JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ionic Liquid Based Approach for Single-Molecule Electronics with Cobalt Contacts.
Langmuir
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
An electrochemical method is presented for fabricating cobalt thin films for single-molecule electrical transport measurements. These films are electroplated in an aqueous electrolyte, but the crucial stages of electrochemical reduction to remove surface oxide and adsorption of alkane(di)thiol target molecules under electrochemical control to form self-assembled monolayers which protect the oxide-free cobalt surface are carried out in an ionic liquid. This approach yields monolayers on Co that are of comparable quality to those formed on Au by standard self-assembly protocols, as assessed by electrochemical methods and surface infrared spectroscopy. Using an adapted scanning tunneling microscopy (STM) method, we have determined the single-molecule conductance of cobalt/1,8-octanedithiol/cobalt junctions by employing a monolayer on cobalt and a cobalt STM tip in an ionic liquid environment and have compared the results with those of experiments using gold electrodes as a control. These cobalt substrates could therefore have future application in organic spintronic devices such as magnetic tunnel junctions.
Related JoVE Video
Controlling the structural and electrical properties of diacid oligo(phenylene ethynylene) Langmuir-Blodgett films.
Chemistry
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
The preparation, characterization and electrical properties of Langmuir-Blodgett (LB) films composed of a symmetrically substituted oligomeric phenylene ethynylene derivative, namely, 4,4-[1,4-phenylenebis(ethyne-2,1-diyl)]dibenzoic acid (OPE2A), are described. Analysis of the surface pressure versus area per molecule isotherms and Brewster angle microscopy reveal that good-quality Langmuir (L) films can be formed both on pure water and a basic subphase. Monolayer L films were transferred onto solid substrates with a transfer ratio of unity to obtain LB films. Both L and LB films prepared on or from a pure water subphase show a red shift in the UV/Vis spectrum of about 14?nm, in contrast to L and LB films prepared from a basic subphase, which show a hypsochromic shift of 15?nm. This result, together with X-ray photoelectron spectroscopic and quartz crystal microbalance experiments, conclusively demonstrate formation of one-layer LB films in which OPE2A molecules are chemisorbed onto gold substrates and consequently -COO-Au junctions are formed. In LB films prepared on a basic subphase the other terminal acid group is also deprotonated and associates with an Na(+) counterion. In contrast, LB films prepared from a pure water subphase preserve the protonated acid group, and lateral H-bonds with neighbouring molecules give rise to a supramolecular structure. STM-based conductance studies revealed that films prepared from a basic subphase are more conductive than the analogous films prepared from pure water, and the electrical conductance of the deprotonated films also coincides more closely with single-molecule conductance measurements. This result was interpreted not only in terms of better electron transmission in -COO-Au molecular junctions, but also in terms of the presence of lateral H-bonds in the films formed from pure water, which lead to reduced conductance of the molecular junctions.
Related JoVE Video
Optimisation of a stirred bioreactor through the use of a novel holographic correlation velocimetry flow measurement technique.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
We describe a method for measuring three dimensional (3D) velocity fields of a fluid at high speed, by combining a correlation-based approach with in-line holography. While this method utilizes tracer particles contained within the flow, our method does not require the holographic reconstruction of 3D images. The direct flow reconstruction approach developed here allows for measurements at seeding densities in excess of the allowable levels for techniques based on image or particle reconstruction, thus making it suited for biological flow measurement, such as the flow in bioreactor. We outline the theory behind our method, which we term Holographic Correlation Velocimetry (HCV), and subsequently apply it to both synthetic and laboratory data. Moreover, because the system is based on in-line holography, it is very efficient with regard to the use of light, as it does not rely on side scattering. This efficiency could be utilized to create a very high quality system at a modest cost. Alternatively, this efficiency makes the system appropriate for high-speed flows and low exposure times, which is essential for imaging dynamic systems.
Related JoVE Video
Comparison of the conductance of three types of porphyrin-based molecular wires: ?,meso,?-fused tapes, meso-Butadiyne-linked and twisted meso-meso linked oligomers.
