, Anna Nogalska, Satoru Noguchi, Lucia Notterpek, Ivana Novak, Tomoyoshi Nozaki, Nobuyuki Nukina, Thorsten Nürnberger, Beat Nyfeler, Keisuke Obara, Terry D Oberley, Salvatore Oddo, Michinaga Ogawa, Toya Ohashi, Koji Okamoto, Nancy L Oleinick, F Javier Oliver, Laura J Olsen, Stefan Olsson, Onya Opota, Timothy F Osborne, Gary K Ostrander, Kinya Otsu, Jing-hsiung James Ou, Mireille Ouimet, Michael Overholtzer, Bulent Ozpolat, Paolo Paganetti, Ugo Pagnini, Nicolas Pallet, Glen E Palmer, Camilla Palumbo, Tianhong Pan, Theocharis Panaretakis, Udai Bhan Pandey, Zuzana Papackova, Issidora Papassideri, Irmgard Paris, Junsoo Park, Ohkmae K Park, Jan B Parys, Katherine R Parzych, Susann Patschan, Cam Patterson, Sophie Pattingre, John M Pawelek, Jianxin Peng, David H Perlmutter, Ida Perrotta, George Perry, Shazib Pervaiz, Matthias Peter, Godefridus J Peters, Morten Petersen, Goran Petrovski, James M Phang, Mauro Piacentini, Philippe Pierre, Valérie Pierrefite-Carle, Gérard Pierron, Ronit Pinkas-Kramarski, Antonio Piras, Natik Piri, Leonidas C Platanias, Stefanie Pöggeler, Marc Poirot, Angelo Poletti, Christian Poüs, Mercedes Pozuelo-Rubio, Mette Prætorius-Ibba, Anil Prasad, Mark Prescott, Muriel Priault, Nathalie Produit-Zengaffinen, Ann Progulske-Fox, Tassula Proikas-Cezanne, Serge Przedborski, Karin Przyklenk, Rosa Puertollano, Julien Puyal, Shu-Bing Qian, Liang Qin, Zheng-Hong Qin, Susan E Quaggin, Nina Raben, Hannah Rabinowich, Simon W Rabkin, Irfan Rahman, Abdelhaq Rami, Georg Ramm, Glenn Randall, Felix Randow, V Ashutosh Rao, Jeffrey C Rathmell, Brinda Ravikumar, Swapan K Ray, Bruce H Reed, John C Reed, Fulvio Reggiori, Anne Regnier-Vigouroux, Andreas S Reichert, John J Reiners, Russel J Reiter, Jun Ren, Jose L Revuelta, Christopher J Rhodes, Konstantinos Ritis, Elizete Rizzo, Jeffrey Robbins, Michel Roberge, Hernan Roca, Maria C Roccheri, Stéphane Rocchi, H Peter Rodemann, Santiago Rodríguez de Córdoba, Bärbel Rohrer, Igor B Roninson, Kirill Rosen, Magdalena M Rost-Roszkowska, Mustapha Rouis, Kasper M A Rouschop, Francesca Rovetta, Brian P Rubin, David C Rubinsztein, Klaus Ruckdeschel, Edmund B Rucker, Assaf Rudich, Emil Rudolf, Nelson Ruiz-Opazo, Rossella Russo, Tor Erik Rusten, Kevin M Ryan, Stefan W Ryter, David M Sabatini, Junichi Sadoshima, Tapas Saha, Tatsuya Saitoh, Hiroshi Sakagami, Yasuyoshi Sakai, Ghasem Hoseini Salekdeh, Paolo Salomoni, Paul M Salvaterra, Guy Salvesen, Rosa Salvioli, Anthony M J Sanchez, José A Sánchez-Alcázar, Ricardo Sánchez-Prieto, Marco Sandri, Uma Sankar, Poonam Sansanwal, Laura Santambrogio, Shweta Saran, Sovan Sarkar, Minnie Sarwal, Chihiro Sasakawa, Ausra Sasnauskiene, Miklós Sass, Ken Sato, Miyuki Sato, Anthony H V Schapira, Michael Scharl, Hermann M Schätzl, Wiep Scheper, Stefano Schiaffino, Claudio Schneider, Marion E Schneider, Regine Schneider-Stock, Patricia V Schoenlein, Daniel F Schorderet, Christoph Schüller, Gary K Schwartz, Luca Scorrano, Linda Sealy, Per O Seglen, Juan Segura-Aguilar, Iban Seiliez, Oleksandr Seleverstov, Christian Sell, Jong Bok Seo, Duska Separovic, Vijayasaradhi Setaluri, Takao Setoguchi, Carmine Settembre, John J Shacka, Mala Shanmugam, Irving M Shapiro, Eitan Shaulian, Reuben J Shaw, James H Shelhamer, Han-Ming Shen, Wei-Chiang Shen, Zu-Hang Sheng, Yang Shi, Kenichi Shibuya, Yoshihiro Shidoji, Jeng-Jer Shieh, Chwen-Ming Shih, Yohta Shimada, Shigeomi Shimizu, Takahiro Shintani, Orian S Shirihai, Gordon C Shore, Andriy A Sibirny, Stan B Sidhu, Beata Sikorska, Elaine C M Silva-Zacarin, Alison Simmons, Anna Katharina Simon, Hans-Uwe Simon, Cristiano Simone, Anne Simonsen, David A Sinclair, Rajat Singh, Debasish Sinha, Frank A Sinicrope, Agnieszka Sirko, Parco M Siu, Efthimios Sivridis, Vojtech Skop, Vladimir P Skulachev, Ruth S Slack, Soraya S Smaili, Duncan R Smith, María