JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock.
Mol Metab
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle.
Related JoVE Video
Mechanisms modulating skeletal muscle phenotype.
Compr Physiol
PUBLISHED: 11-23-2013
Show Abstract
Hide Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response. © 2013 American Physiological Society. Compr Physiol 3:1645-1687, 2013.
Related JoVE Video
Muscle type and fiber type specificity in muscle wasting.
Int. J. Biochem. Cell Biol.
PUBLISHED: 03-25-2013
Show Abstract
Hide Abstract
Muscle wasting occurs in a variety of conditions, including both genetic diseases, such as muscular dystrophies, and acquired disorders, ranging from muscle disuse to cancer cachexia, from heart failure to aging sarcopenia. In most of these conditions, the loss of muscle tissue is not homogeneous, but involves specific muscle groups, for example Duchenne muscular dystrophy affects most body muscles but spares extraocular muscles, and other dystrophies affect selectively proximal or distal limb muscles. In addition, muscle atrophy can affect specific fiber types, involving predominantly slow type 1 or fast type 2 muscle fibers, and is frequently accompanied by a slow-to-fast or fast-to-slow fiber type shift. For example, muscle disuse, such as spinal cord injury, causes type 1 fiber atrophy with a slow-to-fast fiber type shift, whereas cancer cachexia leads to preferential atrophy of type 2 fibers with a fast-to-slow fiber type shift. The identification of the signaling pathways responsible for the differential response of muscles types and fiber types can lead to a better understanding of the pathogenesis of muscle wasting and to the design of therapeutic interventions appropriate for the specific disorders. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Related JoVE Video
Mechanisms regulating skeletal muscle growth and atrophy.
FEBS J.
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Skeletal muscle mass increases during postnatal development through a process of hypertrophy, i.e. enlargement of individual muscle fibers, and a similar process may be induced in adult skeletal muscle in response to contractile activity, such as strength exercise, and specific hormones, such as androgens and ?-adrenergic agonists. Muscle hypertrophy occurs when the overall rates of protein synthesis exceed the rates of protein degradation. Two major signaling pathways control protein synthesis, the IGF1-Akt-mTOR pathway, acting as a positive regulator, and the myostatin-Smad2/3 pathway, acting as a negative regulator, and additional pathways have recently been identified. Proliferation and fusion of satellite cells, leading to an increase in the number of myonuclei, may also contribute to muscle growth during early but not late stages of postnatal development and in some forms of muscle hypertrophy in the adult. Muscle atrophy occurs when protein degradation rates exceed protein synthesis, and may be induced in adult skeletal muscle in a variety of conditions, including starvation, denervation, cancer cachexia, heart failure and aging. Two major protein degradation pathways, the proteasomal and the autophagic-lysosomal pathways, are activated during muscle atrophy and variably contribute to the loss of muscle mass. These pathways involve a variety of atrophy-related genes or atrogenes, which are controlled by specific transcription factors, such as FoxO3, which is negatively regulated by Akt, and NF-?B, which is activated by inflammatory cytokines.
Related JoVE Video
Fiber types in mammalian skeletal muscles.
Physiol. Rev.
PUBLISHED: 10-21-2011
Show Abstract
Hide Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Related JoVE Video
Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy.
J. Biol. Chem.
PUBLISHED: 09-18-2011
Show Abstract
Hide Abstract
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.
Related JoVE Video
Tubular aggregates in skeletal muscle: just a special type of protein aggregates?
Neuromuscul. Disord.
PUBLISHED: 06-21-2011
Show Abstract
Hide Abstract
Tubular aggregates are inclusions, usually found in type II muscle fibers and in males, consisting of regular arrays of tubules derived from the sarcoplasmic reticulum. Tubular aggregates are associated with a wide variety of muscle disorders, including poorly defined "tubular aggregate myopathies" characterized by weakness and/or myalgia and/or cramps, and are also present in different mouse models, including normal aging muscles. The mechanism(s) responsible for inducing the formation of these structures have not been identified, because of the slow time course of their development in vivo, several months in mice. However, identical structures are formed in a few hours in rat muscles kept in vitro in hypoxic medium. Here I suggest that tubular aggregates result from reshaping of sarcoplasmic reticulum caused by misfolding and aggregation of membrane proteins and thus represent a special type of "protein aggregates" due to altered proteostasis.
Related JoVE Video
Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models.
Skelet Muscle
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
A highly conserved signaling pathway involving insulin-like growth factor 1 (IGF1), and a cascade of intracellular components that mediate its effects, plays a major role in the regulation of skeletal muscle growth. A central component in this cascade is the kinase Akt, also called protein kinase B (PKB), which controls both protein synthesis, via the kinases mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3? (GSK3?), and protein degradation, via the transcription factors of the FoxO family. In this paper, we review the composition and function of this pathway in skeletal muscle fibers, focusing on evidence obtained in vivo by transgenic and knockout models and by muscle transient transfection experiments. Although this pathway is essential for muscle growth during development and regeneration, its role in adult muscle response to mechanical load is less clear. A full understanding of the operation of this pathway could help to design molecularly targeted therapeutics aimed at preventing muscle wasting, which occurs in a variety of pathologic contexts and in the course of aging.
Related JoVE Video
Activated Met signalling in the developing mouse heart leads to cardiac disease.
PLoS ONE
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development.
Related JoVE Video
Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.
