JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ribonucleotide reductases reveal novel viral diversity and predict biological and ecological features of unknown marine viruses.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-13-2014
Show Abstract
Hide Abstract
Virioplankton play a crucial role in aquatic ecosystems as top-down regulators of bacterial populations and agents of horizontal gene transfer and nutrient cycling. However, the biology and ecology of virioplankton populations in the environment remain poorly understood. Ribonucleotide reductases (RNRs) are ancient enzymes that reduce ribonucleotides to deoxyribonucleotides and thus prime DNA synthesis. Composed of three classes according to O2 reactivity, RNRs can be predictive of the physiological conditions surrounding DNA synthesis. RNRs are universal among cellular life, common within viral genomes and virioplankton shotgun metagenomes (viromes), and estimated to occur within >90% of the dsDNA virioplankton sampled in this study. RNRs occur across diverse viral groups, including all three morphological families of tailed phages, making these genes attractive for studies of viral diversity. Differing patterns in virioplankton diversity were clear from RNRs sampled across a broad oceanic transect. The most abundant RNRs belonged to novel lineages of podoviruses infecting ?-proteobacteria, a bacterial class critical to oceanic carbon cycling. RNR class was predictive of phage morphology among cyanophages and RNR distribution frequencies among cyanophages were largely consistent with the predictions of the "kill the winner-cost of resistance" model. RNRs were also identified for the first time to our knowledge within ssDNA viromes. These data indicate that RNR polymorphism provides a means of connecting the biological and ecological features of virioplankton populations.
Related JoVE Video
Isolation and genome analysis of single virions using single virus genomics.
J Vis Exp
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
Whole genome amplification and sequencing of single microbial cells enables genomic characterization without the need of cultivation (1-3). Viruses, which are ubiquitous and the most numerous entities on our planet (4) and important in all environments (5), have yet to be revealed via similar approaches. Here we describe an approach for isolating and characterizing the genomes of single virions called Single Virus Genomics (SVG). SVG utilizes flow cytometry to isolate individual viruses and whole genome amplification to obtain high molecular weight genomic DNA (gDNA) that can be used in subsequent sequencing reactions.
Related JoVE Video
Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton.
ISME J
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an ?-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton.
Related JoVE Video
A metagenomic framework for the study of airborne microbial communities.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Understanding the microbial content of the air has important scientific, health, and economic implications. While studies have primarily characterized the taxonomic content of air samples by sequencing the 16S or 18S ribosomal RNA gene, direct analysis of the genomic content of airborne microorganisms has not been possible due to the extremely low density of biological material in airborne environments. We developed sampling and amplification methods to enable adequate DNA recovery to allow metagenomic profiling of air samples collected from indoor and outdoor environments. Air samples were collected from a large urban building, a medical center, a house, and a pier. Analyses of metagenomic data generated from these samples reveal airborne communities with a high degree of diversity and different genera abundance profiles. The identities of many of the taxonomic groups and protein families also allows for the identification of the likely sources of the sampled airborne bacteria.
Related JoVE Video
Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.
Front Microbiol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.
Related JoVE Video
TheViral MetaGenome Annotation Pipeline(VMGAP):an automated tool for the functional annotation of viral Metagenomic shotgun sequencing data.
Stand Genomic Sci
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
In the past few years, the field of metagenomics has been growing at an accelerated pace, particularly in response to advancements in new sequencing technologies. The large volume of sequence data from novel organisms generated by metagenomic projects has triggered the development of specialized databases and tools focused on particular groups of organisms or data types. Here we describe a pipeline for the functional annotation of viral metagenomic sequence data. The Viral MetaGenome Annotation Pipeline (VMGAP) pipeline takes advantage of a number of specialized databases, such as collections of mobile genetic elements and environmental metagenomes to improve the classification and functional prediction of viral gene products. The pipeline assigns a functional term to each predicted protein sequence following a suite of comprehensive analyses whose results are ranked according to a priority rules hierarchy. Additional annotation is provided in the form of enzyme commission (EC) numbers, GO/MeGO terms and Hidden Markov Models together with supporting evidence.
