JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genome sequencing of 15 clinical Vibrio isolates, including 13 non-o1/non-o139 serogroup strains.
Genome Announc
PUBLISHED: 09-13-2014
Show Abstract
Hide Abstract
We present draft genome sequences of 15 clinical Vibrio isolates of various serogroups. These are valuable data for use in studying Vibrio cholerae genetic diversity, epidemic potential, and strain attribution.
Related JoVE Video
Standards for sequencing viral genomes in the era of high-throughput sequencing.
MBio
PUBLISHED: 06-19-2014
Show Abstract
Hide Abstract
Thanks to high-throughput sequencing technologies, genome sequencing has become a common component in nearly all aspects of viral research; thus, we are experiencing an explosion in both the number of available genome sequences and the number of institutions producing such data. However, there are currently no common standards used to convey the quality, and therefore utility, of these various genome sequences. Here, we propose five "standard" categories that encompass all stages of viral genome finishing, and we define them using simple criteria that are agnostic to the technology used for sequencing. We also provide genome finishing recommendations for various downstream applications, keeping in mind the cost-benefit trade-offs associated with different levels of finishing. Our goal is to define a common vocabulary that will allow comparison of genome quality across different research groups, sequencing platforms, and assembly techniques.
Related JoVE Video
The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille.
Virology
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
The Bacillus ACT group includes three important pathogenic species of Bacillus: anthracis, cereus and thuringiensis. We characterized three virulent bacteriophages, Bastille, W.Ph. and CP-51, that infect various strains of these three species. We have determined the complete genome sequences of CP-51, W.Ph. and Bastille, and their physical genome structures. The CP-51 genome sequence could only be obtained using a combination of conventional and second and third next generation sequencing technologies - illustrating the problems associated with sequencing highly modified DNA. We present evidence that the generalized transduction facilitated by CP-51 is independent of a specific genome structure, but likely due to sporadic packaging errors of the terminase. There is clear correlation of the genetic and morphological features of these phages validating their placement in the Spounavirinae subfamily (SPO1-related phages) of the Myoviridae. This study also provides tools for the development of phage-based diagnostics/therapeutics for this group of pathogens.
Related JoVE Video
Beyond the chromosome: the prevalence of unique extra-chromosomal bacteriophages with integrated virulence genes in pathogenic Staphylococcus aureus.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExP?s) throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExP? (designated ?BU01) from a vancomycin-intermediate S. aureus (VISA) strain. Assembly and annotation of ?BU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC). Our identification of several potential ExP?s and mobile genetic elements (MGEs) also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT).
Related JoVE Video
Genetic evidence for the involvement of the S-layer protein gene sap and the sporulation genes spo0A, spo0B, and spo0F in phage AP50c infection of Bacillus anthracis.
J. Bacteriol.
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Mariner transposon insertions or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of ?sap, ?spo0A, ?spo0B, or ?spo0F mutants. The amount of Sap in the S-layer of each of the spo0 mutant strains was substantially reduced compared to the parent strain, and incubation of AP50c with purified recombinant Sap led to substantial reduction in phage activity. Phylogenetic analysis based on whole genome sequences of B. cereus sensu lato strains revealed several closely-related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to that of B. anthracis. Complementation of the ?sap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S-layer.
Related JoVE Video
Bacteriophage functional genomics and its role in bacterial pathogen detection.
Brief Funct Genomics
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of functional genomics encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information.
Related JoVE Video
Whole genome sequencing and comparative genomic analyses of two Vibrio cholerae O139 Bengal-specific Podoviruses to other N4-like phages reveal extensive genetic diversity.
Virol. J.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Vibrio cholerae O139 Bengal is the only serogroup other than O1 implicated in cholera epidemics. We describe the isolation and characterization of an O139 serogroup-specific phage, vB_VchP_VchO139-I (?VchO139-I) that has similar host range and virion morphology as phage vB_VchP_JA1 (?JA1) described previously. We aimed at a complete molecular characterization of both phages and elucidation of their genetic and structural differences and assessment of their genetic relatedness to the N4-like phage group.
Related JoVE Video
Genetic variation and linkage disequilibrium in Bacillus anthracis.
Sci Rep
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
We performed whole-genome amplification followed by hybridization of custom-designed resequencing arrays to resequence 303 kb of genomic sequence from a worldwide panel of 39 Bacillus anthracis strains. We used an efficient algorithm contained within a custom software program, UniqueMER, to identify and mask repetitive sequences on the resequencing array to reduce false-positive identification of genetic variation, which can arise from cross-hybridization. We discovered a total of 240 single nucleotide variants (SNVs) and showed that B. anthracis strains have an average of 2.25 differences per 10,000 bases in the region we resequenced. Common SNVs in this region are found to be in complete linkage disequilibrium. These patterns of variation suggest there has been little if any historical recombination among B. anthracis strains since the origin of the pathogen. This pattern of common genetic variation suggests a framework for recognizing new or genetically engineered strains.
