JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Voltammetric microwell array for oxidized guanosine in intact ds-DNA.
Anal. Chem.
PUBLISHED: 10-28-2013
Show Abstract
Hide Abstract
Oxidative stress in humans causes damage to biomolecules by generating reactive oxygen species (ROS). DNA can be oxidatively damaged by ROS, which may lead to carcinogenesis. Here we report a microfluidic electrochemical array designed to rapidly detect oxidation in intact DNA in replicate measurements. Sensor arrays were fabricated by wet-chemistry patterning of gold compact discs. The eight-sensor array is incorporated into a 60 ?L microfluidic channel connected to a pump and sample valve. The array features 7 nm thick osmium bipyridyl poly(vinylpyridine) chloride [Os(bpy)2(PVP)10Cl](+) films assembled layer-by-layer with polyions onto the gold sensors. 8-Hydroxy-7,8-hydro-2-deoxyguanosine (8-oxodG) is selectively oxidized by [Os(bpy)2(PVP)10Cl](+) in intact ds-DNA to provide catalytic square wave voltammograms (SWV). The device is easy-to-use, fast, inexpensive, reusable, and can detect one 8-oxodG per 6600 nucleobases. The mass detection limit is 150-fold lower than a previously reported dip-and-read voltammetric sensor for oxidized DNA. Fast assays (<1 min) and moderate sample consumption (15 pmol DNA) suggest potential for research and clinical applications. Practical use is illustrated by detecting DNA oxidation from cigarette smoke and ash extracts in dispersions with NADPH and Cu(2+).
Related JoVE Video
Assessing DNA Damage from Enzyme-Oxidized Single-Walled Carbon Nanotubes.
Toxicol Res (Camb)
PUBLISHED: 10-26-2013
Show Abstract
Hide Abstract
Peroxidase enzyme digests of oxidized single-wall carbon nanotubes (SWCNT) were shown to damage DNA in potentially genotoxic reactions for the first time using an electro-optical array with and without metabolic activation.
Related JoVE Video
Genotoxicity-related chemistry of human metabolites of benzo[ghi]perylene (B[ghi]P) investigated using electro-optical arrays and DNA/microsome biocolloid reactors with LC-MS/MS.
Chem. Res. Toxicol.
PUBLISHED: 08-08-2013
Show Abstract
Hide Abstract
There is limited and sometimes contradictory information about the genotoxicity of the polycyclic aromatic hydrocarbon benzo[ghi]perylene (B[ghi]P). Using recently developed metabolic toxicity screening arrays and a biocolloid reactor-LC-MS/MS approach, both featuring films of DNA and human metabolic enzymes, we demonstrated the relatively low reactivity of metabolically activated B[ghi]P toward DNA. Electro-optical toxicity screening arrays showed that B[ghi]P metabolites damage DNA at a 3-fold lower rate than benzo[a]pyrene (B[a]P), whose metabolites have a strong and well-understood propensity for DNA damage. Metabolic studies using magnetic bead biocolloid reactors coated with microsomal enzymes in 96-well plates showed that cyt P450s 1A1 and 1B1 provide high activity for B[ghi]P and B[a]P conversion. Consistent with published results, the major metabolism of B[ghi]P involved oxidations at 3,4 and 11,12 positions, leading to the formation of B[ghi]P 3,4-oxide and B[ghi]P 3,4,11,12-bisoxide. B[ghi]P 3,4-oxide was synthesized and reacted with deoxyadenosine at N6 and N7 positions and with deoxyguanosine at the N2 position. B[ghi]P 3,4-oxide is hydrolytically unstable and transforms into the 3,4-diol or converts to 3- or 4-hydroxy B[ghi]P. LC-MS/MS of reaction products from the magnetic biocolloid reactor particles coated with DNA and human enzymes revealed for the first time that a major DNA adduct results from the reaction between B[ghi]P 3,4,11,12-bisoxide and deoxyguanosine. Results also demonstrated 5-fold lower formation rates of the major DNA adduct for B[ghi]P metabolites compared to B[a]P. Overall, results from both the electro-optical array and biocolloid reactor-LC-MS/MS consistently suggest a lower human genotoxicity profile of B[ghi]P than B[a]P.
Related JoVE Video
Evaluation of electrochemiluminescent metabolic toxicity screening arrays using a multiple compound set.
Anal. Chem.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
Arrays for screening metabolite-generated toxicity utilizing spots containing DNA, enzyme, and electroluminescent (ECL) polymer ([Ru(bpy)(2)PVP(10)](2+)) were extended to include a fully representative set of metabolic enzymes from human and rat liver microsomes, human and rat liver cytosol, and mouse liver S9 fractions. Array use involves two steps: (1) enzyme activation of the test chemical and metabolite reaction with DNA, and then, (2) capture of ECL resulting from DNA damage using a charge coupled device (CCD) camera. Plots of ECL increase vs enzyme reaction time monitor relative rates of DNA damage and were converted into turnover rates for enzymic production of DNA-reactive metabolites. ECL turnover rates were defined by R, the initial slope of ECL increase versus enzyme reaction time normalized for amounts of enzyme and test chemical. R-values were used to establish correlations for 11 toxic compounds with the standard toxicity metrics rodent liver TD(50) and lethal dose (LD(50)), Ames tests, and Comet assays for in vitro DNA damage. Results support the value of the ECL genotoxicity arrays together with toxicity bioassays for early screening of new chemicals and drug candidates.
Related JoVE Video
Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)(3)](2+)-doped silica nanoparticles.
Chem. Commun. (Camb.)
PUBLISHED: 07-10-2009
Show Abstract
Hide Abstract
We report the first electrochemiluminescent immunosensor combining single-wall carbon nanotube forests with RuBPY-silica-secondary antibody nanoparticles for sensitive detection of cancer biomarker prostate specific antigen.
Related JoVE Video
Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors.
Electroanalysis
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using [Formula: see text] as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD(50) data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.