JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity.
Oncotarget
PUBLISHED: 09-20-2014
Show Abstract
Hide Abstract
A major impediment to the response of tumors to chemotherapy is that the large majority of cancer cells within a tumor are quiescent in G0/G1, where cancer cells are resistant to chemotherapy. To attempt to solve this problem of quiescent cells in a tumor, cancer cells were treated with recombinant methioninase (rMETase), which selectively traps cancer cells in S/G2. The cell cycle phase of the cancer cells was visualized with the fluorescence ubiquitination-based cell cycle indicator cell cycle indicator (FUCCI). At the time of rMETase-induced S/G2-phase blockage, identified by the cancer cells' green fluorescence by FUCCI imaging, the cancer cells were administered S/G2-dependent chemotherapy drugs, which interact with DNA or block DNA synthesis such as doxorubicin, cisplatin, or 5-fluorouracil. Treatment of cancer cells with drugs only, without rMETase-induced S/G2 phase blockage, led to the majority of the cancer-cell population being blocked in G0/G1 phase, identified by the cancer cells becoming red fluorescent in the FUCCI system. The G0/G1 blocked cells were resistant to the chemotherapy. In contrast, trapping of cancer cells in S/G2 phase by rMETase treatment followed by FUCCI-imaging-guided chemotherapy was highly effective in killing the cancer cells.
Related JoVE Video
PTEN upregulation may explain the development of insulin resistance and type 2 diabetes with high dose statins.
Cardiovasc Drugs Ther
PUBLISHED: 08-10-2014
Show Abstract
Hide Abstract
Statins increase the incidence of new onset diabetes. Prolonged statin therapy upregulates PTEN expression. PTEN levels are also elevated in diabetic animals. Activation of protein kinase A by cAMP decreases PTEN expression. We assessed whether prolonged treatment with rosuvastatin (ROS) induces glucose intolerance by upregulating Phosphatase and Tensin Homologue on Chromosome 10 (PTEN) in mice receiving normal (ND) or Western Diet (WD) and whether concomitant treatment with cilostazol (CIL, a phosphodiesterase-3 inhibitor) attenuates the effects.
Related JoVE Video
Chronic treatment with ticagrelor limits myocardial infarct size: an adenosine and cyclooxygenase-2-dependent effect.
Arterioscler. Thromb. Vasc. Biol.
PUBLISHED: 07-10-2014
Show Abstract
Hide Abstract
In a phase III clinical trial (PLATelet inhibition and patient Outcomes, PLATO), ticagrelor provided better clinical outcomes than clopidogrel in patients with acute coronary syndromes. In addition to P2Y12-receptor antagonism, ticagrelor prevents cell uptake of adenosine and has proven able to augment adenosine effects. Adenosine protects the heart against ischemia-reperfusion injury. We compared the effects of clopidogrel and ticagrelor on myocardial infarct size (IS).
Related JoVE Video
HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4.
Cell. Signal.
PUBLISHED: 10-16-2013
Show Abstract
Hide Abstract
Histone deacetylase 4 (HDAC4) is involved in the regulation of many fundamental cell processes such as proliferation, differentiation, and survival via the modification of their substrates or protein-protein interactions. In this study, we found that HDAC4 could be upregulated under ER stress. There exists a direct interaction between HDAC4 and activating transcription factor 4 (ATF4). In vitro, overexpression of HDAC4 caused the retention of ATF4 in cytoplasm and inhibition of ATF4 transcriptional activity. ER stress could promote cell apoptosis through the upregulation of ATF4 levels and its target genes such as CHOP and TRB3. This effect was exacerbated by downregulation of HDAC4 levels. These results demonstrated that HDAC4 played an important role in the regulation of ER stress-induced apoptosis through interacting with ATF4 and inhibiting its transcriptional activity.
Related JoVE Video
MicroRNA-dependent cross-talk between VEGF and HIF1? in the diabetic retina.
Cell. Signal.
