JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A comparison between plant photosystem I and photosystem II architecture and functioning.
Curr. Protein Pept. Sci.
PUBLISHED: 03-16-2014
Show Abstract
Hide Abstract
Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as obtained by structural, biochemical and spectroscopic investigations.
Related JoVE Video
Wavelength dependence of the fluorescence emission under conditions of open and closed Photosystem II reaction centres in the green alga Chlorella sorokiniana.
Biochim. Biophys. Acta
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
The fluorescence emission characteristics of the photosynthetic apparatus under conditions of open (F0) and closed (FM) Photosystem II reaction centres have been investigated under steady state conditions and by monitoring the decay lifetimes of the excited state, in vivo, in the green alga Chlorella sorokiniana. The results indicate a marked wavelength dependence of the ratio of the variable fluorescence, FV=FM-F0, over FM, a parameter that is often employed to estimate the maximal quantum efficiency of Photosystem II. The maximal value of the FV/FM ratio is observed between 660 and 680nm and the minimal in the 690-730nm region. It is possible to attribute the spectral variation of FV/FM principally to the contribution of Photosystem I fluorescence emission at room temperature. Moreover, the analysis of the excited state lifetime at F0 and FM indicates only a small wavelength dependence of Photosystem II trapping efficiency in vivo.
Related JoVE Video
Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center.
Photosyn. Res.
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.
Related JoVE Video
Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI-LHCI).
Biochim. Biophys. Acta
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
In the present paper the marked changes in photochemical trapping time over the absorption/fluorescence band of isolated PSI-LHCI are studied by means of time resolved fluorescence decay measurements. For emission at 680-690nm the effective trapping time is close to 17-18ps, and represents the effective trapping time from the bulk antenna. At wavelengths above 700nm the effective trapping time increases in a monotonic way, over the entire emission band, to attain values in the range of 70-80ps near 760nm. This is argued to be caused by "uphill" energy transfer from the low energy states to the core antenna and reaction centre. These data, together with the steady state emission spectrum, permit calculation of the overall trapping time for maize PSI-LHCI, which is estimated to be approximately 40ps. The wavelength dependence of the trapping time indicates, that in PSI-LHCI there exists at least one red form which emits at lower energies than the 735nm state. These data indicate that Photosystem I is about 55% diffusion limited.
Related JoVE Video
Kinetics of phyllosemiquinone oxidation in the Photosystem I reaction centre of Acaryochloris marina.
Biochim. Biophys. Acta
PUBLISHED: 08-08-2011
Show Abstract
Hide Abstract
Light-induced electron transfer reactions in the chlorophyll a/d-binding Photosystem I reaction centre of Acaryochloris marina were investigated in whole cells by pump-probe optical spectroscopy with a temporal resolution of ~5ns at room temperature. It is shown that phyllosemiquinone, the secondary electron transfer acceptor anion, is oxidised with bi-phasic kinetics characterised by lifetimes of 88±6ns and 345±10ns. These lifetimes, particularly the former, are significantly slower than those reported for chlorophyll a-binding Photosystem I, which typically range in the 5-30ns and 200-300ns intervals. The possible mechanism of electron transfer reactions in the chlorophyll a/d-binding Photosystem I and the slower oxidation kinetics of the secondary acceptors are discussed.
Related JoVE Video
Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.
PLoS ONE
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK) is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II). Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32)P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.
Related JoVE Video
Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization.
Photosyn. Res.
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Chlorophyll d (Chl d) is the major pigment in both photosystems (PSI and II) of the cyanobacterium Acaryochloris marina, whose pigment composition represents an interesting alternative in oxygenic photosynthesis. While abundant information is available relative to photophysical properties of Chl a , the understanding of Chl d photophysics is still incomplete. In this paper, we present for the first time a characterization of Chl d phosphorescence, which accompanies radiative deactivation of the photoexcited triplet state of this pigment. Reliable information was obtained on the energy and lifetime of the Chl d triplet state in frozen solutions at 77 K using diethyl ether and aqueous dispersions of Triton X100 as solvents. It is shown that triplet Chl d is effectively populated upon photoexcitation of pigment molecules and efficiently sensitizes singlet oxygen phosphorescence in aerobic solutions under ambient conditions. The data obtained are compared with the previous results of the phosphorescence studies of Chl a and Pheo a, and their possible biological implications are discussed.
