JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Anti-CD138-Targeted Interferon Is a Potent Therapeutic Against Multiple Myeloma.
J. Interferon Cytokine Res.
PUBLISHED: 10-30-2014
Show Abstract
Hide Abstract
Multiple myeloma (MM), a plasma cell malignancy, is the second most prevalent hematologic malignancy in the US. Although much effort has been made trying to understand the etiology and the complexities of this disease with the hope of developing effective therapies, MM remains incurable at this time. Because of their antiproliferative and proapoptotic activities, interferons (IFNs) have been used to treat various malignancies, including MM. Although some success has been observed, the inherent toxicities of IFNs limit their efficacy. To address this problem, we produced anti-CD138 antibody fusion proteins containing either IFN?2 or a mutant IFN?2 (IFN?2(YNS)) with the goal of targeting IFN to CD138-expressing cells, thereby achieving effective IFN concentrations at the site of the tumor in the absence of toxicity. The fusion proteins inhibited the proliferation and induced apoptosis of U266, ANBL-6, NCI-H929, and MM1-144 MM cell lines. The fusion proteins decreased the expression of IFN regulatory factor 4 (IRF4) in U266. In addition, the fusion proteins were effective against primary cells from MM patients, and treatment with fusion proteins prolonged survival in the U266 murine model of MM. These studies show that IFN? antibody fusion proteins can be effective novel therapeutics for the treatment of MM.
Related JoVE Video
Anti-CD20-interferon-? fusion protein therapy of murine B-cell lymphomas.
J. Immunother.
PUBLISHED: 05-31-2013
Show Abstract
Hide Abstract
Type I interferons (IFN?/?) are cytokines with a broad spectrum of antitumor activities including antiproliferative, proapoptotic, and immunostimulatory effects, and are potentially useful in the treatment of B-cell malignancies and other cancers. To improve antitumor potency and diminish the systemic side effects of IFN, we recently developed anti-CD20-IFN? fusion proteins with in vitro and in vivo efficacy against both mouse and human lymphomas expressing CD20. As IFN? binds more tightly to the IFN?/? receptor (IFNAR) and has more potent antitumor activities, we have now constructed an anti-CD20 fusion protein with murine IFN? (mIFN?). Anti-CD20-mIFN? was more potent than recombinant mIFN? and anti-CD20-mIFN? in inhibiting the proliferation of a mouse B-cell lymphoma expressing human CD20 (38C13-huCD20). Growth inhibition was accompanied by caspase-independent apoptosis and DNA fragmentation. The efficacy of anti-CD20-mIFN? required the physical linkage of mIFN? to anti-CD20 antibody. Importantly, anti-CD20-mIFN? was active against tumor cells expressing low levels of IFNAR (38C13-huCD20 IFNAR). In vivo, established 38C13-huCD20 tumors were largely insensitive to rituximab or a nontargeted mIFN? fusion protein, yet treatment with anti-CD20-mIFN? eradicated 83% of tumors. Anti-CD20-mIFN? was also more potent in vivo against 38C13-huCD20 than anti-CD20-mIFN?, curing 75% versus 25% of tumors (P=0.001). Importantly, although anti-CD20-mIFN? could not eradicate 38C13-huCD20 IFNAR tumors, anti-CD20-mIFN? treatment prolonged survival (P=0.0003), and some animals remained tumor-free. Thus, antibody fusion proteins targeting mIFN? to tumors show promise as therapeutic agents, especially for use against tumors resistant to the effects of mIFN?.
Related JoVE Video
The SRC family tyrosine kinase HCK and the ETS family transcription factors SPIB and EHF regulate transcytosis across a human follicle-associated epithelium model.
J. Biol. Chem.
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
A critical step in the induction of adaptive mucosal immunity is antigen transcytosis, in which luminal antigens are transported to organized lymphoid tissues across the follicle-associated epithelium (FAE) of Peyers patches. However, virtually nothing is known about intracellular signaling proteins and transcription factors that regulate apical-to-basolateral transcytosis. The FAE can transcytose a variety of luminal contents, including inert particles, in the absence of specific opsonins. Furthermore, it expresses receptors for secretory immunoglobulin A (SIgA), the main antibody in mucosal secretions, and uses them to efficiently transcytose SIgA-opsonized particles present in the lumen. Using a human FAE model, we show that the tyrosine kinase HCK regulates apical-to-basolateral transcytosis of non-opsonized and SIgA-opsonized particles. We also show that, in cultured intestinal epithelial cells, ectopic expression of the transcription factor SPIB or EHF is sufficient to activate HCK-dependent apical-to-basolateral transcytosis of these particles. Our results provide the first molecular insights into the intracellular regulation of antigen sampling at mucosal surfaces.