Adv. Mater. Weinheim
PUBLISHED: 08-12-2011
Show Abstract
Hide Abstract
The length dependence of charge transport is evaluated in three families of porphyrin-based wires. Planar edge-fused tapes and alkyne-linked oligomers mediate efficient charge transport with exceptionally shallow distance dependence, whereas the conductances of the twisted singly linked chains decrease steeply with increasing oligomer length. The planar tapes are more conjugated than the alkyne-linked oligomers, but these two types of wires have similar conductance attenuation factors.
Related JoVE Video
Long-range electron tunnelling in oligo-porphyrin molecular wires.
Nat Nanotechnol
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
Short chains of porphyrin molecules can mediate electron transport over distances as long as 5-10 nm with low attenuation. This means that porphyrin-based molecular wires could be useful in nanoelectronic and photovoltaic devices, but the mechanisms responsible for charge transport in single oligo-porphyrin wires have not yet been established. Here, based on electrical measurements of single-molecule junctions, we show that the conductance of the oligo-porphyrin wires has a strong dependence on temperature, and a weak dependence on the length of the wire. Although it is widely accepted that such behaviour is a signature of a thermally assisted incoherent (hopping) mechanism, density functional theory calculations and an accompanying analytical model strongly suggest that the observed temperature and length dependence is consistent with phase-coherent tunnelling through the whole molecular junction.
Related JoVE Video
Identifying diversity in nanoscale electrical break junctions.
J. Am. Chem. Soc.
PUBLISHED: 06-12-2010
Show Abstract
Hide Abstract
The realization of molecular-scale electronic devices will require the development of novel strategies for controlling electrical properties of metal/molecule/metal junctions, down to the single molecule level. Here, we show that it is possible to exert chemical control over the formation of metal/molecule...molecule/metal junctions in which the molecules interact by pi-stacking. The tip of an STM is used to form one contact, and the substrate the other; the molecules are conjugated oligophenyleneethynylenes (OPEs). Supramolecular pi-pi interactions allow current to flow through the junction, but not if bulky tert-butyl substituents on the phenyl rings prevent such interactions. For the first time, we find evidence that pi-stacked junctions can form even for OPEs with two thiol contacts. Furthermore, we find evidence for metal|molecule|metal junctions involving oligophenyleneethynylene monothiols, in which the second contact must be formed by the interaction of the pi-electrons of the terminal phenyl ring with the metal surface.
Related JoVE Video
The impact of E-Z photo-isomerization on single molecular conductance.
Nano Lett.
PUBLISHED: 05-27-2010
Show Abstract
Hide Abstract
The single molecule conductance of the E and Z isomers of 4,4-(ethene-1,2-diyl)dibenzoic acid has been determined using two scanning tunneling microscopy (STM) methods for forming molecular break junctions [the I(s) (I = current and s is distance) method and the in situ break junction technique]. Isomerization leads to significant changes in the electrical conductance of these molecules, with the Z isomer exhibiting a higher conductance than the E isomer. Isomerization is achieved directly on the gold surface through photoirradiation, and the STM is used to determine conductance before and after irradiation; reversible switching between the two isomers could be achieved through irradiation of the surface bound species at different wavelengths. In addition, three groups of molecular conductance values [A ("low"), B ("medium"), and C ("high")] have been measured for these carboxylate-terminated molecules. The origin of these conductance groups as well as the increase of the conductance for the Z isomer have been analyzed by comparing the length of the molecules extended in the gap, derived from molecular modeling, with the experimentally observed break-off distance for both isomers.
Related JoVE Video
An asynchronous high-speed synchrotron shutter.
J Synchrotron Radiat
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
A high-repetition-rate mechanical shutter with asynchronous control and sub-millisecond operation has been developed and tested for specialist X-ray systems in the field of medical diagnostics and radiation therapy. Capacitor-coupled linear voice coil actuators are utilized to achieve opening and closing speeds as fast as 700 micros for an aperture height of 4 mm. The design allows for asynchronous control, permitting slave operation of the shutter, a feature that is distinctly suitable for a number of applications including particle image velocimetry, where high-frame-rate operation must be accurately synchronized and triggered by the image acquisition sequence of the detector or timing device. The design and construction of the shutter also makes it ideal, with simple and limited modifications, for applications requiring larger apertures, in particular wide beams as found in many synchrotron beamlines.