Related JoVE Video
Reconstituted CP29: multicomponent fluorescence decay from an optically homogeneous sample.
Photosyn. Res.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
The multiexponential fluorescence decay of the CP29 complex in which the apoprotein and pigments were reconstituted in vitro was examined. Of the three decay components observed only the two dominant ones, with about 3 and 5 ns lifetimes, were studied. The main question addressed was whether the multicomponent decay was associated with sample optical heterogeneity. To this end, we examined the optical absorption and fluorescence of the CP29 sample by means of two different and independent experimental strategies. This approach was used as the wavelength positions of the absorption/fluorescence spectral forms has recently been shown to be a sensitive indicator of the binding site-induced porphyrin ring deformation (Zucchelli et al. Biophys J 93:2240-2254, 2007) and hence of apoprotein conformational changes. The data indicate that this CP29 sample is optically homogeneous. It is hypothesised that the different lifetimes are explained in terms of multiple detergent/CP29 interactions leading to different quenching states, a suggestion that allows for optical homogeneity.
Related JoVE Video
Alteration of the H-bond to the A(1A) phylloquinone in Photosystem I: influence on the kinetics and energetics of electron transfer.
J Phys Chem B
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
In Photosystem I, the backbone nitrogen of Leu722(PsaA) forms a hydro-gen bond with the C(4) carbonyl oxygen of phylloquinone in the A(1A) site. A previous low-temperature EPR study indicated that substitution of Leu722(PsaA) with a bulky Trp residue results in a weakened H-bond. Here, we employ room temperature, time-resolved optical spectroscopy and variable temperature, transient EPR spectroscopy to probe the effect of the altered H-bond on the energetics and kinetics of electron transfer. Relative to the wild type, we find that the rate of electron transfer from A(1A)(-) to F(X) in the L722W(PsaA) variant is faster by a factor of 3. This change is attributed to a lowered midpoint potential of A(1A)/A(1A)(-), resulting in a larger Gibbs free energy change between A(1A)/A(1A)(-) and F(X)/F(X)(-). An activation energy of 180±10 meV is determined for the A(1A)(-)-to-F(X) forward electron transfer step in the L722W(PsaA) variant compared with 220±10 meV in the wild type. The Arrhenius plot shows a break at ?200 K, below which the rate becomes nearly independent of temperature. This behavior is described using a quantum mechanical treatment that takes the zero-point energy into account as well as an alternative model that invokes a dynamical transition in the protein at ?200 K.
Related JoVE Video
Directionality of electron-transfer reactions in photosystem I of prokaryotes: universality of the bidirectional electron-transfer model.
J Phys Chem B
PUBLISHED: 10-26-2010
Show Abstract
Hide Abstract
The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wild-type cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors F(A) and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 ± 0.01 Å for [P(700)(+)A(1A)(-)] and 24.25 ± 0.01 Å for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by ~60° with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model that explains qualitatively the heterogeneity of ET reactions at cryogenic temperatures is discussed.
Related JoVE Video
Femtosecond to microsecond photochemistry of a [FeFe]hydrogenase enzyme model compound.
J Phys Chem B
PUBLISHED: 10-22-2010
Show Abstract
Hide Abstract
The photochemistry and dynamics of a model compound of the active site of the [FeFe]hydrogenase enzyme system have been studied on a wide range of time scales using a unique combination of femtosecond time-resolved infrared spectroscopy, nanosecond time-resolved infrared spectroscopy, and steady-state UV-FTIR methods. Using three different solvents, heptane, acetonitrile, and cyanoheptane, we have observed the rapid formation of solvent adduct species from the first solvation shell of the solute following photolysis of a carbonyl ligand and global fitting techniques have been employed to provide new insights into the ultrafast dynamics of this process. In addition, the use of solvent mixtures has enabled the observation of competitive ligand substitution processes at the newly created coordination site on time scales of a few nanoseconds, shedding new light on the chemical behavior of these enzyme models.