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
Both HIF1? (hypoxia-inducible factor alpha) and VEGF (vascular endothelial growth factor) are implicated in the pathogenesis of diabetic retinopathy (DR). Competitive endogenous RNAs (ceRNAs) are messenger RNA (mRNA) molecules that affect each other expression through competition for their shared microRNAs (miRNA). However, little is known about the role of ceRNAs in DR. We assess whether the expression of HIF1? and VEGF in DR is interdependent through sequestration of common miRNAs. We used bioinformatics to identify potential miRNAs that affect both genes and validated the interdependence of the genes by silencing or overexpression of the genes and assessed the luciferase-HIF1? 3UTR activity. We found that HIF1? and VEGF are targeted by 12 common miRNAs. Silencing either HIF1? or VEGF increased the availabilities of the shared miRNAs, therefore suppressed the luciferase-HIF1? 3UTR activity, whereas over-expressing HIF1? or VEGF increased the luciferase activity. HIF1? was co-expressed with VEGF in-vivo and in-vitro in DR models. Silencing HIF1? transcripts resulted in a significant reduction in VEGF protein levels and vice versa. This interdependence was miRNA- and 3UTR-dependent, as silencing Dicer abolished the interdependence. Over-expression of a common miRNA (miR-106a) significantly reduced the expression of HIF1? and VEGF and prevented high glucose-induced increased permeability. There is a cross-talk between HIF1? and VEGF through interactions with their common miRNAs. miRNA based therapy can affect the expression of both HIF1? and VEGF and may represent a therapeutic potential for the treatment of DR.
Related JoVE Video
Modulation of microRNAs in hypertension-induced arterial remodeling through the ?1 and ?3-adrenoreceptor pathways.
J. Mol. Cell. Cardiol.
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Dysregulation of microRNAs (miRNAs) in arterial dysfunction and hypertension has not been extensively investigated yet. This project determined the effects of two anti-hypertensive ?1 adrenergic selective blockers on miRNA expression in the Dahl Salt Sensitive (DSS) hypertensive rat model.
Related JoVE Video
Synthesis and evaluation of Bingel-Hirsch multiadducts of paramagnetic gadofullerene as potential magnetic resonance imaging contrast agents.
J Nanosci Nanotechnol
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Water-soluble malonate multiadducts of paramagnetic gadolinium endohedral metallofullerene, Gd@C82[C(COOH)2]6 and Gd@C82[C(COOH)2]8, were synthesized by Bingel-Hirsch reaction. Gd@C82 was firstly reacted with diethyl bromomalonate in the presence of alkali metal hydride to produce malonic ester multiadducted derivatives, Gd@C82[C(COOCH2CH3)2]x (x = 3-8), by Bingel reaction. They were isolated and purified to obtain Gd@C82[C(COOCH2CH3)2]6 and Gd@C82[C(COOCH2CH3)2]8 by silica-gel column chromatography with a gradient elution method, which were subsequently hydrolyzed to yield water-soluble Gd@C82[C(COOH)2]6 and Gd@C82[C(COOH)2]8 by Hirsch reaction. The structures of the derivatives were characterized by Fourier transform infrared spectrometry and matrix assisted laser desorption ionization time-of-flight mass spectrometry. The longitudinal relaxivities of Gd@C82[C(COOH)2]8 and Gd@C82[C(COOH)2]6, in buffer solution, were found to be 18.20 and 11.08 mM(-1) s(-1) at concentration range between 0.001-0.025 mM Gd, and to be 12.71 and 6.73 mM(-1) s(-1) between 0.050-0.200 mM Gd, respectively. The results showed that the measured relaxivities for malonate derivatives of Gd@C82 were dependent on the concentration of these solutions and the number of hydrophilic carboxyl groups appended on the surface of the Gd@C82 cage.
Related JoVE Video
Nebivolol induces distinct changes in profibrosis microRNA expression compared with atenolol, in salt-sensitive hypertensive rats.