PLoS ONE
PUBLISHED: 01-01-2010
Show Abstract
Hide Abstract
Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (approximately 75%) and the high proliferative clones (HPC), present instead in minor amount (approximately 25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m)), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.
Related JoVE Video
Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles.
J. Physiol. (Lond.)
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
The mammalian genome contains three ancient sarcomeric myosin heavy chain (MYH) genes, MYH14/7b, MYH15 and MYH16, in addition to the two well characterized clusters of skeletal and cardiac MYHs. MYH16 is expressed in jaw muscles of carnivores; however the expression pattern of MYH14 and MYH15 is not known. MYH14 and MYH15 orthologues are present in frogs and birds, coding for chicken slow myosin 2 and ventricular MYH, respectively, whereas only MYH14 orthologues have been detected in fish. In all species the MYH14 gene contains a microRNA, miR-499. Here we report that in rat and mouse, MYH14 and miR-499 transcripts are detected in heart, slow muscles and extraocular (EO) muscles, whereas MYH15 transcripts are detected exclusively in EO muscles. However, MYH14 protein is detected only in a minor fibre population in EO muscles, corresponding to slow-tonic fibres, and in bag fibres of muscle spindles. MYH15 protein is present in most fibres of the orbital layer of EO muscles and in the extracapsular region of bag fibres. During development, MYH14 is expressed at low levels in skeletal muscles, heart and all EO muscle fibres but disappears from most fibres, except the slow-tonic fibres, after birth. In contrast, MYH15 is absent in embryonic and fetal muscles and is first detected after birth in the orbital layer of EO muscles. The identification of the expression pattern of MYH14 and MYH15 brings to completion the inventory of the MYH isoforms involved in sarcomeric architecture of skeletal muscles and provides an unambiguous molecular basis to study the contractile properties of slow-tonic fibres in mammals.
Related JoVE Video
Eccentric contractions lead to myofibrillar dysfunction in muscular dystrophy.
J. Appl. Physiol.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
It is commonly accepted that skeletal muscles from dystrophin-deficient mdx mice are more susceptible than those from wild-type mice to damage from eccentric contractions. However, the downstream mechanisms involved in this enhanced force drop remain controversial. We studied the reduction of contractile force induced by eccentric contractions elicited in vivo in the gastrocnemius muscle of wild-type mice and three distinct models of muscle dystrophy: mdx, alpha-sarcoglycan (Sgca)-null, and collagen 6A1 (Col6a1)-null mice. In mdx and Sgca-null mice, force decreased 35% compared with 14% in wild-type mice. Drop of force in Col6a1-null mice was comparable to that in wild-type mice. To identify the determinants of the force drop, we measured force generation in permeabilized fibers dissected from gastrocnemius muscle that had been exposed in vivo to eccentric contractions and from the contralateral unstimulated muscle. A force loss in skinned fibers after in vivo eccentric contractions was detectable in fibers from mdx and Sgca-null, but not wild-type and Col6a1-null, mice. The enhanced force reduction in mdx and Sgca-null mice was observed only when eccentric contractions were elicited in vivo, since eccentric contractions elicited in vitro had identical effects in wild-type and dystrophic skinned fibers. These results suggest that 1) the enhanced force loss is due to a myofibrillar impairment that is present in all fibers, and not to individual fiber degeneration, and 2) the mechanism causing the enhanced force reduction is active in vivo and is lost after fiber permeabilization.
Related JoVE Video
Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation.
FASEB J.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF-1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short-term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy ( approximately 50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single-skinned muscle fibers. No changes in fiber-type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt-dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hypertrophic growth myonuclear domain can increase without compromising muscle performance.
Related JoVE Video
NFAT isoforms control activity-dependent muscle fiber type specification.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-24-2009
Show Abstract
Hide Abstract
The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types. We analyzed the role of NFAT family members in vivo by transient transfection in skeletal muscle using a loss-of-function approach by RNAi. Our results show that, depending on the applied activity pattern, different combinations of NFAT family members translocate to the nucleus contributing to the transcription of fiber type specific genes. We provide evidence that the transcription of slow and fast myosin heavy chain (MyHC) genes uses different combinations of NFAT family members, ranging from MyHC-slow, which uses all 4 NFAT isoforms, to MyHC-2B, which only uses NFATc4. Our data contribute to the elucidation of the mechanisms whereby activity can modulate the phenotype and performance of skeletal muscle.
Related JoVE Video
Multiple signalling pathways redundantly control glucose transporter GLUT4 gene transcription in skeletal muscle.
J. Physiol. (Lond.)
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Increased glucose transporter GLUT4 expression in skeletal muscle is an important benefit of regular exercise, resulting in improved insulin sensitivity and glucose tolerance. The Ca(2+)-calmodulin-dependent kinase II (CaMKII), calcineurin and AMPK pathways have been implicated in GLUT4 gene regulation based on pharmacological evidence. Here, we have used a more specific genetic approach to establish the relative role of the three pathways in fast and slow muscles. Plasmids coding for protein inhibitors of CaMKII or calcineurin were co-transfected in vivo with a GLUT4 enhancer-reporter construct either in normal mice or in mice expressing a kinase dead (KD) AMPK mutant. GLUT4 reporter activity was not inhibited in the slow soleus muscle by blocking either CaMKII or calcineurin alone, but was inhibited by blocking both pathways. GLUT4 reporter activity was likewise unchanged in the soleus of KD-AMPK mice, but was significantly reduced by incapacitation of either CaMKII or calcineurin in these mice. On the other hand, in the fast tibialis anterior (TA) muscle, calcineurin appears to exert a prominent role in the control of GLUT4 reporter activity, independent of CaMKII and AMPK. The results point to a muscle type-specific and redundant regulation of GLUT4 enhancer based on the interplay of multiple signalling pathways, all of which are known to affect myocyte enhancing factor 2 (MEF2) transcriptional activity, a point of convergence of different pathways on muscle gene regulation.