S Soengas, Thierry Soldati, Xueqin Song, Anil K Sood, Tuck Wah Soong, Federica Sotgia, Stephen A Spector, Claudia D Spies, Wolfdieter Springer, Srinivasa M Srinivasula, Leonidas Stefanis, Joan S Steffan, Ruediger Stendel, Harald Stenmark, Anastasis Stephanou, Stephan T Stern, Cinthya Sternberg, Björn Stork, Peter Stralfors, Carlos S Subauste, Xinbing Sui, David Sulzer, Jiaren Sun, Shi-Yong Sun, Zhi-Jun Sun, Joseph J Y Sung, Kuninori Suzuki, Toshihiko Suzuki, Michele S Swanson, Charles Swanton, Sean T Sweeney, Lai-King Sy, Gyorgy Szabadkai, Ira Tabas, Heinrich Taegtmeyer, Marco Tafani, Krisztina Takács-Vellai, Yoshitaka Takano, Kaoru Takegawa, Genzou Takemura, Fumihiko Takeshita, Nicholas J Talbot, Kevin S W Tan, Keiji Tanaka, Kozo Tanaka, Daolin Tang, Dingzhong Tang, Isei Tanida, Bakhos A Tannous, Nektarios Tavernarakis, Graham S Taylor, Gregory A Taylor, J Paul Taylor, Lance S Terada, Alexei Terman, Gianluca Tettamanti, Karin Thevissen, Craig B Thompson, Andrew Thorburn, Michael Thumm, Fengfeng Tian, Yuan Tian, Glauco Tocchini-Valentini, Aviva M Tolkovsky, Yasuhiko Tomino, Lars Tönges, Sharon A Tooze, Cathy Tournier, John Tower, Roberto Towns, Vladimir Trajkovic, Leonardo H Travassos, Ting-Fen Tsai, Mario P Tschan, Takeshi Tsubata, Allan Tsung, Boris Turk, Lorianne S Turner, Suresh C Tyagi, Yasuo Uchiyama, Takashi Ueno, Midori Umekawa, Rika Umemiya-Shirafuji, Vivek K Unni, Maria I Vaccaro, Enza Maria Valente, Greet Van den Berghe, Ida J van der Klei, Wouter van Doorn, Linda F van Dyk, Marjolein van Egmond, Leo A van Grunsven, Peter Vandenabeele, Wim P Vandenberghe, Ilse Vanhorebeek, Eva C Vaquero, Guillermo Velasco, Tibor Vellai, Jose Miguel Vicencio, Richard D Vierstra, Miquel Vila, Cécile Vindis, Giampietro Viola, Maria Teresa Viscomi, Olga V Voitsekhovskaja, Clarissa von Haefen, Marcela Votruba, Keiji Wada, Richard Wade-Martins, Cheryl L Walker, Craig M Walsh, Jochen Walter, Xiang-Bo Wan, Aimin Wang, Chenguang Wang, Dawei Wang, Fan Wang, Fen Wang, Guanghui Wang, Haichao Wang, Hong-Gang Wang, Horng-Dar Wang, Jin Wang, Ke Wang, Mei Wang, Richard C Wang, Xinglong Wang, Xuejun Wang, Ying-Jan Wang, Yipeng Wang, Zhen Wang, Zhigang Charles Wang, Zhinong Wang, Derick G Wansink, Diane M Ward, Hirotaka Watada, Sarah L Waters, Paul Webster, Lixin Wei, Conrad C Weihl, William A Weiss, Scott M Welford, Long-Ping Wen, Caroline A Whitehouse, J Lindsay Whitton, Alexander J Whitworth, Tom Wileman, John W Wiley, Simon Wilkinson, Dieter Willbold, Roger L Williams, Peter R Williamson, Bradly G Wouters, Chenghan Wu, Dao-Cheng Wu, William K K Wu, Andreas Wyttenbach, Ramnik J Xavier, Zhijun Xi, Pu Xia, Gengfu Xiao, Zhiping Xie, Zhonglin Xie, Da-zhi Xu, Jianzhen Xu, Liang Xu, Xiaolei Xu, Ai Yamamoto, Akitsugu Yamamoto, Shunhei Yamashina, Michiaki Yamashita, Xianghua Yan, Mitsuhiro Yanagida, Dun-Sheng Yang, Elizabeth Yang, Jin-Ming Yang, Shi Yu Yang, Wannian Yang, Wei Yuan Yang, Zhifen Yang, Meng-Chao Yao, Tso-Pang Yao, Behzad Yeganeh, Wei-Lien Yen, Jia-Jing Yin, Xiao-Ming Yin, Ook-Joon Yoo, Gyesoon Yoon, Seung-Yong Yoon, Tomohiro Yorimitsu, Yuko Yoshikawa, Tamotsu Yoshimori, Kohki Yoshimoto, Ho Jin You, Richard J Youle, Anas Younes, Li Yu, Long Yu, Seong-Woon Yu, Wai Haung Yu, Zhi-Min Yuan, Zhenyu Yue, Cheol-Heui Yun, Michisuke Yuzaki, Olga Zabirnyk, Elaine Silva-Zacarin, David Zacks, Eldad Zacksenhaus, Nadia Zaffaroni, Zahra Zakeri, Herbert J Zeh, Scott O Zeitlin, Hong Zhang, Hui-Ling Zhang, Jianhua Zhang, Jing-Pu Zhang, Lin Zhang, Long Zhang, Ming-Yong Zhang, Xu Dong Zhang, Mantong Zhao, Yi-Fang Zhao, Ying Zhao, Zhizhuang J Zhao, Xiaoxiang Zheng, Boris Zhivotovsky, Qing Zhong, Cong-Zhao Zhou, Changlian Zhu, Wei-Guo Zhu, Xiao-feng Zhu, Xiongwei Zhu, Yuangang Zhu, Teresa Zoladek, Wei-Xing Zong, Antonio Zorzano, Jürgen Zschocke, Brian Zuckerbraun.