Related JoVE Video
Determination of the photolysis products of [FeFe]hydrogenase enzyme model systems using ultrafast multidimensional infrared spectroscopy.
Inorg Chem
PUBLISHED: 09-18-2010
Show Abstract
Hide Abstract
Ultrafast transient 2D-IR (T-2D-IR) spectroscopy has been used to study the photolysis products of the [FeFe]hydrogenase enzyme model compound (?-propanedithiolate)Fe(2)(CO)(6) in heptane solution following irradiation at ultraviolet wavelengths. Observation of coupling patterns between the vibrational modes of the photoproduct species formed alongside examination of the appearance time scales of these signals has uniquely enabled assignment of the photoproduct spectrum to a single pentacarbonyl species. Comparison of the vibrational relaxation rate of the photoproduct with that of the parent is consistent with the formation of a solvent adduct at the vacant coordination site, while anisotropy data in conjunction with density functional theory simulations indicates substitution in an axial rather than equatorial position. No firm evidence of additional short-lived intermediates is seen, indicating that the subsequent chemistry of these species is likely to be strongly defined by the nature of the first solvation shell.
Related JoVE Video
Bidirectional electron transfer in the reaction centre of photosystem I.
J Integr Plant Biol
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
In the past decade light-induced electron transfer reactions in photosystem I have been the subject of intensive investigations that have led to the elucidation of some unique characteristics, the most striking of which is the existence of two parallel, functional, redox active cofactors chains. This process is generally referred to as bidirectional electron transfer. Here we present a review of the principal evidences that have led to the uncovering of bidirectionality in the reaction centre of photosystem I. A special focus is dedicated to the results obtained combining time-resolved spectroscopic techniques, either difference absorption or electron paramagnetic resonance, with molecular genetics, which allows, through modification of the binding of redox active cofactors with the reaction centre subunits, an effect on their physical-chemical properties.
Related JoVE Video
Interquinone electron transfer in photosystem I as evidenced by altering the hydrogen bond strength to the phylloquinone(s).
J Phys Chem B
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
The kinetics of electron transfer from phyllosemiquinone (PhQ(*-)) to the iron sulfur cluster F(X) in Photosystem I (PS I) are described by lifetimes of approximately 20 and approximately 250 ns. These two rates are attributed to reactions involving the quinones bound primarily by the PsaB (PhQ(B)) and PsaA (PhQ(A)) subunits, respectively. The factors leading to a approximately 10-fold difference between the observed lifetimes are not yet clear. The peptide nitrogen of conserved residues PsaA-Leu722 and PsaB-Leu706 is involved in asymmetric hydrogen-bonding to PhQ(A) and PhQ(B), respectively. Upon mutation of these residues in PS I of the green alga, Chlamydomonas reinhardtii , we observe an acceleration of the oxidation kinetics of the PhQ(*-) interacting with the targeted residue: from approximately 255 to approximately 180 ns in PsaA-L722Y/T and from approximately 24 to approximately 10 ns in PsaB-L706Y. The acceleration of the kinetics in the mutants is consistent with a perturbation of the H-bond, destabilizing the PhQ(*-) state, and increasing the driving force of its oxidation. Surprisingly, the relative amplitudes of the phases reflecting PhQ(A)(*-) and PhQ(B)(*-) oxidation were also affected by these mutations: the apparent PhQ(A)(*-)/PhQ(B)(*-) ratio is shifted from 0.65:0.35 in wild-type reaction centers to 0.5:0.5 in PsaA-L722Y/T and to 0.8:0.2 in PsaB-L706Y. The most consistent account for all these observations involves considering reversibility of oxidation of PhQ(A)(*-) and PhQ(B)(*-) by F(X), and asymmetry in the driving forces for these electron transfer reactions, which in turn leads to F(x)-mediated interquinone electron transfer.
