JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
E2F Transcription Factor 1 Regulates Cellular and Organismal Senescence by Inhibiting Forkhead Box O Transcription Factors.
J. Biol. Chem.
PUBLISHED: 10-26-2014
Show Abstract
Hide Abstract
E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knockout Murine Embryonic Fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the C. elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity.
Related JoVE Video
Gamabufotalin, a bufadienolide compound from toad venom, suppresses COX-2 expression through targeting IKK?/NF-?B signaling pathway in lung cancer cells.
Mol. Cancer
PUBLISHED: 08-31-2014
Show Abstract
Hide Abstract
Gamabufotalin (CS-6), a major bufadienolide of Chansu, has been used for cancer therapy due to its desirable metabolic stability and less adverse effect. However, the underlying mechanism of CS-6 involved in anti-tumor activity remains poorly understood.
Related JoVE Video
Pharmacological modulation of autophagy enhances Newcastle disease virus-mediated oncolysis in drug-resistant lung cancer cells.
BMC Cancer
PUBLISHED: 01-27-2014
Show Abstract
Hide Abstract
Oncolytic viruses represent a promising therapy against cancers with acquired drug resistance. However, low efficacy limits its clinical application. The objective of this study is to investigate whether pharmacologically modulating autophagy could enhance oncolytic Newcastle disease virus (NDV) strain NDV/FMW virotherapy of drug-resistant lung cancer cells.
Related JoVE Video
Autophagy benefits the replication of newcastle disease virus in chicken cells and tissues.
J. Virol.
PUBLISHED: 10-30-2013
Show Abstract
Hide Abstract
Newcastle disease virus (NDV) is an important avian pathogen. We previously reported that NDV triggers autophagy in U251 glioma cells, resulting in enhanced virus replication. In this study, we investigated whether NDV triggers autophagy in chicken cells and tissues to enhance virus replication. We demonstrated that NDV infection induced steady-state autophagy in chicken-derived DF-1 cells and in primary chicken embryo fibroblast (CEF) cells, evident through increased double- or single-membrane vesicles, the accumulation of green fluorescent protein (GFP)-LC3 dots, and the conversion of LC3-I to LC3-II. In addition, we measured autophagic flux by monitoring p62/SQSTM1 degradation, LC3-II turnover, and GFP-LC3 lysosomal delivery and proteolysis, to confirm that NDV infection induced the complete autophagic process. Inhibition of autophagy by pharmacological inhibitors and RNA interference reduced virus replication, indicating an important role for autophagy in NDV infection. Furthermore, we conducted in vivo experiments and observed the conversion of LC3-I to LC3-II in heart, liver, spleen, lung, and kidney of NDV-infected chickens. Regulation of the induction of autophagy with wortmannin, chloroquine, or starvation treatment affects NDV production and pathogenesis in tissues of both lung and intestine; however, treatment with rapamycin, an autophagy inducer of mammalian cells, showed no detectable changes in chicken cells and tissues. Moreover, administration of the autophagy inhibitor wortmannin increased the survival rate of NDV-infected chickens. Our studies provide strong evidence that NDV infection induces autophagy which benefits NDV replication in chicken cells and tissues.
Related JoVE Video
YAP/TEAD-mediated transcription controls cellular senescence.
Cancer Res.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Transcription coactivator Yes-associated protein (YAP) plays an important role in the regulation of cell proliferation and apoptosis. Here, we identify a new role of YAP in the regulation of cellular senescence. We find that the expression levels of YAP proteins decrease following the replication-induced cellular senescence in IMR90 cells. Silencing of YAP inhibits cell proliferation and induces premature senescence. In additional experiments, we observe that cellular senescence induced by YAP deficiency is TEAD- and Rb/p16/p53-dependent. Furthermore, we show that Cdk6 is a direct downstream target gene of YAP in the regulation of cellular senescence, and the expression of Cdk6 is through the YAP-TEAD complex. Ectopic expression of Cdk6 rescued YAP knockdown-induced senescence. Finally, we find that downregulation of YAP in tumor cells increases senescence in response to chemotherapeutic agents, and YAP or Cdk6 expression rescues cellular senescence. Taken together, our findings define the critical role of YAP in the regulation of cellular senescence and provide a novel insight into a potential chemotherapeutic avenue for tumor suppression.