Related JoVE Video
A CD19/Fc fusion protein for detection of anti-CD19 chimeric antigen receptors.
J Transl Med
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
Chimeric Antigen Receptors (CARs) consist of the antigen-recognition portion of a monoclonal antibody fused to an intracellular signaling domain capable of activating T-cells. CARs displayed on the surface of transduced cells perform non-MHC-restricted antigen recognition and activating intracellular signaling pathways for induction of target cytolysis, cytokine secretion and proliferation. Clinical trials are in progress assessing the use of mature T-lymphocytes transduced with CARs targeting CD19 antigen to treat B-lineage malignancies. CD19 is an attractive target for immunotherapy because of its consistent and specific expression in most of the stages of maturation and malignancies of B-lymphocyte origin, but not on hematopoietic stem cells. Antibodies against the extracellular domain of the CAR molecule (anti-Fab, Fc or idiotype) have been used for detection of CAR expression in research and clinical samples by flow cytometry, but may need development for each construct and present significant background in samples from xenograft models.
Related JoVE Video
Efficient identification of human immunodeficiency virus type 1 mutants resistant to a protease inhibitor by using a random mutant library.
Antimicrob. Agents Chemother.
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
Emergence of drug-resistant mutant viruses during the course of antiretroviral therapy is a major hurdle that limits the success of chemotherapeutic treatment to suppress human immunodeficiency virus type 1 (HIV-1) replication and AIDS progression. Development of new drugs and careful patient management based on resistance genotyping data are important for enhancing therapeutic efficacy. However, identifying changes leading to drug resistance can take years of clinical studies, and conventional in vitro assays are limited in generating reliable drug resistance data. Here we present an efficient in vitro screening assay for selecting drug-resistant variants from a library of randomly mutated HIV-1 strains generated by transposon-directed base-exchange mutagenesis. As a test of principle, we screened a library of mutant HIV-1 strains containing random mutations in the protease gene by using a reporter T-cell line in the presence of the protease inhibitor (PI) nelfinavir (NFV). Analysis of replicating viruses from a single round of infection identified 50 amino acid substitutions at 35 HIV-1 protease residue positions. The selected mutant viruses showed specific resistance to NFV and included most of the known NFV resistance mutations. Therefore, the new assay is efficient for identifying changes leading to drug resistance. The data also provide insights into the molecular mechanisms underlying the development of drug resistance.
Related JoVE Video
Characterization of IgA and IgM binding and internalization by surface-expressed human Fc?/? receptor.
Mol. Immunol.
PUBLISHED: 05-06-2011
Show Abstract
Hide Abstract
The Fc?/? receptor (Fc?/?R) is an unusual Fc receptor in that it binds to two different antibody isotypes, IgA and IgM. This receptor is of interest because it is thought to be involved in the capture of IgA- and IgM-immune complexes and antigen presentation. To further characterize this receptor, we were able to stably express human Fc?/?R on the surface of the 293T cell line. Using this system, we determined the affinity of the interactions of the receptor with IgA and IgM, which led to novel insights including the important finding that IgM polymers can bind to human Fc?/?R in the absence of J chain. This is in contrast to the polymeric immunoglobulin receptor (pIgR), which requires the presence of J chain to bind to polymeric IgA and IgM. The dissociation constants (K(d)) of all of the different human IgA isotypes and allotypes for human Fc?/?R were determined, and we show that the N-linked glycans on IgA1 are not required for binding to the receptor. In addition, we demonstrate that IgA can be rapidly internalized by human Fc?/?R in the presence of cross-linking antibody.
Related JoVE Video
In vitro C3 deposition on Cryptococcus capsule occurs via multiple complement activation pathways.
Mol. Immunol.
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Complement can be activated via three pathways: classical, alternative, and lectin. Cryptococcus gattii and Cryptococcus neoformans are closely related fungal pathogens possessing a polysaccharide capsule composed mainly of glucuronoxylomannan (GXM), which serves as a site for complement activation and deposition of complement components. We determined C3 deposition on Cryptococcus spp. by flow cytometry and confocal microscopy after incubation with serum from C57BL/6J mice as well as mice deficient in complement components C4, C3, factor B, and mannose binding lectin (MBL). C. gattii and C. neoformans activate complement in EGTA-treated serum indicating that they can activate the alternative pathway. However, complement activation was seen with factor B(-/-) serum suggesting activation could also take place in the absence of a functional alternative pathway. Furthermore, we uncovered a role for C4 in the alternative pathway activation by Cryptococcus spp. We also identified an unexpected and complex role for MBL in complement activation by Cryptococcus spp. No complement activation occurred in the absence of MBL-A and -C proteins although activation took place when the lectin binding activity of MBL was disrupted by calcium chelation. In addition, alternative pathway activation by C. neoformans required both MBL-A and -C, while either MBL-A or -C was sufficient for alternative pathway activation by C. gattii. Thus, complement activation by Cryptococcus spp. can take place through multiple pathways and complement activation via the alternative pathway requires the presence of C4 and MBL proteins.