Related JoVE Video
Autophagy is required to maintain muscle mass.
Cell Metab.
PUBLISHED: 03-29-2009
Show Abstract
Hide Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Related JoVE Video
Cardiac interstitial cells express GATA4 and control dedifferentiation and cell cycle re-entry of adult cardiomyocytes.
J. Mol. Cell. Cardiol.
PUBLISHED: 01-24-2009
Show Abstract
Hide Abstract
Interstitial cells of the adult rat heart were characterized with respect to i) expression of cardiac markers of commitment and differentiation, ii) myogenic potential in vitro and iii) ability to modulate cardiomyocyte differentiation state. We demonstrate for the first time that fibroblasts and a proportion of pericytes in the adult rat heart express the transcription factor GATA4. This appears to be a peculiar property of the heart. Fibroblasts that are also derived from the splanchnopleuric mesoderm, such as those of the gut, or fibroblasts of different embryological origin, such as those of skin and skeletal muscle, lack this property. Of note, a nestin+/GATA4+ putative stem cell population is also detected in the adult heart. GATA4+ cardiac interstitial cells do not display myogenic potential in vitro. However, cardiac fibroblasts, but not skin fibroblasts, stimulate dedifferentiation of adult cardiomyocytes and their re-entry into the cell cycle in vitro, as demonstrated by the high number of cardiomyocytes expressing Ki67, phosphorylated histone H3 (H3P) and incorporating 5-bromodeoxiuridine (BrdU) in the co-cultures. In conclusion, cardiac fibroblasts have peculiar expression of myogenic transcription factors, a property that may have an impact for reprogramming these cells to the myogenic differentiation. In addition, they are able to modulate the behavior of adult cardiomyocytes, a property that may be used to promote dedifferentiation and proliferation of cardiac cells in the damaged myocardium.
Related JoVE Video
Cardiac sympathetic neurons provide trophic signal to the heart via ?2-adrenoceptor-dependent regulation of proteolysis.
Cardiovasc. Res.
Show Abstract
Hide Abstract
Increased cardiac sympathetic neuron (SN) activity has been associated with pathologies such as heart failure and hypertrophy, suggesting that cardiac innervation regulates cardiomyocyte trophism. Whether continuous input from the SNs is required for the maintenance of the cardiomyocyte size has not been determined thus far.
Related JoVE Video
Guidelines for the use and interpretation of assays for monitoring autophagy.
Daniel J Klionsky, Fábio C Abdalla, Hagai Abeliovich, Robert T Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, Maria Agnello, Patrizia Agostinis, Julio A Aguirre-Ghiso, Hyung Jun Ahn, Ouardia Ait-Mohamed, Slimane Ait-Si-Ali, Takahiko Akematsu, Shizuo Akira, Hesham M Al-Younes, Munir A Al-Zeer, Matthew L Albert, Roger L Albin, Javier Alegre-Abarrategui, Maria Francesca Aleo, Mehrdad Alirezaei, Alexandru Almasan, Maylin Almonte-Becerril, Atsuo Amano, Ravi Amaravadi, Shoba Amarnath, Amal O Amer, Nathalie Andrieu-Abadie, Vellareddy Anantharam, David K Ann, Shailendra Anoopkumar-Dukie, Hiroshi Aoki, Nadezda Apostolova, Giuseppe Arancia, John P Aris, Katsuhiko Asanuma, Nana Y O Asare, Hisashi Ashida, Valerie Askanas, David S Askew, Patrick Auberger, Misuzu Baba, Steven K Backues, Eric H Baehrecke, Ben A Bahr, Xue-Yuan Bai, Yannick Bailly, Robert Baiocchi, Giulia Baldini, Walter Balduini, Andrea Ballabio, Bruce A Bamber, Edward T W Bampton, Gábor Bánhegyi, Clinton R Bartholomew, Diane C Bassham, Robert C Bast, Henri Batoko, Boon-Huat Bay, Isabelle Beau, Daniel M Béchet, Thomas J Begley, Christian Behl, Christian Behrends, Soumeya