JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
RAF suppression synergizes with MEK inhibition in KRAS mutant cancer cells.
Cell Rep
PUBLISHED: 06-12-2014
Show Abstract
Hide Abstract
KRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA) screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition. An unbiased kinome short hairpin RNA (shRNA)-based screen confirmed this synthetic lethal interaction in colorectal as well as in lung cancer cells bearing KRAS mutations. Compounds targeting RAF kinases can reverse resistance to the MEK inhibitor selumetinib. MEK inhibition induces RAS activation and BRAF-RAF1 dimerization and sustains MEK-ERK signaling, which is responsible for intrinsic resistance to selumetinib. Prolonged dual blockade of RAF and MEK leads to persistent ERK suppression and efficiently induces apoptosis. Our data underlie the relevance of developing combinatorial regimens of drugs targeting the RAF-MEK pathway in KRAS mutant tumors.
Related JoVE Video
Mutational profiling of kinases in glioblastoma.
BMC Cancer
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma.
Related JoVE Video
Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer.
Sci Transl Med
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
Colorectal cancers (CRCs) that are sensitive to the anti-epidermal growth factor receptor (EGFR) antibodies cetuximab or panitumumab almost always develop resistance within several months of initiating therapy. We report the emergence of polyclonal KRAS, NRAS, and BRAF mutations in CRC cells with acquired resistance to EGFR blockade. Regardless of the genetic alterations, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of EGFR, together with silencing of MEK1/2, was required to hamper the proliferation of resistant cells. Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in KRAS and NRAS were also detected in plasma samples from patients who developed resistance to anti-EGFR antibodies. A mouse xenotransplant from a CRC patient who responded and subsequently relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR therapies.
Related JoVE Video
The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone.
Neuro-oncology
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of genetic and epigenetic alterations in glioblastoma patients.
Related JoVE Video
Targeted Knock-in of the Polymorphism rs61764370 Does Not Affect KRAS Expression but Reduces let-7 Levels.
Hum. Mutat.
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
Understanding the role of single-nucleotide polymorphisms (SNPs) in the pathological process represents a unique experimental challenge especially when the variants occur outside of coding regions. The noncoding SNP rs61764370 located in the 3-untranslated region of Kirsten rat sarcoma viral oncogene homolog (KRAS) has been implicated as a risk factor for the development of cancer and the response to targeted therapies. This cancer-associated variant is thought to affect the binding of the microRNA let-7, which allegedly modulates KRAS expression. Using site-specific homologous recombination, we inserted the rs61764370:T>G KRAS gene variant in the colorectal cancer cell line SW48 (SW48 +SNP) and assessed the cellular and biochemical phenotype. We observed a significant increase in cellular proliferation, as well as a reduction in the levels of the microRNA let-7a, let-7b, and let-7c. Transcriptional and biochemical analysis showed no concomitant change in the KRAS protein expression or modulation of the downstream mitogen activated kinase or PI3K/AKT signaling. These results suggest that the cancer-associated rs61764370 variant exerts a biological effect not through transcriptional modulation of KRAS but rather by tuning the expression of the microRNA let-7.
Related JoVE Video
KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy.
Int. J. Cancer
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
KRAS mutations are the most common oncogenic event in colorectal cancer (CRC) progression and their occurrence is associated with lack of response to anti epidermal growth factor receptor (EGFR) targeted therapies. Using preclinical models and patients samples we recently reported that the emergence of KRAS mutations but also KRAS amplification is associated with acquired resistance to the EGFR inhibitors cetuximab or panitumumab. We reasoned that KRAS amplification may also be responsible for primary resistance to these agents. Furthermore, while the prevalence of KRAS mutations has been well established in CRC, little is known about the frequency of KRAS amplification in large CRC series. We performed a screening of 1,039 CRC samples to assess the prevalence of KRAS amplification in this tumor type and further evaluated the role of this genetic alteration on the sensitivity to anti EGFR therapies. We detected KRAS amplification in 7/1,039 (0.67%) and 1/102 evaluable CRC specimens and cell lines, respectively. KRAS amplification was mutually exclusive with KRAS mutations. Tumors or cell lines harboring this genetic lesion are not responsive to anti-EGFR inhibitors. Although KRAS amplification is an infrequent event in CRC, it might be responsible for precluding response to anti-EGFR treatment in a small proportion of patients.
Related JoVE Video
Mixed lineage kinase MLK4 is activated in colorectal cancers where it synergistically cooperates with activated RAS signaling in driving tumorigenesis.