Related JoVE Video
Targeting autophagy to enhance oncolytic virus-based cancer therapy.
Expert Opin Biol Ther
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Autophagy is a conserved catabolic process crucial in maintaining cellular homeostasis. On infection, oncolytic viruses (OVs) perturb the cellular autophagy machinery in infected tumor cells both in vitro and in vivo. Currently, pharmacological modulation of autophagy in OV-infected tumor cells has been shown to augment OV-mediated antitumor effects in preclinical studies. Combination of OVs with autophagy modulators can, therefore, have many potential applications in the future research on targeting autophagy and novel anticancer therapies.
Related JoVE Video
Newcastle disease virus induces apoptosis in cisplatin-resistant human lung adenocarcinoma A549 cells in vitro and in vivo.
Cancer Lett.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
Cisplatin (DDP) is widely used in lung cancer chemotherapy. However, cisplatin resistance represents a major obstacle in effective clinical treatment. This study aims to investigate whether Newcastle disease virus (NDV) exhibits an oncolytic effect on cisplatin-resistant A549 lung cancer cells. We found that NDV induced A549/DDP cell apoptosis via the caspase pathway, particularly involving caspase-9, while the mitogen-activated protein kinase (MAPK) and Akt pathways also contributed to apoptotic induction. Furthermore, NDV displayed oncolytic effects in a mouse A549/DDP lung cancer model. Collectively, our data indicate that NDV could overcome the cisplatin resistance in lung cancer cells in vitro and in vivo.
Related JoVE Video
Biphasic activation of PI3K/Akt and MAPK/Erk1/2 signaling pathways in bovine herpesvirus type 1 infection of MDBK cells.
Vet. Res.
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Many viruses have been known to control key cellular signaling pathways to facilitate the virus infection. The possible involvement of signaling pathways in bovine herpesvirus type 1 (BoHV-1) infection is unknown. This study indicated that infection of MDBK cells with BoHV-1 induced an early-stage transient and a late-stage sustained activation of both phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen activated protein kinases/extracellular signal-regulated kinase 1/2 (MAPK/Erk1/2) signaling pathways. Analysis with the stimulation of UV-irradiated virus indicated that the virus binding and/or entry process was enough to trigger the early phase activations, while the late phase activations were viral protein expression dependent. Biphasic activation of both pathways was suppressed by the selective inhibitor, Ly294002 for PI3K and U0126 for MAPK kinase (MEK1/2), respectively. Furthermore, treatment of MDBK cells with Ly294002 caused a 1.5-log reduction in virus titer, while U0126 had little effect on the virus production. In addition, the inhibition effect of Ly294002 mainly occurred at the post-entry stage of the virus replication cycle. This revealed for the first time that BoHV-1 actively induced both PI3K/Akt and MAPK/Erk1/2 signaling pathways, and the activation of PI3K was important for fully efficient replication, especially for the post-entry stage.
Related JoVE Video
Apoptin enhances the oncolytic properties of Newcastle disease virus.
Intervirology
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
Naturally occurring strains of Newcastle disease virus (NDV) have demonstrated the potential to kill cancer cells in both preclinical and clinical studies. Previous studies showed that apoptin, the VP3 protein of chicken infectious anemia virus, is a p53-independent, Bcl-2-insensitive apoptotic protein with the ability to specifically induce apoptosis in transformed cells. In this study, we tested the hypothesis that apoptin enhances NDV-mediated tumor cell death.
Related JoVE Video
Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus.
Arch. Virol.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Newcastle disease virus (NDV) has a potential oncolytic effect due to its ability to induce apoptosis in tumor cells. However, previous studies have indicated discrepancies regarding the apoptosis signaling pathways induced by NDV in tumor cells. Here, we show that NDV infection induces simultaneous activation of intrinsic and extrinsic death pathways in A549 human lung cancer cells. In contrast, endoplasmic reticulum (ER) stress is not activated in NDV-induced apoptosis. We demonstrate for the first time that mitogen-activated protein kinase (MAPK) pathways are activated in NDV-infected A549 cells, and p38 MAPK is involved in NDV-induced cell death. Together, our findings provide novel insights into the underlying mechanisms by which NDV induces apoptosis in tumor cells.