Related JoVE Video
The experimental determination of the conductance of single molecules.
Phys Chem Chem Phys
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
The measurement of the electrical properties of molecules, down to the single molecule level, has become an experimental reality in recent years. A number of methods are now available for experimentally achieving this feat. The common aim of these methods is to entrap a single or small numbers of molecules between a pair of metallic contacts. This topical review focuses on describing and comparing experimental methods for entrapping and measuring the electrical properties of single molecules in metallic contact gaps. After describing the methods, reasons are tendered for apparent discrepancies in the literature between measured single molecule conductance values, with a focus on the most widely studied alkanedithiol system. Illustrative examples are then presented of the determination of the electrical properties of a range of single molecular systems, in order to highlight the progress which has been made in recent years.
Related JoVE Video
Oligoyne single molecule wires.
J. Am. Chem. Soc.
PUBLISHED: 10-15-2009
Show Abstract
Hide Abstract
We report the electrical conductance at the single molecule level of the oligoyne molecular wires Py-(C[triple bond]C)(n)-Py (n = 1, 2 and 4; Py = 4-pyridyl) using STM-molecular break junction techniques in Au|molecule|Au configurations. The conductance histograms reveal multiple series of peaks attributed to differing contact geometries between the pyridyl head groups and the gold electrodes. Both experimental and theoretical evidence point to the higher conduction groups being related to adsorption of the pyridyl group at more highly coordinated sites such as step edges or alongside gold adatoms. All three conduction groups in the oligoyne series show a remarkably low beta value of (0.06 +/- 0.03) A(-1), that is, the conductance is almost independent of molecular length. 4,4-Bipyridyl studied under the same conditions does not follow this exponential decay series. Theoretical calculations using a combination of density functional theory and nonequilibrium Greens function formalism support the experimental results. We conclude that oligoynes and polyynes are a very promising class of molecular wires for integration into electronic circuitry.
Related JoVE Video
Anomalous length and voltage dependence of single molecule conductance.
Phys Chem Chem Phys
PUBLISHED: 10-02-2009
Show Abstract
Hide Abstract
A systematic experimental study of the electrical conductance of single alkanedithiol molecules (HS-(CH(2))(N)-SH) between gold contacts in air for N = 3-12 is presented. For all of these molecules, three different fundamental conductance groups (low, medium and high conductance) were observed. For long molecules (N > 7) the conductance decays exponentially with molecular length for all three conductance groups, as it has been reported previously. In contrast, for short molecules (N < 8), it is shown that the decay of conductance with molecular length gets less pronounced for decreasing length, approaching length independent conductance values for N < 5 where the voltage dependence of the tunnelling current exhibits an anomalous behaviour. Possible reasons for these findings, including the influence of the image potential on the effective mass of the tunnelling electron (hole), are discussed.
Related JoVE Video
A molecular wire incorporating a robust hexanuclear platinum cluster.
Phys Chem Chem Phys
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Reaction of [Pt(6)(CO)(4)(P(t)Bu(2))(4)Cl(2)] with excess HS(CH(2))(4)SH in Et(2)NH gave highly stable [Pt(6)(CO)(4)(P(t)Bu(2))(4){S(CH(2))(4)SH}(2)], which adsorbs unchanged onto gold surfaces. This permitted the fabrication and electrical characterisation of gold|molecule|gold junctions involving a well-defined metal carbonyl cluster compound.
Related JoVE Video
Adverse effects of asymmetric contacts on single molecule conductances of HS(CH2)n COOH in nanoelectrical junctions.
Nanotechnology
PUBLISHED: 03-03-2009
Show Abstract
Hide Abstract
A scanning tunnelling microscope has been used to determine the conductance of single molecular wires with the configuration X-bridge-X, X-bridge-Y and Y-bridge-Y (X = thiol terminus and Y = COOH). We find that for molecular wires with mixed functional groups (X-bridge-Y) the single molecule conductance decreases with respect to the comparable symmetric molecules. These differences are confirmed by theoretical computations based on a combination of density functional theory and the non-equilibrium Greens functions formalism. This study demonstrates that the apparent contact resistance, as well as being highly sensitive to the type of the anchoring group, is also strongly influenced by contact-asymmetry of the single molecular junction which in this case decreases the transmission. This highlights that contact-asymmetry is a significant factor to be considered when evaluating nanoelectrical junctions incorporating single molecules.