Related JoVE Video
Biocatalytic induction of supramolecular order.
Nat Chem
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.
Related JoVE Video
Temperature dependence of the reduction of P(700)(+) by tightly bound plastocyanin in vivo.
Biochemistry
PUBLISHED: 09-26-2009
Show Abstract
Hide Abstract
The kinetics of reduction of P(700)(+), the stably oxidized electron donor of Photosystem I, by plastocyanin (PC) has been investigated by pump-probe optical spectroscopy in living cells of the green alga Chlamydomonas reinhardtii, between 277 and 318 K. The reduction of P(700)(+) in vivo is described by two kinetic components with lifetimes of 6 +/- 0.5 and 56 +/- 1 micros at room temperature. The rapid reduction phase, which is attributed to reduction of P(700)(+) by prebound PC, is thermally activated with an apparent activation barrier of 105-115 meV. The analysis of the in vivo reaction is consistent with (i) reduced PC and PS I forming a relatively tight binary complex that does not undergo kinetically limiting conformational reconfiguration and (ii) the activation barrier being determined principally by enthalpic contributions to the free energy change. Under the approximation that entropic contributions to the free energy change associated with this electron transfer reaction are negligible, a lower boundary value of the reorganization energy is estimated to be 0.54-0.63 eV, which is on the lower range of the distribution for intraprotein electron transfer reactions. This low activation barrier is discussed in terms of the optimization of primary donor reduction.
Related JoVE Video
Comparison of the thermodynamic landscapes of unfolding and formation of the energy dissipative state in the isolated light harvesting complex II.
Biophys. J.
PUBLISHED: 03-28-2009
Show Abstract
Hide Abstract
In biochemistry and cell biology, understanding the molecular mechanisms by which physiological processes are regulated is regarded as an ultimate goal. In higher plants, one of the most widely investigated regulatory processes occurs in the light harvesting complexes (LHCII) of the chloroplast thylakoid membranes. Under limiting photon flux densities, LHCII harvests sunlight with high efficiency. When the intensity of incident radiation reaches levels close to the saturation of the photosynthesis, the efficiency of light harvesting is decreased by a process referred to as nonphotochemical quenching (NPQ), which enhances the singlet-excited state deactivation via nonradiative dissipative processes. Conformational rearrangements in LHCII are known to be crucial in promoting and controlling NPQ in vitro and in vivo. In this article, we address the thermodynamic nature of the conformational rearrangements promoting and controlling NPQ in isolated LHCII. A combined, linear reaction scheme in which the folded, quenched state represents a stable intermediate on the unfolding pathway was employed to describe the temperature dependence of the spectroscopic signatures associated with the chlorophyll fluorescence quenching and the loss of secondary structure motifs in LHCII. The thermodynamic model requires considering the temperature dependence of Gibbs free energy difference between the quenched and the unquenched states, as well as the unfolded and quenched states, of LHCII. Even though the same reaction scheme is adequate to describe the quenching and the unfolding processes in LHCII monomers and trimers, their thermodynamic characteristics were found to be markedly different. The results of the thermodynamic analysis shed light on the physiological importance of the trimeric state of LHCII in stabilizing the efficient light harvesting mode as well as preventing the quenched conformation of the protein from unfolding. Moreover, the transition to the quenched conformation in trimers reveals a larger degree of cooperativity than in monomers, explained by a small characteristic entropy (DeltaH(q) = 85 +/- 3 kJ mol(-1) compared to 125 +/- 5 kJ mol(-1) in monomers), which enables the fine-tuning of nonphotochemical quenching in vivo.
Related JoVE Video
The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii.
Plant Physiol.