Bekri, Bryan Bellaire, Linda J Bendall, Luca Benetti, Laura Berliocchi, Henri Bernardi, Francesca Bernassola, Sébastien Besteiro, Ingrid Bhatia-Kiššová, Xiaoning Bi, Martine Biard-Piechaczyk, Janice S Blum, Lawrence H Boise, Paolo Bonaldo, David L Boone, Beat C Bornhauser, Karina R Bortoluci, Ioannis Bossis, Fréderic Bost, Jean-Pierre Bourquin, Patricia Boya, Michaël Boyer-Guittaut, Peter V Bozhkov, Nathan R Brady, Claudio Brancolini, Andreas Brech, Jay E Brenman, Ana Brennand, Emery H Bresnick, Patrick Brest, Dave Bridges, Molly L Bristol, Paul S Brookes, Eric J Brown, John H Brumell, Nicola Brunetti-Pierri, Ulf T Brunk, Dennis E Bulman, Scott J Bultman, Geert Bultynck, Lena F Burbulla, Wilfried Bursch, Jonathan P Butchar, Wanda Buzgariu, Sérgio P Bydlowski, Ken Cadwell, Monika Cahova, Dongsheng Cai, Jiyang Cai, Qian Cai, Bruno Calabretta, Javier Calvo-Garrido, Nadine Camougrand, Michelangelo Campanella, Jenny Campos-Salinas, Eleonora Candi, Lizhi Cao, Allan B Caplan, Simon R Carding, Sandra M Cardoso, Jennifer S Carew, Cathleen R Carlin, Virginie Carmignac, Leticia A M Carneiro, Serena Carra, Rosario A Caruso, Giorgio Casari, Caty Casas, Roberta Castino, Eduardo Cebollero, Francesco Cecconi, Jean Celli, Hassan Chaachouay, Han-Jung Chae, Chee-Yin Chai, David C Chan, Edmond Y Chan, Raymond Chuen-Chung Chang, Chi-Ming Che, Ching-Chow Chen, Guang-Chao Chen, Guo-Qiang Chen, Min Chen, Quan Chen, Steve S-L Chen, WenLi Chen, Xi Chen, Xiangmei Chen, Xiequn Chen, Ye-Guang Chen, Yingyu Chen, Yongqiang Chen, Yu-Jen Chen, Zhixiang Chen, Alan Cheng, Christopher H K Cheng, Yan Cheng, Heesun Cheong, Jae-Ho Cheong, Sara Cherry, Russ Chess-Williams, Zelda H Cheung, Eric Chevet, Hui-Ling Chiang, Roberto Chiarelli, Tomoki Chiba, Lih-Shen Chin, Shih-Hwa Chiou, Francis V Chisari, Chi Hin Cho, Dong-Hyung Cho, Augustine M K Choi, DooSeok Choi, Kyeong Sook Choi, Mary E Choi, Salem Chouaib, Divaker Choubey, Vinay Choubey, Charleen T Chu, Tsung-Hsien Chuang, Sheau-Huei Chueh, Taehoon Chun, Yong-Joon Chwae, Mee-Len Chye, Roberto Ciarcia, Maria R Ciriolo, Michael J Clague, Robert S B Clark, Peter G H Clarke, Robert Clarke, Patrice Codogno, Hilary A Coller, María I Colombo, Sergio Comincini, Maria Condello, Fabrizio Condorelli, Mark R Cookson, Graham H Coombs, Isabelle Coppens, Ramón Corbalán, Pascale Cossart, Paola Costelli, Safia Costes, Ana Coto-Montes, Eduardo Couve, Fraser P Coxon, James M Cregg, José L Crespo, Marianne J Cronjé, Ana Maria Cuervo, Joseph J Cullen, Mark J Czaja, Marcello D'Amelio, Arlette Darfeuille-Michaud, Lester M Davids, Faith E Davies, Massimo De Felici, John F de Groot, Cornelis A M de Haan, Luisa De Martino, Angelo De Milito, Vincenzo De Tata, Jayanta Debnath, Alexei Degterev, Benjamin Dehay, Lea M D Delbridge, Francesca Demarchi, Yi Zhen Deng, Jörn Dengjel, Paul Dent, Donna Denton, Vojo Deretic, Shyamal D Desai, Rodney J Devenish, Mario Di Gioacchino, Gilbert Di Paolo, Chiara Di Pietro, Guillermo Díaz-Araya, Inés Díaz-Laviada, Maria T Diaz-Meco, Javier Diaz-Nido, Ivan Dikic, Savithramma P Dinesh-Kumar, Wen-Xing Ding, Clark W Distelhorst, Abhinav Diwan, Mojgan Djavaheri-Mergny, Svetlana Dokudovskaya, Zheng Dong, Frank C Dorsey, Victor Dosenko, James J Dowling, Stephen Doxsey, Marlène Dreux, Mark E Drew, Qiuhong Duan, Michel A Duchosal, Karen Duff, Isabelle Dugail, Madeleine Durbeej, Michael Duszenko, Charles L Edelstein, Aimee L Edinger, Gustavo Egea, Ludwig Eichinger, N Tony Eissa, Suhendan Ekmekcioglu, Wafik S El-Deiry, Zvulun Elazar, Mohamed Elgendy, Lisa M Ellerby, Kai Er Eng, Anna-Mart Engelbrecht, Simone Engelender, Jekaterina Erenpreisa, Ricardo Escalante, Audrey Esclatine, Eeva-Liisa Eskelinen, Lucile