Hypertension
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Nebivolol is a selective ?1-blocker with nitric oxide-enhancing effects. MicroRNAs are small noncoding RNA molecules that downregulate gene expression. We compared the effects of nebivolol and atenolol, a first generation ?1-selective blocker, on left ventricular hypertrophy, fibrosis, and function and microRNA expression in a rodent model of hypertension. Dahl salt-sensitive rats received either low-salt chow (control) or AIN-76A high-salt (8% NaCl) diet and randomized to vehicle (high-salt), nebivolol (20 mg/kg per day), or atenolol (50 mg/kg per day) for 8 weeks. High-salt induced left ventricular hypertrophy and fibrosis and decreased the expression of miR-27a, -29a, and -133a. Nebovolol attenuated deterioration of left ventricular systolic function, remodeling, and fibrosis more than atenolol, despite similar effects on heart rate and blood pressure. Nebivolol, but not atenolol, prevented the decrease in miR-27a and -29a induced by high-salt. Nebivolol and atenolol equally attenuated the decrease in miR-133a. In vitro overexpression of miR-27a,-29a, and -133a inhibited cardiomyocyte hypertrophy and reduced collagen expression. Both miR-27a and -29a target Sp1, and miR-133a targets Cdc42. Pharmacological inhibition of Sp1 and Cdc42 decreased myocardial fibrosis and hypertrophy. Our data support a differential microRNAs expression profile in salt-induced hypertension. Nebivolol substantially attenuated cardiac remodeling, hypertrophy, and fibrosis more than atenolol. These effects are related to attenuation of the hypertension-induced decrease in miR-27a and -29a (with a subsequent decrease in Sp1 expression) and miR-133a (with a subsequent decrease in Cdc42).
Related JoVE Video
Dickkopf-1 (DKK1) phosphatase and tensin homolog on chromosome 10 (PTEN) crosstalk via microRNA interference in the diabetic heart.
Basic Res. Cardiol.
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Competitive endogenous RNAs (ceRNAs) regulate mRNA transcripts containing common microRNA (miRNA) recognition elements (MREs) through sequestration of shared miRNAs. Interactions of ceRNA have been demonstrated in cancerous cells. However, a paucity of information is available relative to the interactions of ceRNAs interaction in diabetes mellitus and the myocardium. The purpose of this study is to assess the potential role of DKK1 and PTEN in ceRNA regulation utilizing their common miRNAs in diabetic cardiomyocytes. The interactions regulation between PTEN and DKK1 were determined in two diabetic models in vivo (streptozotocin-induced type-1 DM mice and db/db mice) and in vitro (human cardiomyocytes cells exposed to hyperglycemia). The levels of DKK1 and PTEN (mRNA and protein) were upregulated in parallel in all three diabetic models. DKK1 modulates PTEN protein levels in a miRNA and 3UTR-dependent manner. RNAi-mediated DKK1 gene silencing resulted in a decreased PTEN expression and vice versa. The effect was blocked when Dicer was inhibited. Silencing either PTEN or DKK1 resulted in an increase of the availabilities of shared miRNAs. The silencing of either PTEN or DKKI resulted in a suppression end of the luciferase-PTEN 3UTR activity. However, the over expression of DKK1 3UTR or PTEN 3UTR resulted in an increase in the activity. The attenuation of DKK1 increased AKT phosphorylation, improved glucose uptake and decreased apoptosis in HCMs exposed to hyperglycemia. The effects were blocked by PI3K inhibition. DKK1 and PTEN transcripts are co-upregulated in DM and hyperglycemia. DKK1 and PTEN serve as ceRNA, affecting the expression of each other via competition for miRNAs binding.
Related JoVE Video
Surface modification induced shielding effects on electron orbital coupling in metallofullerene.
J Nanosci Nanotechnol
PUBLISHED: 12-03-2010
Show Abstract
Hide Abstract
The electronic properties of four metallofullerenol samples (La@C82(OH)32, La@C82(OH)24, La@C82(OH)18, La@C82(OH)12) and La@C82 were investigated by synchrotron radiation photoelectron emission spectra (PES). A new emission peak with binding energy of 13.9 eV, which is attributed to La 5d orbitals coupling with nanocage orbitals, is observed in PES of La@C82 for the first time. This suggestion is also supported by previous DFT calculations. Furthermore, the new emission peak disappears when the surface of La@C82 is modified with specific numbers of OH groups, which means the electron orbital coupling between inner metallic atoms and outer nanocage in metallofullerene could be shielded by surface modifications on the outer nanocage.