Cancer Res.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Colorectal cancers (CRC) are commonly classified into those with microsatellite instability and those that are microsatellite stable (MSS) but chromosomally unstable. The latter are characterized by poor prognosis and remain largely intractable at the metastatic stage. Comprehensive mutational analyses have revealed that the mixed lineage kinase 4 (MLK4) protein kinase is frequently mutated in MSS CRC with approximately 50% of the mutations occurring in KRAS- or BRAF-mutant tumors. This kinase has not been characterized previously and the relevance of MLK4 somatic mutations in oncogenesis has not been established. We report that MLK4-mutated alleles in CRC are constitutively active and increase the transformation and tumorigenic capacity of RAS-mutated cell lines. Gene expression silencing or targeted knockout of MLK4 impairs the oncogenic properties of KRAS- and BRAF-mutant cancer cells both in vitro and in xenograft models. In establishing the role of MLK4 in intracellular signaling, we show it directly phosphorylates MEK1 (MAP2K1) and that MEK/ERK (MAPK1) signaling is impaired in MLK4 knockout cells. These findings suggest that MLK4 inhibitors may be efficacious in KRAS- and BRAF-mutated CRCs and may provide a new opportunity for targeting such recalcitrant tumors.
Related JoVE Video
Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab.
JAMA
PUBLISHED: 10-28-2010
Show Abstract
Hide Abstract
Patients with metastatic colorectal cancer who have KRAS codon 12- or KRAS codon 13-mutated tumors are presently excluded from treatment with the anti-epidermal growth factor receptor monoclonal antibody cetuximab.
Related JoVE Video
Integrated molecular dissection of the epidermal growth factor receptor (EGFR) [corrected] oncogenic pathway to predict response to EGFR-targeted monoclonal antibodies in metastatic colorectal cancer.
Target Oncol
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
The introduction of KRAS testing as a diagnostic tool to select patients for epidermal growth factor receptor (EGFR)-targeted cetuximab- or panitumumab-based therapies for metastatic colorectal cancer is widely regarded as a key advance in the field of personalized cancer medicine. Oncologists are now facing emerging issues in the treatment of metastatic colorectal cancer, including: (i) the identification of additional genetic determinants of primary resistance to EGFR-targeted therapy for further improving selection of patients; (ii) the explanation of rare cases of patients carrying KRAS-mutated tumors who have been reported to respond to either cetuximab or panitumumab and (iii) the discovery of mechanisms of secondary resistance to anti-EGFR antibody therapies. Here we discuss the potential role of comprehensive dissection of the key oncogenic nodes in the EGFR signaling cascade to predict resistance and sensitivity to EGFR monoclonal antibodies in metastatic colorectal cancer. Current data suggest that, together with KRAS mutations, the evaluation of BRAF and PIK3CA/PTEN alterations could also be useful for selecting patients with reduced chance to benefit from EGFR-targeted therapy. Furthermore, measuring EGFR gene copy number also appears relevant to positively identify responders. Up until now, each of these markers has been mainly assessed as a single event, often in retrospective analyses and patients series. As these molecular alterations display overlapping patterns of occurrence, this adds considerable complexity to the drawing of an algorithm suitable for clinical decision-making. We suggest that in the near future comprehensive molecular analysis of the entire oncogenic pathway triggered by the EGFR should be performed, thus enhancing the prediction ability of individual markers.
Related JoVE Video
The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma.
Acta Neuropathol.
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
Somatic mutations in the isocitrate dehydrogenase 1 gene (IDH1) occur at high frequency in gliomas and seem to be a prognostic factor for survival in glioblastoma patients. In our set of 98 glioblastoma patients, IDH1 ( R132 ) mutations were associated with improved survival of 1 year on average, after correcting for age and other variables with Cox proportional hazards models. Patients with IDH1 mutations were on average 17 years younger than patients without mutation. Mutated IDH1 has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of alpha-ketoglutarate, but it is unknown whether NADPH production in gliomas is affected by IDH1 mutations. We assessed the effect of IDH1 (R132 ) mutations on IDH-mediated NADPH production in glioblastomas in situ. Metabolic mapping and image analysis was applied to 51 glioblastoma samples of which 16 carried an IDH1 (R132 ) mutation. NADP+-dependent IDH activity was determined in comparison with activity of NAD+-dependent IDH and all other NADPH-producing dehydrogenases, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, and hexose-6-phosphate dehydrogenase. The occurrence of IDH1 mutations correlated with approx. twofold diminished NADP+-dependent IDH activity, whereas activity of NAD+-dependent IDH and the other NADP+-dependent dehydrogenases was not affected in situ in glioblastoma. The total NADPH production capacity in glioblastoma was provided for 65% by IDH activity and the occurrence of IDH1 (R132 ) mutation reduced this capacity by 38%. It is concluded that NADPH production is hampered in glioblastoma with IDH1 (R132 ) mutation. Moreover, mutated IDH1 consumes rather than produces NADPH, thus likely lowering NADPH levels even further. The low NADPH levels may sensitize glioblastoma to irradiation and chemotherapy, thus explaining the prolonged survival of patients with mutated glioblastoma.
Related JoVE Video
The analysis of PIK3CA mutations in gastric carcinoma and metanalysis of literature suggest that exon-selectivity is a signature of cancer type.
J. Exp. Clin. Cancer Res.
PUBLISHED: 01-14-2010
Show Abstract
Hide Abstract
PIK3CA is one of the genes most frequently mutated in human cancers and it is a potential target for personalized therapy. The aim of this study was to assess the frequency and type of PIK3CA mutations in gastric carcinoma and compare them with their clinical pathological correlates.