Espert, Virginia Espina, Huizhou Fan, Jia Fan, Qi-Wen Fan, Zhen Fan, Shengyun Fang, Yongqi Fang, Manolis Fanto, Alessandro Fanzani, Thomas Farkas, Jean-Claude Farré, Mathias Faure, Marcus Fechheimer, Carl G Feng, Jian Feng, Qili Feng, Youji Feng, László Fésüs, Ralph Feuer, Maria E Figueiredo-Pereira, Gian Maria Fimia, Diane C Fingar, Steven Finkbeiner, Toren Finkel, Kim D Finley, Filomena Fiorito, Edward A Fisher, Paul B Fisher, Marc Flajolet, Maria L Florez-McClure, Salvatore Florio, Edward A Fon, Francesco Fornai, Franco Fortunato, Rati Fotedar, Daniel H Fowler, Howard S Fox, Rodrigo Franco, Lisa B Frankel, Marc Fransen, José M Fuentes, Juan Fueyo, Jun Fujii, Kozo Fujisaki, Eriko Fujita, Mitsunori Fukuda, Ruth H Furukawa, Matthias Gaestel, Philippe Gailly, Malgorzata Gajewska, Brigitte Galliot, Vincent Galy, Subramaniam Ganesh, Barry Ganetzky, Ian G Ganley, Fen-Biao Gao, George F Gao, Jinming Gao, Lorena Garcia, Guillermo Garcia-Manero, Mikel Garcia-Marcos, Marjan Garmyn, Andrei L Gartel, Evelina Gatti, Mathias Gautel, Thomas R Gawriluk, Matthew E Gegg, Jiefei Geng, Marc Germain, Jason E Gestwicki, David A Gewirtz, Saeid Ghavami, Pradipta Ghosh, Anna M Giammarioli, Alexandra N Giatromanolaki, Spencer B Gibson, Robert W Gilkerson, Michael L Ginger, Henry N Ginsberg, Jakub Golab, Michael S Goligorsky, Pierre Golstein, Candelaria Gomez-Manzano, Ebru Goncu, Céline Gongora, Claudio D Gonzalez, Ramon Gonzalez, Cristina González-Estévez, Rosa Ana González-Polo, Elena Gonzalez-Rey, Nikolai V Gorbunov, Sharon Gorski, Sandro Goruppi, Roberta A Gottlieb, Devrim Gozuacik, Giovanna Elvira Granato, Gary D Grant, Kim N Green, Aleš Gregorc, Frédéric Gros, Charles Grose, Thomas W Grunt, Philippe Gual, Jun-Lin Guan, Kun-Liang Guan, Sylvie M Guichard, Anna S Gukovskaya, Ilya Gukovsky, Jan Gunst, Asa B Gustafsson, Andrew J Halayko, Amber N Hale, Sandra K Halonen, Maho Hamasaki, Feng Han, Ting Han, Michael K Hancock, Malene Hansen, Hisashi Harada, Masaru Harada, Stefan E Hardt, J Wade Harper, Adrian L Harris, James Harris, Steven D Harris, Makoto Hashimoto, Jeffrey A Haspel, Shin-Ichiro Hayashi, Lori A Hazelhurst, Congcong He, You-Wen He, Marie-Josee Hebert, Kim A Heidenreich, Miep H Helfrich, Gudmundur V Helgason, Elizabeth P Henske, Brian Herman, Paul K Herman, Claudio Hetz, Sabine Hilfiker, Joseph A Hill, Lynne J Hocking, Paul Hofman, Thomas G Hofmann, Jörg Höhfeld, Tessa L Holyoake, Ming-Huang Hong, David A Hood, Gökhan S Hotamisligil, Ewout J Houwerzijl, Maria Høyer-Hansen, Bingren Hu, Chien-An A Hu, Hong-Ming Hu, Ya Hua, Canhua Huang, Ju Huang, Shengbing Huang, Wei-Pang Huang, Tobias B Huber, Won-Ki Huh, Tai-Ho Hung, Ted R Hupp, Gang Min Hur, James B Hurley, Sabah N A Hussain, Patrick J Hussey, Jung Jin Hwang, Seungmin Hwang, Atsuhiro Ichihara, Shirin Ilkhanizadeh, Ken Inoki, Takeshi Into, Valentina Iovane, Juan L Iovanna, Nancy Y Ip, Yoshitaka Isaka, Hiroyuki Ishida, Ciro Isidoro, Ken-Ichi Isobe, Akiko Iwasaki, Marta Izquierdo, Yotaro Izumi, Panu M Jaakkola, Marja Jäättelä, George R Jackson, William T Jackson, Bassam Janji, Marina Jendrach, Ju-Hong Jeon, Eui-Bae Jeung, Hong Jiang, Hongchi Jiang, Jean X Jiang, Ming Jiang, Qing Jiang, Xuejun Jiang, Alberto Jiménez, Meiyan Jin, Shengkan Jin, Cheol O Joe, Terje Johansen, Daniel E Johnson, Gail V W Johnson, Nicola L Jones, Bertrand Joseph, Suresh K Joseph, Annie M Joubert, Gábor Juhász, Lucienne Juillerat-Jeanneret, Chang Hwa Jung, Yong-Keun Jung, Kai Kaarniranta, Allen Kaasik, Tomohiro Kabuta, Motoni Kadowaki, Katarina Kågedal, Yoshiaki Kamada, Vitaliy O Kaminskyy, Harm H Kampinga, Hiromitsu Kanamori, Chanhee Kang, Khong Bee Kang, Kwang Il Kang, Rui Kang, Yoon-A Kang, Tomotake