JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Macaque paneth cells express lymphoid chemokine CXCL13 and other antimicrobial peptides not previously described as expressed in intestinal crypts.
Clin. Vaccine Immunol.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
CXCL13 is a constitutively expressed chemokine that controls migration of immune cells to lymphoid follicles. Previously, we found CXCL13 mRNA levels increased in rhesus macaque spleen tissues during AIDS. This led us to examine the levels and locations of CXCL13 by detailed in situ methods in cynomolgus macaque lymphoid and intestinal tissues. Our results revealed that there were distinct localization patterns of CXCL13 mRNA compared to protein in germinal centers. These patterns shifted during the course of simian immunodeficiency virus (SIV) infection, with increased mRNA expression within and around follicles during AIDS compared to uninfected or acutely infected animals. Unexpectedly, CXCL13 expression was also found in abundance in Paneth cells in crypts throughout the small intestine. Therefore, we expanded our analyses to include chemokines and antimicrobial peptides (AMPs) not previously demonstrated to be expressed by Paneth cells in intestinal tissues. We examined the expression patterns of multiple chemokines, including CCL25, as well as ?-defensin 6 (DEFA6), ?-defensin 2 (BDEF2), rhesus ?-defensin 1 (RTD-1), and Reg3? in situ in intestinal tissues. Of the 10 chemokines examined, CXCL13 was unique in its expression by Paneth cells. BDEF2, RTD-1, and Reg3? were also expressed by Paneth cells. BDEF2 and RTD-1 previously have not been shown to be expressed by Paneth cells. These findings expand our understanding of mucosal immunology, innate antimicrobial defenses, homeostatic chemokine function, and host protective mechanisms against microbial translocation.
Related JoVE Video
Simian immunodeficiency virus infection potently modulates chemokine networks and immune environments in hilar lymph nodes of cynomolgus macaques.
J. Acquir. Immune Defic. Syndr.
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Chemokines provide critical immune cell homing and activation signals that if altered could affect the inflammatory milieu and cellular composition of lymphoid tissues. During HIV-1 and simian immunodeficiency virus (SIV)-infection, the virus triggers an increase in inflammation or activation, leading to immunodeficiency and development of opportunistic infections, such as in the lungs-a massive interface between the host and the environment.
Related JoVE Video
Innate Stat3-mediated induction of the antimicrobial protein Reg3? is required for host defense against MRSA pneumonia.
J. Exp. Med.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
Pulmonary Staphylococcus aureus (SA) infections are a public health concern and a major complication of hyper-IgE syndrome, caused by mutations in STAT3. In contrast to previous findings of skin infection, we observed that clearance of SA from the lung did not require T, B, or NK cells but did require Stat3 activation. Immunohistochemistry showed robust Stat3 phosphorylation in the lung epithelium. We identified that a critical Stat3 target gene in lung epithelium is Reg3g (regenerating islet-derived 3 ?), a gene which is highly expressed in gastrointestinal epithelium but whose role in pulmonary host defense is uncharacterized. Stat3 regulated Reg3g transcription through direct binding at the Reg3g promoter region. Recombinant Reg3? bound to SA and had both bacteriostatic and bactericidal activity in a dose-dependent fashion. Stat3 inhibition in vivo reduced Reg3g transcripts in the lung, and more importantly, recombinant Reg3? rescued mice from defective SA clearance. These findings reveal an antibacterial function for lung epithelium through Stat3-mediated induction of Reg3?.
Related JoVE Video
Functional characterization of ferret CCL20 and CCR6 and identification of chemotactic inhibitors.
Cytokine
PUBLISHED: 01-27-2013
Show Abstract
Hide Abstract
CCL20 is currently the only known chemokine ligand for the receptor CCR6, and is a mucosal chemokine involved in normal and pathological immune responses. Although nucleotide sequence data are available for ccl20 and ccr6 sequences from multiple species, the ferret ccl20 and ccr6 sequences have not been determined. To increase our understanding of immune function in ferret models of infection and vaccination, we have used RT-PCR to obtain the ferret ccl20 and ccr6 cDNA sequences and functionally characterize the encoded proteins. The open reading frames of both genes were highly conserved across species and mostly closely related to canine sequences. For functional analyses, single cell clones expressing ferret CCR6 were generated, a ferret CCL20/mouse IgG(2a) fusion protein (fCCL20-mIgG(2a)) was produced, and fCCL20 was chemically synthesized. Cell clones expressing ferret CCR6 responded chemotactically to fCCL20-mIgG2a fusion protein and synthetic ferret CCL20. Chemotaxis inhibition studies identified the polyphenol epigallocatechin-3-gallate and the murine ?-herpesvirus 68 M3 protein as inhibitors of fCCL20. Surface plasmon resonance studies revealed that EGCG bound directly to fCCL20. These results provide molecular characterization of previously unreported ferret immune gene sequences and for the first time identify a broad-spectrum small molecule inhibitor of CCL20 and reveal CCL20 as a target for the herpesviral M3 protein.