Related JoVE Video
Differences in N-glycan structures found on recombinant IgA1 and IgA2 produced in murine myeloma and CHO cell lines.
MAbs
PUBLISHED: 05-17-2010
Show Abstract
Hide Abstract
The development and production of recombinant monoclonal antibodies is well established. Although most of these are IgGs, there is also great interest in producing recombinant IgAs since this isotype plays a critical role in providing immunologic protection at mucosal surfaces. The choice of expression system for production of recombinant antibodies is crucial because they are glycoproteins containing at least one N-linked carbohydrate. These glycans have been shown to contribute to the stability, pharmacokinetics and biologic function of antibodies. We have produced recombinant human IgA1 and all three allotypes of IgA2 in murine myeloma and CHO cell lines to systematically characterize and compare the N-linked glycans. Recombinant IgAs produced in murine myelomas differ significantly from IgA found in humans in that they contain the highly immunogenic Galalpha(1,3)Gal epitope and N-glycolylneuraminic acid residues, indicating that murine myeloma is not the optimal expression system for the production of human IgA. In contrast, IgAs produced in CHO cells contained glycans that were more similar to those found on human IgA. Expression of IgA1 and IgA2 in Lec2 and Lec8 cell lines that are defective in glycan processing resulted in a less complex pool of N-glycans. In addition, the level of sialylation of rIgAs produced in murine and CHO cells was significantly lower than that previously reported for serum IgA1. These data underscore the importance of choosing the appropriate cell line for the production of glycoproteins with therapeutic potential.
Related JoVE Video
Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma.
Blood
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
The anti-CD20 antibody rituximab has substantially improved outcomes in patients with B-cell non-Hodgkin lymphomas. However, many patients are not cured by rituximab-based therapies, and overcoming de novo or acquired rituximab resistance remains an important challenge to successful treatment of B-cell malignancies. Interferon-alpha (IFNalpha) has potent immunostimulatory properties and antiproliferative effects against some B-cell cancers, but its clinical utility is limited by systemic toxicity. To improve the efficacy of CD20-targeted therapy, we constructed fusion proteins consisting of anti-CD20 and murine or human IFNalpha. Fusion proteins had reduced IFNalpha activity in vitro compared with native IFNalpha, but CD20 targeting permitted efficient antiproliferative and proapoptotic effects against an aggressive rituximab-insensitive human CD20(+) murine lymphoma (38C13-huCD20) and a human B-cell lymphoma (Daudi). In vivo efficacy was demonstrated against established 38C13-huCD20 grown in syngeneic immunocompetent mice and large, established Daudi xenografts grown in nude mice. Optimal tumor eradication required CD20 targeting, with 87% of mice cured of rituximab-insensitive tumors. Gene knockdown studies revealed that tumor eradication required expression of type I IFN receptors on the tumor cell surface. Targeting type I IFNs to sites of B-cell lymphoma by fusion to anti-CD20 antibodies represents a potentially useful strategy for treatment of B-cell malignancies.
Related JoVE Video
Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT.
J. Exp. Clin. Cancer Res.
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
Antibody Directed Enzyme Prodrug Therapy (ADEPT) can be used to generate cytotoxic agents at the tumor site. To date non-human enzymes have mainly been utilized in ADEPT. However, these non-human enzymes are immunogenic limiting the number of times that ADEPT can be administered. To overcome the problem of immunogenicity, a fully human enzyme, capable of converting a non-toxic prodrug to cytotoxic drug was developed and joined to a human tumor specific scFv yielding a fully human targeting agent.
Related JoVE Video
A rapid and economic in-house DNA purification method using glass syringe filters.
PLoS ONE
PUBLISHED: 08-13-2009
Show Abstract
Hide Abstract
Purity, yield, speed and cost are important considerations in plasmid purification, but it is difficult to achieve all of these at the same time. Currently, there are many protocols and kits for DNA purification, however none maximize all four considerations.
Related JoVE Video
Transposon-directed base-exchange mutagenesis (TDEM): a novel method for multiple-nucleotide substitutions within a target gene.
