JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Simultaneous bilateral stress fractures in a homemaker a case report and literature review.
J Am Podiatr Med Assoc
PUBLISHED: 10-03-2014
Show Abstract
Hide Abstract
Stress fractures commonly occur in athletes and military cadets due to repetitive stress on the bony cortex. Stress fractures of the tibia are commonly localized proximally and occur during aerobic weightbearing exercises. This is an unusual case of bilateral simultaneous distal tibial stress fracture in a young homemaker.
Related JoVE Video
Interkingdom transfer of the acne-causing agent, Propionibacterium acnes, from human to grapevine.
Mol. Biol. Evol.
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Here, we report the surprising and, to our knowledge, unique example of horizontal interkingdom transfer of a human opportunistic pathogen (Propionibacterium acnes) to a crop plant (the domesticated grapevine Vitis vinifera L.). Humans, like most organisms, have established a long-lasting cohabitation with a variety of microbes, including pathogens and gut-associated bacteria. Studies which have investigated the dynamics of such associations revealed numerous cases of bacterial host switches from domestic animals to humans. Much less is, however, known about the exchange of microbial symbionts between humans and plants. Fluorescent in situ hybridization localized P. acnes in the bark, in xylem fibers, and, more interestingly, inside pith tissues. Phylogenetic and population genetic analyses suggest that the establishment of the grapevine-associated P. acnes as obligate endophyte is compatible with a recent transfer event, likely during the Neolithic, when grapevine was domesticated.
Related JoVE Video
Bacterial endophytic communities in the grapevine depend on pest management.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars.
Related JoVE Video
Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere.
Front Microbiol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Generally, plants are not considered as hosts for human and animal pathogens (HAP). The recent produce-associated outbreaks of food-borne diseases have drawn attention toward significant deficiencies in our understanding of the ecology of HAP, and their potential for interkingdom transfer. To examine the association of microorganisms classified as HAP with plants, we surveyed the presence and distribution of HAP bacterial taxa (henceforth HAPT, for brevity's sake) in the endosphere of grapevine (Vitis vinifera L.) both in the plant stems and leaves. An enrichment protocol was used on leaves to detect taxa with very low abundance in undisturbed tissues. We used pyrosequencing and phylogenetic analyses of the 16S rDNA gene. We identified several HAPT, and focused on four genera (Propionibacterium, Staphylococcus, Clostridium, and Burkholderia). The majority of the bacterial sequences in the genus Propionibacterium, from grapevine leaf and stem, were identified as P. acnes. Clostridia were detected in leaves and stems, but their number was much higher in leaves after enrichment. HAPT were indentified both in leaves and wood of grapevines. This depicts the ability of these taxa to be internalized within plant tissues and maintain their population levels in a variety of environments. Our analysis highlighted the presence of HAPT in the grapevine endosphere and unexpected occurrence of these bacterial taxa in this atypical environment.
Related JoVE Video
Safe cervical spine clearance in adult obtunded blunt trauma patients on the basis of a normal multidetector CT scan--a meta-analysis and cohort study.
Injury
PUBLISHED: 03-09-2013
Show Abstract
Hide Abstract
A true gold standard to rule out a significant cervical spine injury in subset of blunt trauma patients with altered sensorium is still to be agreed upon. The objective of this study is to determine whether in obtunded adult patients with blunt trauma, a clinically significant injury to the cervical spine be ruled out on the basis of a normal multidetector cervical spine computed tomography.
Related JoVE Video
Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains.
Environ. Pollut.
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants.
Related JoVE Video
Soil type affects plant colonization, activity and catabolic gene expression of inoculated bacterial strains during phytoremediation of diesel.