Related JoVE Video
PheMaDB: a solution for storage, retrieval, and analysis of high throughput phenotype data.
BMC Bioinformatics
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
OmniLog™ phenotype microarrays (PMs) have the capability to measure and compare the growth responses of biological samples upon exposure to hundreds of growth conditions such as different metabolites and antibiotics over a time course of hours to days. In order to manage the large amount of data produced from the OmniLog™ instrument, PheMaDB (Phenotype Microarray DataBase), a web-based relational database, was designed. PheMaDB enables efficient storage, retrieval and rapid analysis of the OmniLog™ PM data.
Related JoVE Video
Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant.
PLoS ONE
PUBLISHED: 02-15-2011
Show Abstract
Hide Abstract
Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS).
Related JoVE Video
High-redundancy draft sequencing of 15 clinical and environmental Burkholderia strains.
J. Bacteriol.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The Gram-negative Burkholderia genus includes several species of intracellular bacterial pathogens that pose substantial risk to humans. In this study, we have generated draft genome sequences of 15 strains of B. oklahomensis, B. pseudomallei, B. thailandensis, and B. ubonensis to an average sequence read coverage of 25- to 40-fold.
Related JoVE Video
Characterization of pPCP1 Plasmids in Yersinia pestis Strains Isolated from the Former Soviet Union.
Int J Microbiol
PUBLISHED: 07-23-2010
Show Abstract
Hide Abstract
Complete sequences of 9.5-kb pPCP1 plasmids in three Yersinia pestis strains from the former Soviet Union (FSU) were determined and compared with those of pPCP1 plasmids in three well-characterized, non-FSU Y. pestis strains (KIM, CO92, and 91001). Two of the FSU plasmids were from strains C2614 and C2944, isolated from plague foci in Russia, and one plasmid was from strain C790 from Kyrgyzstan. Sequence analyses identified four sequence types among the six plasmids. The pPCP1 plasmids in the FSU strains were most genetically related to the pPCP1 plasmid in the KIM strain and least related to the pPCP1 plasmid in Y. pestis 91001. The FSU strains generally had larger pPCP1 plasmid copy numbers compared to strain CO92. Expression of the plasmids pla gene was significantly (P ? .05) higher in strain C2944 than in strain CO92. Given plas role in Y. pestis virulence, this difference may have important implications for the strains virulence.
Related JoVE Video
Arbovirus detection in insect vectors by rapid, high-throughput pyrosequencing.
PLoS Negl Trop Dis
PUBLISHED: 05-20-2010
Show Abstract
Hide Abstract
Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown.
Related JoVE Video
Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing.
PLoS ONE
PUBLISHED: 05-17-2010
Show Abstract
Hide Abstract
The anthrax letter attacks of 2001 highlighted the need for rapid identification of biothreat agents not only for epidemiological surveillance of the intentional outbreak but also for implementing appropriate countermeasures, such as antibiotic treatment, in a timely manner to prevent further casualties. It is clear from the 2001 cases that survival may be markedly improved by administration of antimicrobial therapy during the early symptomatic phase of the illness; i.e., within 3 days of appearance of symptoms. Microbiological detection methods are feasible only for organisms that can be cultured in vitro and cannot detect all genetic modifications with the exception of antibiotic resistance. Currently available immuno or nucleic acid-based rapid detection assays utilize known, organism-specific proteins or genomic DNA signatures respectively. Hence, these assays lack the ability to detect novel natural variations or intentional genetic modifications that circumvent the targets of the detection assays or in the case of a biological attack using an antibiotic resistant or virulence enhanced Bacillus anthracis, to advise on therapeutic treatments.
Related JoVE Video
Genomic characterization of the Yersinia genus.
Genome Biol.
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
New DNA sequencing technologies have enabled detailed comparative genomic analyses of entire genera of bacterial pathogens. Prior to this study, three species of the enterobacterial genus Yersinia that cause invasive human diseases (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) had been sequenced. However, there were no genomic data on the Yersinia species with more limited virulence potential, frequently found in soil and water environments.
Related JoVE Video
Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection.
Biotechnol. Bioeng.
PUBLISHED: 07-28-2009
Show Abstract
Hide Abstract
We characterize CdSe/ZnS quantum dot (QD) binding to genetically modified bacteriophage as a model for bacterial detection. Interactions among QDs, lambda (lambda) phage, and Escherichia coli are examined by several cross-validated methods. Flow and image-based cytometry clarify fluorescent labeling of bacteria, with image-based cytometry additionally reporting the number of decorated phage bound to cells. Transmission electron microscopy, image-based cytometry, and electrospray differential mobility analysis allow quantization of QDs attached to each phage (4-17 QDs) and show that lambda phage used in this study exhibits enhanced QD binding to the capsid by nearly a factor of four compared to bacteriophage T7. Additionally, the characterization methodology presented can be applied to the quantitative characterization of other fluorescent nanocrystal-biological conjugates.
Related JoVE Video
Next generation sequencing technologies and the changing landscape of phage genomics.