BioTechniques
PUBLISHED: 07-15-2009
Show Abstract
Hide Abstract
In this report we describe transposon-directed base-exchange mutagenesis (TDEM), an efficient and controllable method for introducing a mutation into a gene. Each round of TDEM can remove up to 11 base pairs from a randomly selected site within the target gene and replace them with any length of DNA of predetermined sequence. Therefore, the number of bases to be deleted and inserted can be independently regulated providing greater versatility than existing methods of transposon-based mutagenesis. Subsequently, multiple rounds of mutagenesis will provide a diverse mutant library that contains multiple mutations throughout the gene. Additionally, we developed a simple frame-checking procedure that eliminates nonfunctional mutants containing frameshifts or stop codons. As a proof of principle, we used TDEM to generate mutant lacZalpha lacking alpha-complementation activity and recovered active revertants using a second round of TDEM. Furthermore, a single round of TDEM yielded unique, inactive mutants of ccdB.
Related JoVE Video
N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.
J. Mol. Microbiol. Biotechnol.
PUBLISHED: 07-01-2009
Show Abstract
Hide Abstract
Transposition using MuA and the Mu-transposon is frequently used for insertional and deletional mutagenesis and to introduce primer sequences into DNA of unknown sequence. However, mutagenesis studies are often limited by the number of transposition events taking place within a small target sequence. Although the intrinsic target site preference of MuA is low, it nevertheless may limit the recovery of desired events.
Related JoVE Video
Inhibitors of MyD88-dependent proinflammatory cytokine production identified utilizing a novel RNA interference screening approach.
PLoS ONE
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha). How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.
Related JoVE Video
Localized expression of GITR-L in the tumor microenvironment promotes CD8+ T cell dependent anti-tumor immunity.
Cancer Immunol. Immunother.
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
The systemic administration of an agonist antibody against glucocorticoid-induced tumor necrosis factor receptor related (GITR) protein has been shown to be effective in overcoming immune tolerance and promoting tumor rejection in a variety of murine tumor models. However, little is known regarding the functional consequence of ligation of GITR with its natural ligand (GITR-L) in the context of regulatory T cell (Treg) suppression in vivo. To determine the mechanism of GITR-L action in vivo, we generated a panel of tumor cell clones that express varying levels of GITR-L. The ectopic expression of GITR-L on the tumor cell surface was sufficient to enhance anti-tumor immunity and delay tumor growth in syngeneic BALB/c mice. Within the range examined, the extent of anti-tumor activity in vivo did not correlate with the level of GITR-L expression, as all clones tested exhibited a similar delay in tumor growth. The localized expression of GITR-L on tumor cells led to a significant increase in CD8+ T cell infiltration compared to the levels seen in control tumors. The increased proportion of CD8+ T cells was only observed locally at the tumor site and was not seen in the tumor draining lymph node. Depletion studies showed that CD8+ T cells, but not CD4+ T cells, were required for GITR-L mediated protection against tumor growth. These studies demonstrate that signaling between GITR-L and GITR in the tumor microenvironment promotes the infiltration of CD8+ T cells, which are essential for controlling tumor growth.
Related JoVE Video
Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine.
Protein Sci.
PUBLISHED: 04-24-2009
Show Abstract
Hide Abstract
A double mutant of human purine nucleoside phosphorylase (hDM) with the amino acid mutations Glu201Gln:Asn243Asp cleaves adenosine-based prodrugs to their corresponding cytotoxic drugs. When fused to an anti-tumor targeting component, hDM is targeted to tumor cells, where it effectively catalyzes phosphorolysis of the prodrug, 2-fluoro-2-deoxyadenosine (F-dAdo) to the cytotoxic drug, 2-fluoroadenine (F-Ade). This cytotoxicity should be restricted only to the tumor microenvironment, because the endogenously expressed wild type enzyme cannot use adenosine-based prodrugs as substrates. To gain insight into the interaction of hDM with F-dAdo, we have determined the crystal structures of hDM with F-dAdo and F-Ade. The structures reveal that despite the two mutations, the overall fold of hDM is nearly identical to the wild type enzyme. Importantly, the residues Gln201 and Asp243 introduced by the mutation form hydrogen bond contacts with F-dAdo that result in its binding and catalysis. Comparison of substrate and product complexes suggest that the side chains of Gln201 and Asp243 as well as the purine base rotate during catalysis possibly facilitating cleavage of the glycosidic bond. The two structures suggest why hDM, unlike the wild-type enzyme, can utilize F-dAdo as substrate. More importantly, they provide a critical foundation for further optimization of cleavage of adenosine-based prodrugs, such as F-dAdo by mutants of human purine nucleoside phosphorylase.
