JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
iTEP nanoparticle-delivered salinomycin displays an enhanced toxicity to cancer stem cells in orthotopic breast tumors.
Mol. Pharm.
PUBLISHED: 07-01-2014
Show Abstract
Hide Abstract
Salinomycin (Sali) has selective toxicity to cancer stem cells (CSCs), a subpopulation of cancer cells that have been recently linked with tumor multidrug resistance (MDR). To utilize its selective toxicity for cancer therapy, we sought to devise a nanoparticle (NP) carrier to deliver Sali to solid tumors through the enhanced permeability and retention effect and, hence, to increase its exposure to CSCs. First, hydrophobic Sali was conjugated to a hydrophilic, immune-tolerant, elastin-like polypeptide (iTEP); the amphiphilic iTEP-Sali conjugates self-assemble into NPs. Next, free Sali was encapsulated into the NPs alone or with two additives, N,N-dimethylhexylamine (DMHA) and ?-tocopherol. The coencapsulation significantly improved the loading efficiency and release profile of Sali. The resulting NPs of the coencapsulation, termed as iTEP-Sali NP3s, have an in vitro release half-life of 4.1 h, four times longer than iTEP-Sali NP2s, the NPs that have encapsulated Sali only. Further, the NP3 formulation increases the plasma area under curve and the tumor accumulation of Sali by 10 and 2.4 times, respectively. Lastly, these improved pharmacokinetic and tumor accumulation profiles are consistent with a boost of CSC-elimination effect of Sali in vivo. In NP3-treated 4T1 orthotopic tumors, the mean CSC frequency is 55.62%, a significant reduction from the mean frequencies of untreated tumors, 75.00%, or free Sali-treated tumors, 64.32%. The CSC-elimination effect of the NP3 can further translate to a delay of tumor growth. Given the role of CSCs in driving tumor MDR and recurrence, it could be a promising strategy to add the NP3 to conventional cancer chemotherapies to prevent or reverse the MDR.
Related JoVE Video
Treatment of Type 1 Myotonic Dystrophy by Engineering Site-specific RNA Endonucleases that Target (CUG)n Repeats.
Mol. Ther.
PUBLISHED: 06-07-2013
Show Abstract
Hide Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of (CTG)n in the 3 untranslated region of the dystrophia myotonica-protein kinase (DMPK) gene, which is transcribed as (CUG)n repeats that accumulate in the nucleus. The RNA repeats specifically sequester or change the expression levels of several RNA-binding proteins, leading to aberrant splicing of many target genes. In this study, we developed artificial site-specific RNA endonucleases (ASREs) that specifically bind and cleave (CUG)n repeats RNA. We have generated one ASRE that can target the expanded RNA repeats in DM1 patient cells and specifically degrade the pathogenic DMPK messenger RNAs with minimal effect on wild-type alleles. Such ASRE treatment significantly decreased the number of nuclear foci in DM1 patient cells and can reverse the missplicing of many genes affected in DM1 patients. Taken together, the application of ASRE provides a new route of gene therapy for DM1 treatment.Molecular Therapy (2013); doi:10.1038/mt.2013.251.
Related JoVE Video
Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains.
J. Biol. Chem.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.
Related JoVE Video
A chemical-genetic approach for precise spatio-temporal control of cellular signaling.
Mol Biosyst
PUBLISHED: 06-07-2010
Show Abstract
Hide Abstract
Recently we have perfected a chemical-genetic approach to gain precise spatio-temporal control of cellular signaling. This approach entails the cell-type specific expression of mutant G-protein coupled receptors which have been evolved to be activated by the pharmacologically inert drug-like small molecule clozapine N-oxide. We have named these mutant GPCRs DREADDs (Designer Receptors Exclusively Activated by Designer Drugs). In this paper we will first review recent applications of this technology for the remote control of neuronal and non-neuronal signaling. Next, we will also introduce new variants which could be useful for the control of cellular signaling in discrete cellular compartments. Finally, we will suggest future basic science and therapeutic applications of this general technology.
Related JoVE Video
Degradation of YRA1 Pre-mRNA in the cytoplasm requires translational repression, multiple modular intronic elements, Edc3p, and Mex67p.
PLoS Biol.
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
Intron-containing pre-mRNAs are normally retained and processed in the nucleus but are sometimes exported to the cytoplasm and degraded by the nonsense-mediated mRNA decay (NMD) pathway as a consequence of their inclusion of intronic in-frame termination codons. When shunted to the cytoplasm by autoregulated nuclear export, the intron-containing yeast YRA1 pre-mRNA evades NMD and is targeted by a cytoplasmic decay pathway mediated by the decapping activator Edc3p. Here, we have elucidated this transcript-specific decay mechanism, showing that Edc3p-mediated YRA1 pre-mRNA degradation occurs independently of translation and is controlled through five structurally distinct but functionally interdependent modular elements in the YRA1 intron. Two of these elements target the pre-mRNA as an Edc3p substrate and the other three mediate transcript-specific translational repression. Translational repression of YRA1 pre-mRNA also requires the heterodimeric Mex67p/Mtr2p general mRNA export receptor, but not Edc3p, and serves to enhance Edc3p substrate specificity by inhibiting the susceptibility of this pre-mRNA to NMD. Collectively, our data indicate that YRA1 pre-mRNA degradation is a highly regulated process that proceeds through translational repression, substrate recognition by Edc3p, recruitment of the Dcp1p/Dcp2p decapping enzyme, and activation of decapping.
Related JoVE Video
Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs.
Nat Protoc
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) and their downstream signaling cascades contribute to most physiological processes and a variety of human diseases. Isolating the effects of GPCR activation in an in vivo experimental setting is challenging as exogenous ligands have off-target effects and endogenous ligands constantly modulate the activity of native receptors. Highly specific designer drug-designer receptor complexes are a valuable tool for elucidating the effects of activating particular receptors and signaling pathways within selected cell types in vivo. In this study, we describe a generic protocol for the directed molecular evolution of designer receptors exclusively activated by designer drugs (DREADDs). First, the yeast system is validated with the template receptor. Second, a mutant library is generated by error-prone PCR. Third, the library is screened by drug-dependent yeast growth assays. Mutants exhibiting the desired properties are selected for further rounds of mutagenesis or for characterization in mammalian systems. In total, these steps should take 6-8 weeks of experimentation and should result in the evolution of a receptor to be activated by the chosen ligand. This protocol should help improve the experimental targeting of select cell populations.
Related JoVE Video
Generation of designer receptors exclusively activated by designer drugs (DREADDs) using directed molecular evolution.
Curr Protoc Neurosci
PUBLISHED: 01-13-2010
Show Abstract
Hide Abstract
G protein-coupled receptors (GPCRs) and their signal transductions are important for both physiological and pathological processes in neuron systems. Neuronal GPCRs activated by synthetic ligands have been created by designed mutagenesis for studying their functions and signal pathways. However, these engineered GPCRs have problems, such as their high constitutive activity. To overcome this drawback, a new generation of receptors termed designer receptors exclusively activated by designer drugs (DREADDs), have been designed. DREADDs are exclusively activated by synthetic ligands, but are insensitive to their endogenous ligand and have no constitutive activity, which provides the ability to selectively modulate signal transduction of certain GPCRs in vitro and in vivo. This protocol provides detailed instructions for creating DREADDs using directed molecular evolution. The procedures to generate DREADDS include GPCR functional expression in yeast, mutant GPCR library generation, and high-throughput yeast screening. These methods are general and suitable for any GPCRs that can be functionally expressed in yeast.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.