JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins.
Cell Rep
PUBLISHED: 06-03-2014
Show Abstract
Hide Abstract
Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.
Related JoVE Video
Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay.
J. Microbiol. Methods
PUBLISHED: 06-20-2013
Show Abstract
Hide Abstract
Clostridium botulinum is the etiological agent of botulism. Due to food-borne poisoning and the potential use of the extremely toxic botulinum neurotoxin (BoNT) from C. botulinum in bioterror or biocrime related actions, reliable high resolution typing methods for discriminating C. botulinum strains are needed. Partial sequencing of the adk, atpH, gyrB, proC, rpoD and spo0A genes from 51 various C. botulinum/sporogenes isolates was performed, resulting in 37 different sequence types (STs). Analysis of the sequence data revealed a genetic distribution in five larger clusters with a loose correlation to the BoNT serotypes. The developed MLST assay had a slightly lower resolution ability when compared to the MLVA (multilocus variable number of tandem repeat analysis), but the two methods resulted in similar subclusters of the strains possessing the BoNT serotypes A, B and F. The current work presents the development of a novel MLST assay useful for genotyping C. botulinum related to basic phylogenetic research and trace-back analysis in microbial forensic studies.
Related JoVE Video
Molecular strain typing of Brucella abortus isolates from Italy by two VNTR allele sizing technologies.
Mol. Biotechnol.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Brucellosis, one of the most important re-emerging zoonoses in many countries, is caused by bacteria belonging to the genus Brucella. Furthermore these bacteria represent potential biological warfare agents and the identification of species and biovars of field strains may be crucial for tracing back source of infection, allowing to discriminate naturally occurring outbreaks instead of bioterrorist events. In the last years, multiple-locus variable-number tandem repeat analysis (MLVA) has been proposed as complement of the classical biotyping methods and it has been applied for genotyping large collections of Brucella spp. At present, the MLVA band profiles may be resolved by automated or manual procedures. The Lab on a chip technology represents a valid alternative to standard genotyping techniques (as agarose gel electrophoresis) and it has been previously used for Brucella genotyping. Recently, a new high-throughput genotyping analysis system based on capillary gel electrophoresis, the QIAxcel, has been described. The aim of the study was to evaluate the ability of two DNA sizing equipments, the QIAxcel System and the Lab chip GX, to correctly call alleles at the sixteen loci including one frequently used MLVA assay for Brucella genotyping. The results confirmed that these technologies represent a meaningful advancement in high-throughput Brucella genotyping. Considering the accuracy required to confidently resolve loci discrimination, QIAxcel shows a better ability to measure VNTR allele sizes compared to LabChip GX.
Related JoVE Video
Clostridium botulinum group I strain genotyping by 15-locus multilocus variable-number tandem-repeat analysis.
J. Clin. Microbiol.
PUBLISHED: 10-19-2011
Show Abstract
Hide Abstract
Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse.
Related JoVE Video
Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS.
BMC Microbiol.
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
The genus Brucella contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.
Related JoVE Video
High throughput MLVA-16 typing for Brucella based on the microfluidics technology.
BMC Microbiol.
PUBLISHED: 03-24-2011
Show Abstract
Hide Abstract
Brucellosis, a zoonosis caused by the genus Brucella, has been eradicated in Northern Europe, Australia, the USA and Canada, but remains endemic in most areas of the world. The strain and biovar typing of Brucella field samples isolated in outbreaks is useful for tracing back source of infection and may be crucial for discriminating naturally occurring outbreaks versus bioterrorist events, being Brucella a potential biological warfare agent. In the last years MLVA-16 has been described for Brucella spp. genotyping. The MLVA band profiles may be resolved by different techniques i.e. the manual agarose gels, the capillary electrophoresis sequencing systems or the microfluidic Lab-on-Chip electrophoresis. In this paper we described a high throughput system of MLVA-16 typing for Brucella spp. by using of the microfluidics technology.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.