Related JoVE Video
Association of Shp2 with phosphorylated IL-22R1 is required for interleukin-22-induced MAP kinase activation.
J Mol Cell Biol
PUBLISHED: 07-31-2010
Show Abstract
Hide Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines produced by activated T cells and is involved in several tissue responses. IL-22 signals through a heterodimeric receptor composed of IL-22 receptor 1 (IL-22R1) and IL-10R2, and the intracellular signaling pathways mediated by IL-22 receptor are not completely known. Here we investigate the effect of Src homology-2 containing protein-tyrosine phosphatase (Shp2) on IL-22 signaling pathway using SW480 colon cancer cells as a model. The results show that IL-22 induces IL-22R1 phosphorylation, and Shp2 is recruited to the tyrosine phosphorylated IL-22R1 upon IL-22 stimulation. Furthermore, Tyr251 and Tyr301 of IL-22R1 are required for Shp2 binding to the IL-22R1. Shp2 binding to IL-22R1 and Shp2 protein tyrosine phosphatase activity are required for activation of MAP kinases and signal transducer and activator of transcription (STAT3) phosphorylation by IL-22. These results reveal a critical role of Shp2 in IL-22 mediated signal transduction pathways.
Related JoVE Video
[Mechanisms of in vitro anti-tumor effects of a Newcastle disease virus].
Wei Sheng Wu Xue Bao
PUBLISHED: 07-23-2009
Show Abstract
Hide Abstract
To obtain Newcastle disease virus (NDV) strains with high in vitro anti-tumor effect for construction of recombinant NDV for clinical therapy.
Related JoVE Video
Interleukin-22 protects rat PC12 pheochromocytoma cells from serum deprivation-induced cell death.
Mol. Cell. Biochem.
Show Abstract
Hide Abstract
Interleukin-22 (IL-22), an IL-10 family cytokine, mediates the crosstalk between leukocytes and epithelial cells. Previous studies reported that IL-22 expresses in mouse brain, and the rat PC12 cells are responsive to IL-22 stimulation. However, the biological roles of IL-22 in neuronal cells remain largely unknown. We show here that IL-22 activates Stat3, p38 mitogen-activated protein kinases (MAPK), and Akt pathways and inhibits Erk/MAPK pathway in naïve PC12 cells. We further demonstrate that IL-22 protects naïve PC12 cells from serum starvation-induced cell death via the Jak1/Stat3 and Akt pathways. We also show that IL-22 has no effects on naïve PC12 cell proliferation and cannot protect naïve PC12 cells from 1-methyl-4-phenylpyridinium (MPP(+))-induced cytotoxicity. However, IL-22 exerts a dose-dependent protective effect on MPP(+)-induced neurodegeneration in nerve growth factor-differentiated PC12 cells. Overall, our data suggest that IL-22 might play a role in neurological processes. To our knowledge, this is the first report showing that IL-22 confers a neuroprotective function, which may provide a new therapeutic option for treatment of neurodegenerative diseases.
Related JoVE Video
Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation.
Mol. Cell. Biochem.
Show Abstract
Hide Abstract
Interleukin-22 (IL-22) is one of the key mediators of keratinocyte alterations in psoriasis. IL-22 inhibits keratinocyte differentiation and induces the migration of human keratinocytes. Grb2-associated binder 1 (Gab1) has been shown to mediate epidermal growth factor-induced epidermal growth and differentiation via interaction with the Src homology-2-containing protein-tyrosine phosphatase (Shp2). In this investigation, we explore the role of Gab1 and Gab2 in IL-22-mediated keratinocyte activities. We show that both Gab1 and Gab2 were tyrosine phosphorylated in IL-22-stimulated HaCaT cells and human primary epidermal keratinocytes and contributed to the activation of Extracellular signal regulated kinase 1/2 (Erk1/2) through interaction with Shp2. We further demonstrate that HaCaT cells infected with adenoviruses expressing Shp2-binding-defective Gab1/2 mutants exhibited decreased cell proliferation and migration, as well as increased differentiation. Moreover, similar results were observed in HaCaT cells infected with adenovirus-based small interfering RNAs targeting Gab1 and/or Gab2. Altogether, these data underscore the critical roles of Gab1 and Gab2 in IL-22-mediated HaCaT cell proliferation, migration, and differentiation.