J. Hazard. Mater.
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
The combined use of plants and associated microorganisms has great potential for cleaning up soils contaminated with petroleum hydrocarbons. Apart from environmental conditions the physicochemical properties of the soil are the main factors influencing the survival and activity of an inoculated strain as well as the growth of plants. This study examined the effect of different soil types (sandy, loamy sand and loam) on the survival, gene abundance and catabolic gene expression of two inoculated strains (Pseudomonas sp. strain ITRI53 and Pantoea sp. strain BTRH79) in the rhizosphere and shoot interior of Italian ryegrass vegetated in diesel contaminated soils. High colonization, gene abundance and expression in loamy soils were observed. By contrast, low colonization, gene abundance and absence of gene expression in sandy soil were found. The highest levels of genes expression and hydrocarbon degradation were seen in loamy soil that had been inoculated with BTRH79 and were significantly higher compared to those in other soils. A positive correlation was observed between gene expression and hydrocarbon degradation indicating that catabolic gene expression is necessary for contaminant degradation. These results suggest that soil type influences the bacterial colonization and microbial activities and subsequently the efficiency of contaminant degradation.
Related JoVE Video
Open reduction internal fixation of the unstable mallet fracture.
Tech Hand Up Extrem Surg
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
Unstable mallet fractures of the digit pose a challenge when treated surgically. We present the results of a technique, not earlier described, for the fixation of these uncommon injuries. The technique involves anatomical reduction and stable fixation of the distal articular fragment combined with stabilization of the distal interphalangeal joint with buried Kirschner wires allowing early mobilization of the digit. Twenty patients with an average follow-up of 12.7 months (10 mo to 21 mo) are presented. Results were good/excellent (Crawfords criteria) in 16 patients, fair in 3, and poor in 1 with those operated upon within 2 weeks postinjury achieving the best results. There were no incidences of fixation failure, loss of reduction, or posttraumatic osteoarthritis. One patient had a minor infection, but there were no cases of nail deformity or wound breakdown. There was high patient satisfaction and all patients returned to work after treatment. We conclude that this is a reliable technique with minimal complications and is comparable with other published operative and nonoperative treatment modalities.
Related JoVE Video
Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment.
J. Hazard. Mater.
PUBLISHED: 06-26-2010
Show Abstract
Hide Abstract
Twenty-six different plant species were analyzed regarding their performance in soil contaminated with petroleum oil. Two well-performing species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) and the combination of these two plants were selected to study the ecology of plant-associated, culturable alkane-degrading bacteria. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA gene, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Furthermore, we investigated whether alkane hydroxylase genes are plasmid located. Higher numbers of culturable, alkane-degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Degradation genes were found both on plasmids as well as in the chromosome. In regard to application of plants for rhizodegradation, where support of numerous degrading bacteria is essential for efficient break-down of pollutants, Italian ryegrass seems to be more appropriate than Birdsfoot trefoil.
Related JoVE Video
The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.
Int J Phytoremediation
Show Abstract
Hide Abstract
Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.
Related JoVE Video
Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management.
Appl. Environ. Microbiol.
Show Abstract
Hide Abstract
We studied the distribution of fungal endophytes of grapevine (Vitis vinifera L.) plants in a subalpine area of northern Italy, where viticulture is of high economic relevance. We adopted both cultivation-based and cultivation-independent approaches to address how various anthropic and nonanthropic factors shape microbial communities. Grapevine stems were harvested from several locations considering organic and integrated pest management (IPM) and from the cultivars Merlot and Chardonnay. Cultivable fungi were isolated and identified by internal-transcribed-spacer sequence analysis, using a novel colony-PCR method, to amplify DNA from fungal specimens. The composition of fungal communities was assessed using a cultivation-independent approach, automated ribosomal intergenic spacer analysis (ARISA). Multivariate statistical analysis of both culture-dependent and culture-independent data sets was convergent and indicated that fungal endophytic communities in grapevines from organically managed farms were different from those from farms utilizing IPM. Fungal communities in plants of cv. Merlot and cv. Chardonnay overlapped when analyzed using culture-dependent approaches but could be partially resolved using ARISA fingerprinting.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.