Related JoVE Video
Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact.
Dalton Trans
Show Abstract
Hide Abstract
Conductance across a metal|molecule|metal junction is strongly influenced by the molecule-substrate contacts, and for a given molecular structure, multiple conductance values are frequently observed and ascribed to distinct binding modes of the contact at each of the molecular termini. Conjugated molecules containing a trimethylsilylethynyl terminus, -C?CSiMe(3) give exclusively a single conductance value in I(s) measurements on gold substrates, the value of which is similar to that observed for the same molecular backbone with thiol and amine based contacting groups when bound to under-coordinated surface sites.
Related JoVE Video
Single-molecule electrochemical gating in ionic liquids.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through -(CH(2))(6)S- groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning tunneling microscopy (STM) molecular break junction configuration. As the electrode potential is swept to positive potentials through both redox transitions, an ideal switching behavior is observed in which the conductance increases and then decreases as the first redox wave is passed, and then increases and decreases again as the second redox process is passed. This is described as an "off-on-off-on-off" conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational relaxation. Using this view, reorganization energies of ~1.2 eV have been estimated for both the first and second redox transitions for the pTTF bridge in the 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIOTf) ionic liquid environment. By contrast, in aqueous environments, a much smaller reorganization energy of ?0.4 eV has been obtained for the same molecular bridge. These differences are attributed to the large, outer-sphere reorganization energy for charge transfer across the molecular junction in the RTIL.
Related JoVE Video
Quantized electron-transfer pathways at nanoparticle-redox centre hybrids.
Chemphyschem
Show Abstract
Hide Abstract
Hexanethiolate gold monolayer-protected clusters (C6-MPCs) with an average core diameter of 1.8 nm and a capacitance of 0.6 aF are synthesised by a two-phase method. These clusters are functionalised with (6-ferrocenyl)-1-hexanethiol by a place exchange reaction at different molar ratios. The average number of ferrocene centres per cluster determined by (1)H NMR is ten, seven and four. Differential pulse voltammetry and cyclic voltammetry measurements for cluster solutions in 0.1 M TBAPF(6)/Tol:AN (2:1) clearly show the response of the Fc(+)/Fc redox couple and of quantized double layer (QDL) charging events of the gold core. A transition from single to multiple electron-transfer response for the redox couple is observed as the number of ferrocene units per cluster is increased. The distances between the redox moieties are estimated considering a homogeneous distribution of the redox sites on the nanoparticle ligand shell. In all the cases, the inter-ferrocene average separation is too large to observe self-exchange reactions and the most likely electron-transfer pathway is by fast rotational diffusion. The oxidation of the ferrocene groups results in an electrostatic switching-off of electron transfers between the electrode and the nanoparticle core.
Related JoVE Video
Single-molecule conductance determinations on HS(CH2)4O(CH2)4SH and HS(CH2)2O(CH2)2O(CH2)2SH, and comparison with alkanedithiols of the same length.
J Phys Condens Matter
Show Abstract
Hide Abstract
The acetyl-protected, thiol-terminated ethers AcS(CH(2))(4)O(CH(2))(4)SAc and AcS(CH(2))(2)O(CH(2))(2)O(CH(2))(2)SAc have been synthesised, and a range of related scanning tunnelling microscopy (STM)-based methods have been employed to fabricate and electrically characterise gold | single molecule | gold junctions involving these molecules. The single-molecule conductance values obtained are consistently found to be substantially higher (by a factor of 2-3) than the conductances of analogous alkanedithiols of similar length (HS(CH(2))(9)SH and HS(CH(2))(8)SH, respectively). A rationalisation of these findings is suggested, namely that the lone pair electrons on the oxygen atoms are substantially closer in energy to the Fermi energy of the gold leads than are the occupied and unoccupied states of methylene chains, so that the ether oxygens behave in a manner analogous to wells in a double-tunnelling-barrier system. In agreement with this suggestion, the current-voltage behaviour of the monoether can be fitted using the Simmons approach, and the barrier height is found to be significantly lower than for alkanedithiols of approximately the same length.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.