Related JoVE Video
Assessment of fluorescence resonance energy transfer for two-color DNA microarray platforms.
Anal. Chem.
PUBLISHED: 05-27-2010
Show Abstract
Hide Abstract
Two-color DNA microarray platforms are widely used for determining differential amounts of target sequences in parallel between sample pairs. However, the fluorescence (or Forster) resonance energy transfer (FRET) between two fluorophores can potentially result in the distortions of the measured fluorescence signals. Here we assessed the influence of FRET on the two-color DNA microarray platform and developed a reliable and convenient method for the correction of FRET distortion. Compared to current methods of normalization based on the statistical analysis and the hypothesis that only a small part of target sequences are differentially presented between sample pairs, our FRET correction method can recover the undistorted signals by the compensation of fluorescence emission, without considering the number of target sequences differentially presented. The correction method was validated with samples at different target ratios and with microarrays spotted in different probe concentrations. We also applied the FRET correction method to gene expression profiling arrays, and the results show that FRET was present when the content of target sequence was beyond a threshold amount and that the process incorporating our FRET correction method can improve the reliability of the gene expression profiling microarray platform in comparison with the current process without FRET correction.
Related JoVE Video
Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62.
Antioxid. Redox Signal.
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Actin is a highly conserved protein in eukaryotic cells, and has been identified as one of the main redox targets by redox proteomics under oxidative stress. However, little is known about the mechanisms of regulation of the redox state of actin. In this study, we investigated how thioredoxin-1 (Trx1) affected the redox state of actin and its polymerization under oxidative stress in SH-SY5Y cells. Trx1 decreased the levels of reactive oxygen species (ROS) in the cells, and cysteine residues at positions 32, 35, and 69 of the Trx1 protein were active sites for redox regulation. Actin could be kept in a reduced state by Trx1 under H(2)O(2) stimulation. A physical interaction was found to exist between actin and Trx1. Cysteine 62 in Trx1 was the key site that interacted with actin, and it was required to maintain cellular viability and anti-apoptotic function. Taken together, these results suggested that Trx1 could protect cells from apoptosis under oxidative stress not only by increasing the total antioxidant capability and decreasing the ROS levels, but also by stabilizing the actin cytoskeletal system, which cooperatively contributed to the enhancement of cell viability and worked against apoptosis.
Related JoVE Video
Chain fullerene C60 = C = C60 = C = C60: possible way to all-carbon polymers.
J Nanosci Nanotechnol
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
In this paper, we firstly report a simple but very useful process to extend fullerene chains from monomers via C-bridges: C60 --> C60 -- C -- C60 --> C60 -- C -- C60 -- C -- C60, similar to extending CH4 or CH2 = CH2 to synthesize longer alkyl or alkene chains and these-based materials. The self-assembled formation of C60 -- C -- C60 -- C -- C60 from C60 -- C -- C60 was found to be an isomer-selective process. The results offer a valuable access to C60-based new materials of diverse functionalities, and an implication to the large scale utilization of C60 in polymer science.
Related JoVE Video
Quantitative fluorescence correction incorporating Förster resonance energy transfer and its use for measurement of hybridization efficiency on microarrays.
Anal. Chem.
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
Fluorescence detection using two spectrally distinct fluorophores has long been used for the determination of the relative abundance of biomolecules, but overlap between the fluorescence spectra of each fluorophore can result in nonradiative Förster resonance energy transfer (FRET) and distorting the signals detected by fluorescence channels. Thus conventional methods for quantifying the relative abundance of fluorophores by fluorescence emission will not be accurate if FRET can occur. In this paper we report the development of a quantitative fluorescence correction method incorporating FRET to measure the relative abundance of fluorophores in dual-labeling experiments. The quantitative fluorescence correction method incorporating FRET is accurate, comprehensive, and convenient for the measurement of the relative abundance of fluorophores in dual-labeling experiments and can also correct the FRET distortion and provide accurate, quantitative, and convenient measurement of the hybridization efficiencies on microarrays.