Related JoVE Video
Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication.
Arch. Virol.
Show Abstract
Hide Abstract
Newcastle disease virus (NDV) can replicate in tumor cells and induce apoptosis in late stages of infection. However, the interaction between NDV and cells in early stages of infection is not well understood. Here, we report that, shortly after infection, NDV triggers the formation of autophagosomes in U251 glioma cells, as demonstrated by an increased number of double-membrane vesicles, GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) a dot formations, and elevated production of LC3II. Moreover, modulation of NDV-induced autophagy by rapamycin, chloroquine or small interfering RNAs targeting the genes critical for autophagosome formation (Atg5 and Beclin-1) affects virus production, indicating that autophagy may be utilized by NDV to facilitate its own production. Furthermore, the class III phosphatidylinositol 3-kinase (PI3K)/Beclin-1 pathway plays a role in NDV-induced autophagy and virus production. Collectively, our data provide a unique example of a paramyxovirus that uses autophagy to enhance its production.
Related JoVE Video
Tyrosines 303/343/353 within the Sprouty-related domain of Spred2 are essential for its interaction with p85 and inhibitory effect on Ras/ERK activation.
Int. J. Biochem. Cell Biol.
Show Abstract
Hide Abstract
Sprouty-related EVH1 domain (Spred) proteins modulate growth factor receptor signaling by inhibiting the Ras/ERK pathway. In particular, the Sprouty-related domain (SPR) of Spred2 is essential for the Spred2-mediated inhibitory effect, but the molecular mechanism is largely unknown. We show here that the p85 subunit of phosphatidylinositol 3-kinase (PI3K) is a new binding partner of Spred2 via interaction with the SPR domain. Mutation of three tyrosines 303/343/353 within the SPR domain not only abolish EGF-induced p85 binding to Spred2 but also attenuate the inhibitory effect on Ras/ERK activation by Spred2. This results in increased Hela cell proliferation and neurite outgrowth in PC12 cells. We further demonstrate that p85 binding to Spred2 enhances the Spred2-mediated inhibitory effect via increased Ras binding to Spred2 and decreased Spred2 ubiquitination. We also show that Spred2 constitutively associates with epidermal growth factor receptor (EGFR) via its SPR domain and dissociates from EGFR upon EGF stimulation. Moreover, mutation of tyrosines 303/343/353 together enhances Spred2 binding to EGFR. Taken together, these results suggest critical roles of the three tyrosines 303/343/353 within the SPR domain in regulating Spred2 signaling and provide a mechanism for the SPR domain of Spred2 to mediate the inhibitory effect on the Ras/ERK pathway.
Related JoVE Video
Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production.
Arch. Virol.
Show Abstract
Hide Abstract
Avian reovirus (ARV) is an important cause of disease in poultry. Although ARV is known to induce apoptosis in infected cells, the interaction between ARV and its target cells requires further elucidation. In this report, we show that the ARV isolate strain GX/2010/1 induces autophagy in both Vero and primary chicken embryonic fibroblast (CEF) cells based on the appearance of an increased number of double-membrane vesicles, the presence of GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) dot formation, and the elevated production of LC3II. We further demonstrate that the class I phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway contributes to autophagic induction by ARV infection. Moreover, treatment of ARV-infected cells with the autophagy inducer rapamycin increased viral yields, while inhibition of the autophagosomal pathway using chloroquine led to a decrease in virus production. Altogether, our studies strongly suggest that autophagy may play a critical role in determining viral yield during ARV infection.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.