Related JoVE Video
Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer.
PLoS ONE
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
KRAS mutations occur in 35-45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance.
Related JoVE Video
Molecular profiling of the "plexinome" in melanoma and pancreatic cancer.
Hum. Mutat.
PUBLISHED: 05-23-2009
Show Abstract
Hide Abstract
Plexins are transmembrane high-affinity receptors for semaphorins, regulating cell guidance, motility, and invasion. Functional evidences implicate semaphorin signals in cancer progression and metastasis. Yet, it is largely unknown whether plexin genes are genetically altered in human tumors. We performed a comprehensive gene copy analysis and mutational profiling of all nine members of the plexin gene family (plexinome), in melanomas and pancreatic ductal adenocarcinomas (PDACs), which are characterized by high metastatic potential and poor prognosis. Gene copy analysis detected amplification of PLXNA4 in melanomas, whereas copy number losses of multiple plexin genes were seen in PDACs. Somatic mutations were detected in PLXNA4, PLXNB3, and PLXNC1; providing the first evidence that these plexins are mutated in human cancer. Functional assays in cellular models revealed that some of these missense mutations result in loss of plexin function. For instance, c.1613G>A, p.R538H mutation in the extracellular domain of PLXNB3 prevented binding of the ligand Sema5A. Moreover, although PLXNA4 signaling can inhibit tumor cell migration, the mutated c.5206C>T, p.H1736Y allele had lost this activity. Our study is the first systematic analysis of the "plexinome" in human tumors, and indicates that multiple mutated plexins may be involved in cancer progression.
Related JoVE Video
Mutational profile of GNAQQ209 in human tumors.
PLoS ONE
PUBLISHED: 05-18-2009
Show Abstract
Hide Abstract
Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein alpha-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene.
Related JoVE Video
Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes.
Hum. Mutat.
PUBLISHED: 04-11-2009
Show Abstract
Hide Abstract
A recent systematic analysis of 18.191 well annotated coding sequences (RefSeq) in breast and colorectal cancers has led to the identification of somatic mutations in 1.718 genes (Wood et al., 2007). Based on statistical parameters 280 of these have been denominated candidate cancer (CAN) genes. This analysis has provided an interesting snapshot of the landscape of tumor genomes by showing that they contain a few frequently mutated genes (denominated mountains). On the contrary, the large majority of CAN genes are altered at low frequency (designated hills). Whether hill type CAN genes are tumor specific is largely unknown. To address this question we evaluated the mutational profiles of 27 hill CAN genes in glioblastoma, melanoma and pancreatic carcinoma by sequencing the exons previously found mutated by Wood and colleagues. Only 4 of the breast/colorectal hill type CAN genes (SMAD4, MYO18B, NAV3 and MMP2) were also mutated in melanoma and pancreatic carcinoma, while none was altered in glioblastoma. These results suggest that hill type CAN genes are not frequently shared by different tumor types and that their mutation patterns are tissue specific. Tumor-specific genome wide mutational profiling will be required to identify hill type CAN genes that characterize the genomic landscapes of each cancer lineage.
Related JoVE Video
Absence of AKT1 mutations in glioblastoma.
PLoS ONE
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
Oncogenic activation of the PI3K signalling pathway plays a pivotal role in the development of glioblastoma multiforme (GBM). A central node in PI3K downstream signalling is controlled by the serine-threonine kinase AKT1. A somatic mutation affecting residue E17 of the AKT1 gene has recently been identified in breast and colon cancer. The E17K change results in constitutive AKT1 activation, induces leukaemia in mice, and accordingly, may be therapeutically exploited to target the PI3K pathway. Assessing whether AKT1 is activated by somatic mutations in GBM is relevant to establish its role in this aggressive disease.
Related JoVE Video
IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors.
Hum. Mutat.
PUBLISHED: 01-02-2009
Show Abstract
Hide Abstract
Systematic sequence profiling of the Glioblastoma Multiforme (GBM) genome has recently led to the identification of somatic mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Interestingly, only the evolutionarily conserved residue R132 located in the substrate binding site of IDH1 was found mutated in GBM. At present, the occurrence and the relevance of p.R132 (IDH1(R132)) variants in tumors other than GBMs is largely unknown. We searched for mutations at position R132 of the IDH1 gene in a panel of 672 tumor samples. These included high-grade glioma, gastrointestinal stromal tumors (GIST), melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, prostate, and thyroid carcinoma specimens. In addition, we assessed a panel of 84 cell lines from different tumor lineages. Somatic mutations affecting the IDH1(R132) residue were detected in 20% (23 of 113) high-grade glioma samples. In addition to the previously reported p.R132H and p.R132S alleles, we identified three novel somatic mutations (p.R132C, p.R132G, and p.R132L) affecting residue IDH1(R132) in GBM. Strikingly, no IDH1 mutations were detected in the other tumor types. These data indicate that cancer mutations affecting IDH1(R132) are tissue-specific, and suggest that it plays a unique role in the development of high-grade gliomas.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.