Related JoVE Video
Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment.
J. Immunol.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
One major activity of chemokines is the recruitment of immune cells to sites of infection and inflammation. CD4(+) Th1 cells play critical roles in host defense against pathogens and in the pathogenesis of many immune-mediated diseases. It was reported that epigallocatechin-3-gallate (EGCG) exhibits anti-inflammatory properties, but the mechanisms have not been completely defined. In this study, we found that EGCG markedly decreased recruitment of murine OVA-specific Th1 cells and other inflammatory cells into the airways in a Th1 adoptive-transfer mouse model. In vitro analysis revealed that EGCG inhibited CXCR3 ligand-driven chemotaxis of murine and human cells. Surface plasmon resonance studies revealed that EGCG bound directly to chemokines CXCL9, CXCL10, and CXCL11. These results indicated that one anti-inflammatory mechanism of EGCG is binding of proinflammatory chemokines and limiting their biological activities. These findings support further development of EGCG as a potent therapeutic for inflammatory diseases.
Related JoVE Video
Simian immunodeficiency virus infection alters chemokine networks in lung tissues of cynomolgus macaques: association with Pneumocystis carinii infection.
Am. J. Pathol.
PUBLISHED: 07-29-2010
Show Abstract
Hide Abstract
Infection by HIV-1 frequently leads to pulmonary complications, including alterations to local immune environments. To better understand these alterations, we have examined in detail the patterns and levels of expression of chemokine, cytokine, and chemokine receptor mRNAs in lung tissues from 16 uninfected or simian immunodeficiency virus (SIV)/DeltaB670 infected cynomolgus macaques at different stages of infection. Among the most up-regulated immune genes were interferon (IFN)-gamma, IFN-gamma-inducible CXCR3 ligands, and CCR5 ligands, as well as the cognate chemokine receptors. These changes were greatest in animals with clear Pneumocystis carinii coinfection. Immunohistochemistry and in situ hybridization revealed monocytes/macrophages to be the predominant type of cell infiltrating into lung tissues and serving as the major cellular source of chemokines. To explore the causes of chemokine alterations, we treated macaque lung cells with IFN-gamma, lipopolysaccharide, Poly(I:C), and P. carinii in vitro, and results revealed that these stimuli can induce the expression of CXCR3 ligand and/or CCR5 ligand mRNAs. Taken together, these studies provide a comprehensive definition of the chemokine networks available to modulate cellular recruitment to lung tissues during SIV infection and implicate both cytokines (IFN-gamma) and pathogens (SIV and P. carinii) as contributors to increased expression of pro-inflammatory chemokines.
Related JoVE Video
Multiple roles for chemokines in the pathogenesis of SIV infection.
Curr. HIV Res.
PUBLISHED: 01-20-2009
Show Abstract
Hide Abstract
Chemokines are small chemoattractant cytokines involved in homeostatic and inflammatory immune cell migration. These small proteins have multiple functional properties that extend beyond their most recognized role in controlling cellular migration. The complex immunobiology of chemokines, coupled with the use of subsets of chemokine receptors as HIV-1 and SIV entry co-receptors, suggests that these immunomodulators could play important roles in the pathogenesis associated with infection by HIV-1 or SIV. This review provides an overview of the effects of pathogenic infection on chemokine expression in the SIV/macaque model system, and outlines potential mechanisms by which changes in these expression profiles could contribute to development of disease. Key challenges faced in studying chemokine function in vivo and new opportunities for further study and development of therapeutic interventions are discussed. Continued growth in our understanding of the effects of pathogenic SIV infection on chemokine expression and function and the continuing development of chemokine receptor targeted therapeutics will provide the tools and the systems necessary for future studies of the roles of chemokines in HIV-1 pathogenesis.
Related JoVE Video
[Enhanced cellulase production of Penicillium decumbens by knocking out CreB encoding a deubiquitination enzyme].
Sheng Wu Gong Cheng Xue Bao
Show Abstract
Hide Abstract
Penicillium decumbens T. is an important filamentous fungus for the production of cellulases to effectively degrade lignocellulose for second generation biofuel production. In order to enhance the capability of Penicillium decumbens to produce cellulases, we constructed a creB (a deubiquitinating enzyme encoding gene) deletion cassette, and generated a creB knockout strain with homologous double crossover recombination. This mutation resulted in a detectable decrease of carbon catabolite repression (CCR) effect. The filter paper activity, endoglucanase activity, xylanase activity and exoglucanase activity of the deltacreB strain increased by 1.8, 1.71, 2.06 and 2.04 fold, respectively, when comparing with the parent strain Ku-39. A 2.68 fold increase of extracellular protein concentration was also observed. These results suggest that the deletion of creB results in CCR derepression. These data also suggest that CREB influences cellulase production of Penicillium decumbens. In generation, this study provides information that can be helpful for constructing cellulase hyper-producing strain.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.