Related JoVE Video
miR-214 targets ATF4 to inhibit bone formation.
Nat. Med.
Show Abstract
Hide Abstract
Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.
Related JoVE Video
CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A.
Circulation
Show Abstract
Hide Abstract
Sustained cardiac pressure overload-induced hypertrophy and pathological remodeling frequently leads to heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) has been identified to be an important regulator of cell proliferation, differentiation, and apoptosis. However, the physiological role of CKIP-1 in the heart is unknown.
Related JoVE Video
Phosphodiesterase-3 inhibition augments the myocardial infarct size-limiting effects of exenatide in mice with type 2 diabetes.
Am. J. Physiol. Heart Circ. Physiol.
Show Abstract
Hide Abstract
Glucagon-like peptide (GLP)-1 receptor activation increases intracellular cAMP with downstream activation of PKA. Cilostazol (CIL), a phosphodiesterase-3 inhibitor, prevents cAMP degradation. We assessed whether CIL amplifies the exenatide (EX)-induced increase in myocardial cAMP levels and PKA activity and augments the infarct size (IS)-limiting effects of EX in db/db mice. Mice fed a Western diet received oral CIL (10 mg/kg) or vehicle by oral gavage 24 h before surgery. One hour before surgery, mice received EX (1 ?g/kg sc) or vehicle. Additional mice received H-89, a PKA inhibitor, alone or with CIL + EX. Mice underwent 30 min of coronary artery occlusion and 24 h of reperfusion. Both EX and CIL increased myocardial cAMP levels and PKA activity. Levels were significantly higher in the EX + CIL group. Both EX and CIL reduced IS. IS was the smallest in the CIL + EX group. H-89 completely blocked the IS-limiting effects of EX + CIL. EX + CIL decreased phosphatase and tensin homolog on chromosome 10 upregulation and increased Akt and ERK1/2 phosphorylation after ischemia-reperfusion. These effects were blocked by H-89. In conclusion, EX and CIL have additive effects on IS limitation in diabetic mice. The additive effects are related to cAMP-induced PKA activation, as H-89 blocked the protective effect of CIL + EX.
Related JoVE Video
Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus.
Cardiovasc Drugs Ther
Show Abstract
Hide Abstract
We assessed whether phosphodiesterase-III inhibition with cilostazol (Cil) augments the infarct size (IS)-limiting effects of MK0626 (MK), a dipeptidyl-peptidase-4 (DPP4) inhibitor, by increasing intracellular cAMP in mice with type-2 diabetes.
Related JoVE Video
Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia.
Am. J. Physiol. Heart Circ. Physiol.
Show Abstract
Hide Abstract
Phosphatase and tensin homolog on chromosome 10 (PTEN) is downregulated during hypertrophic and cancerous cell growth, leading to activation of the prosurvival Akt pathway. However, PTEN regulation in cardiac myocytes upon exposure to hypoxia remains unclear. We explored the role of PTEN in response to hypoxia/ischemia in the myocardium. We validated that PTEN is a transcriptional target of activating transcription factor 2 (ATF-2) and is positively regulated via a p38/ATF-2 signaling pathway. Accordingly, hypoxia-induced upregulation of phosphorylation of ATF-2 and PTEN were reversed by a dominant negative mutant p38. Inhibition of PTEN in cardiomyocytes attenuated hypoxia-induced cell death and apoptosis. Cardiac-specific knockout of PTEN resulted in increased phosphorylation of Akt and forkhead box O 1 (forkhead transcription factors), limited infarct size in animals exposed to ischemia-reperfusion injury, and ameliorated deterioration of left ventricular function and remodeling following permanent coronary artery occlusion. In addition, the activation of Bim, FASL, and caspase was coupled with PTEN activation, all of which were attenuated by PTEN inhibition. In conclusion, cardiomyocyte-specific conditional PTEN deletion limited myocardial infarct size in an in vivo model of ischemia-reperfusion injury and attenuated adverse remodeling in a model of chronic permanent coronary artery ligation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.