Kanki, Thirumala-Devi Kanneganti, Haruo Kanno, Anumantha G Kanthasamy, Arthi Kanthasamy, Vassiliki Karantza, Gur P Kaushal, Susmita Kaushik, Yoshinori Kawazoe, Po-Yuan Ke, John H Kehrl, Ameeta Kelekar, Claus Kerkhoff, David H Kessel, Hany Khalil, Jan A K W Kiel, Amy A Kiger, Akio Kihara, Deok Ryong Kim, Do-Hyung Kim, Dong-Hou Kim, Eun-Kyoung Kim, Hyung-Ryong Kim, Jae-Sung Kim, Jeong Hun Kim, Jin Cheon Kim, John K Kim, Peter K Kim, Seong Who Kim, Yong-Sun Kim, Yonghyun Kim, Adi Kimchi, Alec C Kimmelman, Jason S King, Timothy J Kinsella, Vladimir Kirkin, Lorrie A Kirshenbaum, Katsuhiko Kitamoto, Kaio Kitazato, Ludger Klein, Walter T Klimecki, Jochen Klucken, Erwin Knecht, Ben C B Ko, Jan C Koch, Hiroshi Koga, Jae-Young Koh, Young Ho Koh, Masato Koike, Masaaki Komatsu, Eiki Kominami, Hee Jeong Kong, Wei-jia Kong, Viktor I Korolchuk, Yaichiro Kotake, Michael I Koukourakis, Juan B Kouri Flores, Attila L Kovács, Claudine Kraft, Dimitri Krainc, Helmut Krämer, Carole Kretz-Remy, Anna M Krichevsky, Guido Kroemer, Rejko Krüger, Oleg Krut, Nicholas T Ktistakis, Chia-Yi Kuan, Róza Kucharczyk, Ashok Kumar, Raj Kumar, Sharad Kumar, Mondira Kundu, Hsing-Jien Kung, Tino Kurz, Ho Jeong Kwon, Albert R La Spada, Frank Lafont, Trond Lamark, Jacques Landry, Jon D Lane, Pierre Lapaquette, Jocelyn F Laporte, Lajos László, Sergio Lavandero, Josée N Lavoie, Robert Layfield, Pedro A Lazo, Weidong Le, Laurent Le Cam, Daniel J Ledbetter, Alvin J X Lee, Byung-Wan Lee, Gyun Min Lee, Jongdae Lee, Ju-Hyun Lee, Michael Lee, Myung-Shik Lee, Sug Hyung Lee, Christiaan Leeuwenburgh, Patrick Legembre, Renaud Legouis, Michael Lehmann, Huan-Yao Lei, Qun-Ying Lei, David A Leib, José Leiro, John J Lemasters, Antoinette Lemoine, Maciej S Lesniak, Dina Lev, Victor V Levenson, Beth Levine, Efrat Levy, Faqiang Li, Jun-lin Li, Lian Li, Sheng Li, Weijie Li, Xue-Jun Li, Yan-Bo Li, Yi-Ping Li, Chengyu Liang, Qiangrong Liang, Yung-Feng Liao, Pawel P Liberski, Andrew Lieberman, Hyunjung J Lim, Kah-Leong Lim, Kyu Lim, Chiou-Feng Lin, Fu-Cheng Lin, Jian Lin, Jiandie D Lin, Kui Lin, Wan-Wan Lin, Weei-Chin Lin, Yi-Ling Lin, Rafael Linden, Paul Lingor, Jennifer Lippincott-Schwartz, Michael P Lisanti, Paloma B Liton, Bo Liu, Chun-Feng Liu, Kaiyu Liu, Leyuan Liu, Qiong A Liu, Wei Liu, Young-Chau Liu, Yule Liu, Richard A Lockshin, Chun-Nam Lok, Sagar Lonial, Benjamin Loos, Gabriel Lopez-Berestein, Carlos Lopez-Otin, Laura Lossi, Michael T Lotze, Péter Low, Binfeng Lu, Bingwei Lu, Bo Lu, Zhen Lu, Fredéric Luciano, Nicholas W Lukacs, Anders H Lund, Melinda A Lynch-Day, Yong Ma, Fernando Macian, Jeff P MacKeigan, Kay F Macleod, Frank Madeo, Luigi Maiuri, Maria Chiara Maiuri, Davide Malagoli, May Christine V Malicdan, Walter Malorni, Na Man, Eva-Maria Mandelkow, Stéphen Manon, Irena Manov, Kai Mao, Xiang Mao, Zixu Mao, Philippe Marambaud, Daniela Marazziti, Yves L Marcel, Katie Marchbank, Piero Marchetti, Stefan J Marciniak, Mateus Marcondes, Mohsen Mardi, Gabriella Marfè, Guillermo Mariño, Maria Markaki, Mark R Marten, Seamus J Martin, Camille Martinand-Mari, Wim Martinet, Marta Martinez-Vicente, Matilde Masini, Paola Matarrese, Saburo Matsuo, Raffaele Matteoni, Andreas Mayer, Nathalie M Mazure, David J McConkey, Melanie J McConnell, Catherine McDermott, Christine McDonald, Gerald M McInerney, Sharon L McKenna, BethAnn McLaughlin, Pamela J McLean, Christopher R McMaster, G Angus McQuibban, Alfred J Meijer, Miriam H Meisler, Alicia Meléndez, Thomas J Melia, Gerry Melino, Maria A Mena, Javier A Menendez, Rubem F S Menna-Barreto, Manoj B Menon, Fiona M Menzies, Carol A Mercer, Adalberto Merighi, Diane E Merry, Stefania Meschini, Christian G Meyer, Thomas F Meyer, Chao-Yu Miao, Jun-Ying