Show Abstract
Hide Abstract
We have investigated the importance of carotenoids on the accumulation and function of the photosynthetic apparatus using a mutant of the green alga Chlamydomonas reinhardtii lacking carotenoids. The FN68 mutant is deficient in phytoene synthase, the first enzyme of the carotenoid biosynthesis pathway, and therefore is unable to synthesize any carotenes and xanthophylls. We find that FN68 is unable to accumulate the light-harvesting complexes associated with both photosystems as well as the RC subunits of photosystem II. The accumulation of the cytochrome b?f complex is also strongly reduced to a level approximately 10% that of the wild type. However, the residual fraction of assembled cytochrome b?f complexes exhibits single-turnover electron transfer kinetics comparable to those observed in the wild-type strain. Surprisingly, photosystem I is assembled to significant levels in the absence of carotenoids in FN68 and possesses functional properties that are very similar to those of the wild-type complex.
Related JoVE Video
Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II.
Plant Cell
Show Abstract
Hide Abstract
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.
Related JoVE Video
The Q(y) absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations.
Biochemistry
Show Abstract
Hide Abstract
The absorption spectrum of the main antenna complex of photosystem II, LHCII, has been modeled using, as starting points, the chlorophyll (chl) atomic coordinates as obtained by the LHCII crystal analysis [Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004) Nature 428, 287-292] of three different trimers. The chl site Q(y) transition energies have been obtained in terms of the chl macrocycle deformations influencing the energy level of the chl frontier orbitals. Using these chl site transition energy values and the entire set of interaction energies, calculated in the ideal dipole approximation, the complete Hamiltonians for the three LHCII trimers have been written and the full set of 42 eigenstates of each LHCII trimer have been calculated. With the 42 transition energies and transition dipole strengths, either unperturbed or associated to the eigenstates, the LHCII Q(y) absorption spectrum has been calculated using a chl absorption band shape. These calculations have been performed both in vacuo and in the presence of a medium. Despite the number of approximations, a good correlation with the measured absorption spectrum of a LHCII preparation is obtained. This analysis shows that, although a substantial C3 symmetry of the LHCII trimer in terms of both chl-chl distances and interaction energies is present, a marked variation among monomer subsets of site transition energies is estimated. This leads to a C3 symmetry breaking in the unperturbed chl site transition energies set and, consequently, in the trimer eigenstates. It is also concluded that interactions among chlorophylls do not significantly modify the light absorption role of LHCII in plant leaves.
Related JoVE Video
Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temp
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
Crystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain. Results are presented first for the deuterated site-directed mutant PsaA-M684H in which electron transfer beyond the primary electron acceptor A0A on the PsaA branch of electron transfer is impaired. Analysis of the quantum oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the geometry of the B-side radical pair. The orientation of the g tensor of P700(+) in an external reference system is adapted from a time-resolved multifrequency EPR study of deuterated and 15N-substituted cyanobacteria (Link, G.; Berthold, T.; Bechtold, M.; Weidner, J.-U.; Ohmes, E.; Tang, J.; Poluektov, O.; Utschig, L.; Schlesselman, S. L.; Thurnauer, M. C.; Kothe, G. J. Am. Chem. Soc. 2001, 123, 4211-4222). Thus, we obtain the three-dimensional structure of the B-side radical pair following photoexcitation of PS I in its native membrane. The new structure describes the position and orientation of the reduced B-side quinone A1B(-) on a nanosecond time scale after light-induced charge separation. Furthermore, we present results for deuterated wild-type cells of C. reinhardtii demonstrating that both radical pairs P700(+)A1A(-) and P700(+)A1B(-) participate in the electron transfer process according to a mole ratio of 0.71/0.29 in favor of P700(+)A1A(-). A detailed comparison reveals different orientations of A1A(-) and A1B(-) in their respective binding sites such that formation of a strong hydrogen bond from A1(-) to the protein backbone is possible only in the case of A1A(-). We suggest that this is relevant to the rates of forward electron transfer from A1A(-) or A1B(-) to the iron-sulfur center F(X), which differ by a factor of 10. Thus, the present study sheds new light on the orientation of the phylloquinone acceptors in their binding pockets in PS I and the effect this has on function.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.