Bacteriophage
Show Abstract
Hide Abstract
The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material, (2) PCR amplification biases and (3) complex nature of their genetic material due to features such as methylated bases and repeats that are inherently difficult to sequence and assemble. Here we describe conclusions drawn from our efforts in sequencing hundreds of bacteriophage genomes from a variety of Gram-positive and Gram-negative bacteria using Sanger, 454, Illumina and PacBio technologies. Based on our experience we propose several general considerations regarding sample quality, the choice of technology and a "blended approach" for generating reliable whole genome sequences of phages.
Related JoVE Video
A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium.
Bacteriophage
Show Abstract
Hide Abstract
Five Y. pestis bacteriophages obtained from various sources were characterized to determine their biological properties, including their taxonomic classification, host range and genomic diversity. Four of the phages (YpP-G, Y, R and YpsP-G) belong to the Podoviridae family, and the fifth phage (YpsP-PST) belongs to the Myoviridae family, of the order Caudovirales comprising of double-stranded DNA phages. The genomes of the four Podoviridae phages were fully sequenced and found to be almost identical to each other and to those of two previously characterized Y. pestis phages Yepe2 and ?A1122. However, despite their genomic homogeneity, they varied in their ability to lyse Y. pestis and Y. pseudotuberculosis strains. The five phages were combined to yield a "phage cocktail" (tentatively designated "YPP-100") capable of lysing the 59 Y. pestis strains in our collection. YPP-100 was examined for its ability to decontaminate three different hard surfaces (glass, gypsum board and stainless steel) experimentally contaminated with a mixture of three genetically diverse Y. pestis strains CO92, KIM and 1670G. Five minutes of exposure to YPP-100 preparations containing phage concentrations of ca. 10(9), 10(8) and 10(7) PFU/mL completely eliminated all viable Y. pestis cells from all three surfaces, but a few viable cells were recovered from the stainless steel coupons treated with YPP-100 diluted to contain ca. 10(6) PFU/mL. However, even that highly diluted preparation significantly (p = < 0.05) reduced Y. pestis levels by ? 99.97%. Our data support the idea that Y. pestis phages may be useful for decontaminating various hard surfaces naturally- or intentionally-contaminated with Y. pestis.
Related JoVE Video
Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system.
Bacteriophage
Show Abstract
Hide Abstract
The conventional and most accepted method of measuring the lytic activity of a phage against its bacterial host is the plaque assay. This method is laborious, time consuming and expensive, especially in high throughput analyses where multiple phage-bacterial interactions are required to be monitored simultaneously. It can also vary considerably with the experimenter and by the growth and plating conditions. Alternatively, the lytic activity can be measured indirectly by following the decrease in optical density of the bacterial cultures owing to lysis. Here we describe an automated, high throughput, indirect liquid lysis assay to evaluate phage growth using the OmniLog(TM) system. The OmniLog(TM) system uses redox chemistry, employing cell respiration as a universal reporter. During active growth of bacteria, cellular respiration reduces a tetrazolium dye and produces a color change that is measured in an automated fashion. On the other hand, successful phage infection and subsequent growth of the phage in its host bacterium results in reduced bacterial growth and respiration and a concomitant reduction in color. Here we show that microtiter plate wells inoculated with Bacillus anthracis and phage show decreased or no growth, compared with the wells containing bacteria only or phage resistant bacteria plus phage. Also, we show differences in the kinetics of bacterial growth and the timing of appearance of phage resistant bacteria in the presence of individual phages or a cocktail of B. anthracis specific phages. The results of these experiments indicate that the OmniLog(TM) system could be used reliably for indirectly measuring phage growth in high throughput host range and phage and antibiotics combination studies.
Related JoVE Video
Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.
PLoS ONE
Show Abstract
Hide Abstract
In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.
Related JoVE Video
Novel high-molecular-weight, R-type bacteriocins of Clostridium difficile.
J. Bacteriol.
Show Abstract
Hide Abstract
Clostridium difficile causes one of the leading nosocomial infections in developed countries, and therapeutic choices are limited. Some strains of C. difficile produce phage tail-like particles upon induction of the SOS response. These particles have bactericidal activity against other C. difficile strains and can therefore be classified as bacteriocins, similar to the R-type pyocins of Pseudomonas aeruginosa. These R-type bacteriocin particles, which have been purified from different strains, each have a different C. difficile-killing spectrum, with no one bacteriocin killing all C. difficile isolates tested. We have identified the genetic locus of these "diffocins" (open reading frames 1359 to 1376) and have found them to be common among the species. The entire diffocin genetic locus of more than 20 kb was cloned and expressed in Bacillus subtilis, and this resulted in production of bactericidal particles. One of the interesting features of these particles is a very large structural protein of ~200 kDa, the product of gene 1374. This large protein determines the killing spectrum of the particles and is likely the receptor-binding protein. Diffocins may provide an alternate bactericidal agent to prevent or treat infections and to decolonize individuals who are asymptomatic carriers.
Related JoVE Video
Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis.
Genome Res.
Show Abstract
Hide Abstract
The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was ?1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.