Miao, Paul A M Michels, Carine Michiels, Dalibor Mijaljica, Ana Milojkovic, Saverio Minucci, Clelia Miracco, Cindy K Miranti, Ioannis Mitroulis, Keisuke Miyazawa, Noboru Mizushima, Baharia Mograbi, Simin Mohseni, Xavier Molero, Bertrand Mollereau, Faustino Mollinedo, Takashi Momoi, Iryna Monastyrska, Martha M Monick, Mervyn J Monteiro, Michael N Moore, Rodrigo Mora, Kevin Moreau, Paula I Moreira, Yuji Moriyasu, Jorge Moscat, Serge Mostowy, Jeremy C Mottram, Tomasz Motyl, Charbel E-H Moussa, Sylke Müller, Sylviane Muller, Karl Münger, Christian Münz, Leon O Murphy, Maureen E Murphy, Antonio Musarò, Indira Mysorekar, Eiichiro Nagata, Kazuhiro Nagata, Aimable Nahimana, Usha Nair, Toshiyuki Nakagawa, Kiichi Nakahira, Hiroyasu Nakano, Hitoshi Nakatogawa, Meera Nanjundan, Naweed I Naqvi, Derek P Narendra, Masashi Narita, Miguel Navarro, Steffan T Nawrocki, Taras Y Nazarko, Andriy Nemchenko, Mihai G Netea, Thomas P Neufeld, Paul A Ney, Ioannis P Nezis, Huu Phuc Nguyen, Daotai Nie, Ichizo Nishino, Corey Nislow, Ralph A Nixon, Takeshi Noda, Angelika A Noegel, Anna Nogalska, Satoru Noguchi, Lucia Notterpek, Ivana Novak, Tomoyoshi Nozaki, Nobuyuki Nukina, Thorsten Nürnberger, Beat Nyfeler, Keisuke Obara, Terry D Oberley, Salvatore Oddo, Michinaga Ogawa, Toya Ohashi, Koji Okamoto, Nancy L Oleinick, F Javier Oliver, Laura J Olsen, Stefan Olsson, Onya Opota, Timothy F Osborne, Gary K Ostrander, Kinya Otsu, Jing-hsiung James Ou, Mireille Ouimet, Michael Overholtzer, Bulent Ozpolat, Paolo Paganetti, Ugo Pagnini, Nicolas Pallet, Glen E Palmer, Camilla Palumbo, Tianhong Pan, Theocharis Panaretakis, Udai Bhan Pandey, Zuzana Papackova, Issidora Papassideri, Irmgard Paris, Junsoo Park, Ohkmae K Park, Jan B Parys, Katherine R Parzych, Susann Patschan, Cam Patterson, Sophie Pattingre, John M Pawelek, Jianxin Peng, David H Perlmutter, Ida Perrotta, George Perry, Shazib Pervaiz, Matthias Peter, Godefridus J Peters, Morten Petersen, Goran Petrovski, James M Phang, Mauro Piacentini, Philippe Pierre, Valérie Pierrefite-Carle, Gérard Pierron, Ronit Pinkas-Kramarski, Antonio Piras, Natik Piri, Leonidas C Platanias, Stefanie Pöggeler, Marc Poirot, Angelo Poletti, Christian Poüs, Mercedes Pozuelo-Rubio, Mette Prætorius-Ibba, Anil Prasad, Mark Prescott, Muriel Priault, Nathalie Produit-Zengaffinen, Ann Progulske-Fox, Tassula Proikas-Cezanne, Serge Przedborski, Karin Przyklenk, Rosa Puertollano, Julien Puyal, Shu-Bing Qian, Liang Qin, Zheng-Hong Qin, Susan E Quaggin, Nina Raben, Hannah Rabinowich, Simon W Rabkin, Irfan Rahman, Abdelhaq Rami, Georg Ramm, Glenn Randall, Felix Randow, V Ashutosh Rao, Jeffrey C Rathmell, Brinda Ravikumar, Swapan K Ray, Bruce H Reed, John C Reed, Fulvio Reggiori, Anne Regnier-Vigouroux, Andreas S Reichert, John J Reiners, Russel J Reiter, Jun Ren, Jose L Revuelta, Christopher J Rhodes, Konstantinos Ritis, Elizete Rizzo, Jeffrey Robbins, Michel Roberge, Hernan Roca, Maria C Roccheri, Stéphane Rocchi, H Peter Rodemann, Santiago Rodríguez de Córdoba, Bärbel Rohrer, Igor B Roninson, Kirill Rosen, Magdalena M Rost-Roszkowska, Mustapha Rouis, Kasper M A Rouschop, Francesca Rovetta, Brian P Rubin, David C Rubinsztein, Klaus Ruckdeschel, Edmund B Rucker, Assaf Rudich, Emil Rudolf, Nelson Ruiz-Opazo, Rossella Russo, Tor Erik Rusten, Kevin M Ryan, Stefan W Ryter, David M Sabatini, Junichi Sadoshima, Tapas Saha, Tatsuya Saitoh, Hiroshi Sakagami, Yasuyoshi Sakai, Ghasem Hoseini Salekdeh, Paolo Salomoni, Paul M Salvaterra, Guy Salvesen, Rosa Salvioli, Anthony M J Sanchez, José A Sánchez-Alcázar, Ricardo Sánchez-Prieto, Marco Sandri, Uma Sankar, Poonam Sansanwal, Laura Santambrogio, Shweta Saran, Sovan Sarkar, Minnie