Related JoVE Video
Repeating patterns of virioplankton production within an estuarine ecosystem.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-27-2011
Show Abstract
Hide Abstract
The Chesapeake Bay, a seasonally variable temperate estuary, provides a natural laboratory for examining the fluctuations and impacts of viral lysis on aquatic microorganisms. Viral abundance (VA) and viral production (VP) were monitored in the Chesapeake Bay over 4 1/2 annual cycles, producing a unique, long-term, interannual study of virioplankton production. High and dynamic VP rates, averaging 7.9 × 10(6) viruses per mL per h, indicate that viral lysis impacts a significant fraction of microorganisms in the Chesapeake. Viral-mediated bacterial mortality, VA, VP, and organic carbon release all displayed similar interannual and seasonal trends with higher values in 2003 and 2006 than in 2004 and 2005 and peaks in early spring and summer. Surprisingly, higher rates of viral lysis occurred in winter, resulting in a magnified effect of viral lysis on bacterioplankton during times of reduced productivity. Viral lysis directly impacted the organic carbon pool, contributing on average 76 ?g of C per L per d, an amount capable of sustaining ?55% of Chesapeake Bay bacterial production. The observed repeating interannual patterns of VP and lysis are likely interlinked with seasonal cycles of host abundance and diversity, which are in turn driven by annual cycles in environmental conditions, emphasizing the complex interplay of seasonality and microbial ecology in the Chesapeake Bay.
Related JoVE Video
Single virus genomics: a new tool for virus discovery.
PLoS ONE
PUBLISHED: 02-12-2011
Show Abstract
Hide Abstract
Whole genome amplification and sequencing of single microbial cells has significantly influenced genomics and microbial ecology by facilitating direct recovery of reference genome data. However, viral genomics continues to suffer due to difficulties related to the isolation and characterization of uncultivated viruses. We report here on a new approach called Single Virus Genomics, which enabled the isolation and complete genome sequencing of the first single virus particle. A mixed assemblage comprised of two known viruses; E. coli bacteriophages lambda and T4, were sorted using flow cytometric methods and subsequently immobilized in an agarose matrix. Genome amplification was then achieved in situ via multiple displacement amplification (MDA). The complete lambda phage genome was recovered with an average depth of coverage of approximately 437X. The isolation and genome sequencing of uncultivated viruses using Single Virus Genomics approaches will enable researchers to address questions about viral diversity, evolution, adaptation and ecology that were previously unattainable.
Related JoVE Video
Going deeper: metagenome of a hadopelagic microbial community.
PLoS ONE
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above.
Related JoVE Video
Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment.
Environ Microbiol Rep
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
Relatively little information is available for the composition of microbial communities present in hadal environments, the deepest marine locations. Here we present a description of the phylogenetic diversity of particle-associated (>?3?µm) and free-living (3-0.22?µm) microorganisms present in a pelagic trench environment. Small subunit ribosomal RNA gene sequences were recovered from members of the Bacteria, Archaea and Eukarya obtained from a depth of 6000?m in the Puerto Rico Trench (PRT). Species richness estimates for the bacterial particle-associated fraction were greater compared with the free-living fraction and demonstrated statistically significant compositional differences, while the archaeal fractions were not found to be significantly different. The particle-associated fraction contained more Rhodobacterales and unclassified Myxococcales along with Bacteroidetes, Planctomycetes and chloroplast sequences, whereas the free-living fraction contained more Caulobacterales, Xanthomonadales and Burkholderiales, along with Marine Group A and Gemmatimonadetes. The Eukarya contained a high abundance of Basidiomycota Fungi 18S rRNA genes, as well as representatives from the super-groups Rhizaria, Excavata and Chromalveolata. A diverse clade of diplonemid flagellates was also identified from the eukaryotic phylotypes recovered, which was distinct from previously identified deep-sea pelagic diplonemid groups. The significance of these results to considerations of deep-sea microbial life and particle colonization is discussed in comparison to the few other deep-ocean phylogenetic surveys available.
