JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q- syndrome in a TP53-independent way.
Br. J. Haematol.
PUBLISHED: 04-07-2014
Show Abstract
Hide Abstract
Haploinsufficiency of ribosomal proteins (RPs) and upregulation of the tumour suppressor TP53 have been shown to be the common basis for the anaemia observed in Diamond Blackfan anaemia and 5q- myelodysplastic syndrome. We previously demonstrated that treatment with L-Leucine resulted in a marked improvement in anaemia in disease models. To determine if the L-Leucine effect was Tp53-dependent, we used antisense MOs to rps19 and rps14 in zebrafish; expression of tp53 and its downstream target cdkn1a remained elevated following L-leucine treatment. We confirmed this observation in human CD34+ cells. L-Leucine thus alleviates anaemia in RP-deficient cells in a TP53-independent manner.
Related JoVE Video
Lenalidomide Causes Selective Degradation of IKZF1 and IKZF3 in Multiple Myeloma Cells.
Science
PUBLISHED: 11-29-2013
Show Abstract
Hide Abstract
Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced IL2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a novel mechanism of action for a therapeutic agent, alteration of the activity of an E3 ubiquitin ligase leading to selective degradation of specific targets.
Related JoVE Video
Dexamethasone and lenalidomide have distinct functional effects on erythropoiesis.
Blood
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Corticosteroids and lenalidomide decrease red blood cell transfusion dependence in patients with Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome (MDS), respectively. We explored the effects of dexamethasone and lenalidomide, individually and in combination, on the differentiation of primary human bone marrow progenitor cells in vitro. Both agents promote erythropoiesis, increasing the absolute number of erythroid cells produced from normal CD34(+) cells and from CD34(+) cells with the types of ribosome dysfunction found in DBA and del(5q) MDS. However, the drugs had distinct effects on the production of erythroid progenitor colonies; dexamethasone selectively increased the number of burst-forming units-erythroid (BFU-E), whereas lenalidomide specifically increased colony-forming unit-erythroid (CFU-E). Use of the drugs in combination demonstrated that their effects are not redundant. In addition, dexamethasone and lenalidomide induced distinct gene-expression profiles. In coculture experiments, we examined the role of the microenvironment in response to both drugs and found that the presence of macrophages, the central cells in erythroblastic islands, accentuated the effects of both agents. Our findings indicate that dexamethasone and lenalidomide promote different stages of erythropoiesis and support the potential clinical utility of combination therapy for patients with bone marrow failure.
Related JoVE Video
Ribosome defects in disorders of erythropoiesis.
Int. J. Hematol.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Over the past decade, genetic lesions that cause ribosome dysfunction have been identified in both congenital and acquired human disorders. These discoveries have established a new category of disorders, known as ribosomopathies, in which the primary pathophysiology is related to impaired ribosome function. The protoptypical disorders are Diamond-Blackfan anemia, a congenital bone marrow failure syndrome, and the 5q- syndrome, a subtype of myelodysplastic syndrome. In both of these disorders, impaired ribosome function causes a severe macrocytic anemia. In this review, we will discuss the evidence that defects in ribosomal biogenesis cause the hematologic phenotype of Diamond-Blackfan anemia and the 5q- syndrome. We will also explore the potential mechanisms by which a ribosomal defect, which would be expected to have widespread consequences, may lead to specific defects in erythropoiesis.
Related JoVE Video
Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts.
Nature
Show Abstract
Hide Abstract
Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.