Related JoVE Video
Role of complement in protection against Cryptococcus gattii infection.
Infect. Immun.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
Previous studies have shown that the alternative pathway of complement activation plays an important role in protection against infection with Cryptococcus neoformans. Cryptococcus gattii does not activate the alternative pathway as well as C. neoformans in vitro. The role of complement in C. gattii infection in vivo has not been reported. In this study, we used mice deficient in complement components to investigate the role of complement in protection against a C. gattii isolate from an ongoing outbreak in northwestern North America. While factor B-deficient mice showed an enhanced rate of death, complement component C3-deficient mice died even more rapidly, indicating that the alternative pathway was not the only complement pathway contributing to protection against disease. Both C3- and factor B-deficient mice had increased fungal burdens in comparison to wild-type mice. Histopathology revealed an overwhelming fungal burden in the lungs of these complement-deficient mice, which undoubtedly prevented efficient gas exchange, causing death. Following the fate of radiolabeled organisms showed that both factor B- and C3-deficient mice were less effective than wild-type mice in clearing organisms. However, opsonization of C. gattii with complement components was not sufficient to prolong life in mice deficient in complement. Killing of C. gattii by macrophages in vitro was decreased in the presence of serum from factor B- and C3-deficient versus wild-type mice. In conclusion, we have demonstrated that complement activation is crucial for survival in C. gattii infection. Additionally, we have shown that the alternative pathway of complement activation is not the only complement pathway contributing to protection.
Related JoVE Video
Recombinant polymeric IgG anti-Rh: a novel strategy for development of direct agglutinating reagents.
J. Immunol. Methods
PUBLISHED: 03-06-2009
Show Abstract
Hide Abstract
Anti-Rh alloantibodies are used in research and clinic laboratories to define the Rh antigenic profile of human blood samples. IgM anti-Rh antibodies directly agglutinate Rh-positive RBCs. Anti-Rh antibodies of the IgG isotype bind to Rh antigens with a higher intrinsic affinity than IgM and sensitize RBCs, but do not induce direct hemagglutination. The aim of this work was to produce IgG anti-Rh possessing direct hemagglutinating properties of IgM. To achieve this goal, recombinant antibody technology was used to construct genes encoding Ig light and heavy chains that will form polymers with anti-Rh specificity. Expression vectors and liposome-mediated DNA transfer were used to generate transfectomas secreting human recombinant IgG3 anti-Rh. ELISA, SDS-PAGE, and hemagglutination were used to identify and characterize the recombinant antibody produced. Thus, a recombinant polymeric IgM-like IgG3 anti-Rh antibody was produced that directly agglutinates RBCs with specificity identical to that of the parent non-agglutinating IgG. The results obtained suggest that the technology used here to generate polymeric IgM-like IgG3 anti-Rh antibodies can be applied to produce Rh blood typing reagents. This approach might also be used to develop reagents for which cell surface antigen binding and agglutination or aggregation is required.
Related JoVE Video
Humanized ADEPT comprised of an engineered human purine nucleoside phosphorylase and a tumor targeting peptide for treatment of cancer.
Mol. Cancer Ther.
PUBLISHED: 01-14-2009
Show Abstract
Hide Abstract
Immunogenicity caused by the use of nonhuman enzymes in antibody-directed enzyme prodrug therapy has limited its clinical application. To overcome this problem, we have developed a mutant human purine nucleoside phosphorylase, which, unlike the wild-type enzyme, accepts (deoxy)adenosine-based prodrugs as substrates. Among the different mutants of human purine nucleoside phosphorylase tested, a double mutant with amino acid substitutions E201Q:N243D (hDM) is the most efficient in cleaving (deoxy)adenosine-based prodrugs. Although hDM is capable of using multiple prodrugs as substrates, it is most effective at cleaving 2-fluoro-2-deoxyadenosine to a cytotoxic drug. To target hDM to the tumor site, the enzyme was fused to an anti-HER-2/neu peptide mimetic (AHNP). Treatment of HER-2/neu-expressing tumor cells with hDM-AHNP results in cellular localization of enzyme activity. As a consequence, harmless prodrug is converted to a cytotoxic drug in the vicinity of the tumor cells, resulting in tumor cell apoptosis. Unlike the nonhuman enzymes, the hDM should have minimal immunogenicity when used in antibody-directed enzyme prodrug therapy, thus providing a novel promising therapeutic agent for the treatment of tumors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.