Autophagy
Show Abstract
Hide Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Related JoVE Video
Discovery of stress responsive DNA regulatory motifs in Arabidopsis.
PLoS ONE
Show Abstract
Hide Abstract
The discovery of DNA regulatory motifs in the sequenced genomes using computational methods remains challenging. Here, we present MotifIndexer--a comprehensive strategy for de novo identification of DNA regulatory motifs at a genome level. Using word-counting methods, we indexed the existence of every 8-mer oligo composed of bases A, C, G, T, r, y, s, w, m, k, n or 12-mer oligo composed of A, C, G, T, n, in the promoters of all predicted genes of Arabidopsis thaliana genome and of selected stress-induced co-expressed genes. From this analysis, we identified number of over-represented motifs. Among these, major critical motifs were identified using a position filter. We used a model based on uniform distribution and the z-scores derived from this model to describe position bias. Interestingly, many motifs showed position bias towards the transcription start site. We extended this model to show biased distribution of motifs in the genomes of both A. thaliana and rice. We also used MotifIndexer to identify conserved motifs in co-expressed gene groups from two Arabidopsis species, A. thaliana and A. lyrata. This new comparative genomics method does not depend on alignments of homologous gene promoter sequences.
Related JoVE Video
Tobacco rattle virus (TRV)-based virus-induced gene silencing.
Methods Mol. Biol.
Show Abstract
Hide Abstract
One of the most effective forms of plant defense against viruses is posttranscriptional gene silencing (PTGS). This process implies that a virus can trigger the host plants RNA-silencing machinery and ultimately become the target of RNA silencing. PTGS is, therefore, an attractive endogenous process that can be exploited to study gene function. One of the most efficient approaches of initiating PTGS is through virus-induced gene silencing (VIGS). When a recombinant viral vector (VIGS vector), carrying a host-derived target gene sequence, infects a plant, viral double-stranded RNAs are synthesized leading to the activation of the antiviral RNA silencing pathway and the subsequent knockdown of the endogenous host gene. VIGS is both a powerful reverse and forward genetics tool and is amendable to high-throughput genetic screens and functional genomics. Here, we describe the use of tobacco rattle virus-based VIGS techniques to study gene function in Nicotiana benthamiana, tomato, and Arabidopsis thaliana.
Related JoVE Video
Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain.
Plant Cell
Show Abstract
Hide Abstract
Plant cytokinesis is brought about by the phragmoplast, which contains an antiparallel microtubule (MT) array. The MT-associated protein MAP65-3 acts as an MT-bundling factor that specifically cross-links antiparallel MTs near their plus ends. MAP65 family proteins contain an N-terminal dimerization domain and C-terminal MT interaction domain. Compared with other MAP65 isoforms, MAP65-3 contains an extended C terminus. A MT binding site was discovered in the region between amino acids 496 and 588 and found to be essential for the organization of phragmoplast MTs. The frequent cytokinetic failure caused by loss of MAP65-3 was not rescued by ectopic expression of MAP65-1 under the control of the MAP65-3 promoter, indicating nonoverlapping functions between the two isoforms. In the presence of MAP65-3, however, ectopic MAP65-1 appeared in the phragmoplast midline. We show that MAP65-1 could acquire the function of MAP65-3 when the C terminus of MAP65-3, which contains the MT binding site, was grafted to it. Our results also show that MAP65-1 and MAP65-3 may share redundant functions in MT stabilization. Such a stabilization effect was likely brought about by MT binding and bundling. We conclude that MAP65-3 contains a distinct C-terminal MT binding site with a specific role in cross-linking antiparallel MTs toward their plus ends in the phragmoplast.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.