Related JoVE Video
Genomic and functional adaptation in surface ocean planktonic prokaryotes.
Nature
PUBLISHED: 09-22-2010
Show Abstract
Hide Abstract
The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0??m size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.
Related JoVE Video
Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages.
Appl. Environ. Microbiol.
PUBLISHED: 06-11-2010
Show Abstract
Hide Abstract
Metagenomics can be used to determine the diversity of complex, often unculturable, viral communities with various nucleic acid compositions. Here, we report the use of hydroxyapatite chromatography to efficiently fractionate double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), dsRNA, and ssRNA genomes from known bacteriophages. Linker-amplified shotgun libraries were constructed to generate sequencing reads from each hydroxyapatite fraction. Greater than 90% of the reads displayed significant similarity to the expected genomes at the nucleotide level. These methods were applied to marine viruses collected from the Chesapeake Bay and the Dry Tortugas National Park. Isolated nucleic acids were fractionated using hydroxyapatite chromatography followed by linker-amplified shotgun library construction and sequencing. Taxonomic analysis demonstrated that the majority of environmental sequences, regardless of their source nucleic acid, were most similar to dsDNA viruses, reflecting the bias of viral metagenomic sequence databases.
Related JoVE Video
Metagenomic investigation of microbes and viruses in patients with jaw osteonecrosis associated with bisphosphonate therapy.
Oral Surg Oral Med Oral Pathol Oral Radiol
Show Abstract
Hide Abstract
The goal of this preliminary study was to use metagenomic approaches to investigate the taxonomic diversity of microorganisms in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ).
Related JoVE Video
Metagenomic exploration of viruses throughout the Indian Ocean.
PLoS ONE
Show Abstract
Hide Abstract
The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions.
Related JoVE Video
Groundtruthing next-gen sequencing for microbial ecology-biases and errors in community structure estimates from PCR amplicon pyrosequencing.
PLoS ONE
Show Abstract
Hide Abstract
Analysis of microbial communities by high-throughput pyrosequencing of SSU rRNA gene PCR amplicons has transformed microbial ecology research and led to the observation that many communities contain a diverse assortment of rare taxa-a phenomenon termed the Rare Biosphere. Multiple studies have investigated the effect of pyrosequencing read quality on operational taxonomic unit (OTU) richness for contrived communities, yet there is limited information on the fidelity of community structure estimates obtained through this approach. Given that PCR biases are widely recognized, and further unknown biases may arise from the sequencing process itself, a priori assumptions about the neutrality of the data generation process are at best unvalidated. Furthermore, post-sequencing quality control algorithms have not been explicitly evaluated for the accuracy of recovered representative sequences and its impact on downstream analyses, reducing useful discussion on pyrosequencing reads to their diversity and abundances. Here we report on community structures and sequences recovered for in vitro-simulated communities consisting of twenty 16S rRNA gene clones tiered at known proportions. PCR amplicon libraries of the V3-V4 and V6 hypervariable regions from the in vitro-simulated communities were sequenced using the Roche 454 GS FLX Titanium platform. Commonly used quality control protocols resulted in the formation of OTUs with >1% abundance composed entirely of erroneous sequences, while over-aggressive clustering approaches obfuscated real, expected OTUs. The pyrosequencing process itself did not appear to impose significant biases on overall community structure estimates, although the detection limit for rare taxa may be affected by PCR amplicon size and quality control approach employed. Meanwhile, PCR biases associated with the initial amplicon generation may impose greater distortions in the observed community structure.
Related JoVE Video
Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic.
ISME J
Show Abstract
Hide Abstract
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ~5.8 million predicted proteins across seven sites, from three different size classes: 0.1-0.8, 0.8-3.0 and 3.0-200.0 ?m. Taxonomic and metabolic analyses suggest that sequences from the 0.1-0.8 ?m size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8-200 ?m) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.