Sarwal, Chihiro Sasakawa, Ausra Sasnauskiene, Miklós Sass, Ken Sato, Miyuki Sato, Anthony H V Schapira, Michael Scharl, Hermann M Schätzl, Wiep Scheper, Stefano Schiaffino, Claudio Schneider, Marion E Schneider, Regine Schneider-Stock, Patricia V Schoenlein, Daniel F Schorderet, Christoph Schüller, Gary K Schwartz, Luca Scorrano, Linda Sealy, Per O Seglen, Juan Segura-Aguilar, Iban Seiliez, Oleksandr Seleverstov, Christian Sell, Jong Bok Seo, Duska Separovic, Vijayasaradhi Setaluri, Takao Setoguchi, Carmine Settembre, John J Shacka, Mala Shanmugam, Irving M Shapiro, Eitan Shaulian, Reuben J Shaw, James H Shelhamer, Han-Ming Shen, Wei-Chiang Shen, Zu-Hang Sheng, Yang Shi, Kenichi Shibuya, Yoshihiro Shidoji, Jeng-Jer Shieh, Chwen-Ming Shih, Yohta Shimada, Shigeomi Shimizu, Takahiro Shintani, Orian S Shirihai, Gordon C Shore, Andriy A Sibirny, Stan B Sidhu, Beata Sikorska, Elaine C M Silva-Zacarin, Alison Simmons, Anna Katharina Simon, Hans-Uwe Simon, Cristiano Simone, Anne Simonsen, David A Sinclair, Rajat Singh, Debasish Sinha, Frank A Sinicrope, Agnieszka Sirko, Parco M Siu, Efthimios Sivridis, Vojtech Skop, Vladimir P Skulachev, Ruth S Slack, Soraya S Smaili, Duncan R Smith, María S Soengas, Thierry Soldati, Xueqin Song, Anil K Sood, Tuck Wah Soong, Federica Sotgia, Stephen A Spector, Claudia D Spies, Wolfdieter Springer, Srinivasa M Srinivasula, Leonidas Stefanis, Joan S Steffan, Ruediger Stendel, Harald Stenmark, Anastasis Stephanou, Stephan T Stern, Cinthya Sternberg, Björn Stork, Peter Stralfors, Carlos S Subauste, Xinbing Sui, David Sulzer, Jiaren Sun, Shi-Yong Sun, Zhi-Jun Sun, Joseph J Y Sung, Kuninori Suzuki, Toshihiko Suzuki, Michele S Swanson, Charles Swanton, Sean T Sweeney, Lai-King Sy, Gyorgy Szabadkai, Ira Tabas, Heinrich Taegtmeyer, Marco Tafani, Krisztina Takács-Vellai, Yoshitaka Takano, Kaoru Takegawa, Genzou Takemura, Fumihiko Takeshita, Nicholas J Talbot, Kevin S W Tan, Keiji Tanaka, Kozo Tanaka, Daolin Tang, Dingzhong Tang, Isei Tanida, Bakhos A Tannous, Nektarios Tavernarakis, Graham S Taylor, Gregory A Taylor, J Paul Taylor, Lance S Terada, Alexei Terman, Gianluca Tettamanti, Karin Thevissen, Craig B Thompson, Andrew Thorburn, Michael Thumm, Fengfeng Tian, Yuan Tian, Glauco Tocchini-Valentini, Aviva M Tolkovsky, Yasuhiko Tomino, Lars Tönges, Sharon A Tooze, Cathy Tournier, John Tower, Roberto Towns, Vladimir Trajkovic, Leonardo H Travassos, Ting-Fen Tsai, Mario P Tschan, Takeshi Tsubata, Allan Tsung, Boris Turk, Lorianne S Turner, Suresh C Tyagi, Yasuo Uchiyama, Takashi Ueno, Midori Umekawa, Rika Umemiya-Shirafuji, Vivek K Unni, Maria I Vaccaro, Enza Maria Valente, Greet Van den Berghe, Ida J van der Klei, Wouter van Doorn, Linda F van Dyk, Marjolein van Egmond, Leo A van Grunsven, Peter Vandenabeele, Wim P Vandenberghe, Ilse Vanhorebeek, Eva C Vaquero, Guillermo Velasco, Tibor Vellai, Jose Miguel Vicencio, Richard D Vierstra, Miquel Vila, Cécile Vindis, Giampietro Viola, Maria Teresa Viscomi, Olga V Voitsekhovskaja, Clarissa von Haefen, Marcela Votruba, Keiji Wada, Richard Wade-Martins, Cheryl L Walker, Craig M Walsh, Jochen Walter, Xiang-Bo Wan, Aimin Wang, Chenguang Wang, Dawei Wang, Fan Wang, Fen Wang, Guanghui Wang, Haichao Wang, Hong-Gang Wang, Horng-Dar Wang, Jin Wang, Ke Wang, Mei Wang, Richard C Wang, Xinglong Wang, Xuejun Wang, Ying-Jan Wang, Yipeng Wang, Zhen Wang, Zhigang Charles Wang, Zhinong Wang, Derick G Wansink, Diane M Ward, Hirotaka Watada, Sarah L Waters, Paul Webster, Lixin Wei, Conrad C Weihl, William A Weiss, Scott M Welford, Long-Ping Wen, Caroline A Whitehouse, J Lindsay Whitton, Alexander J Whitworth, Tom Wileman, John W Wiley, Simon Wilkinson, Dieter Willbold, Roger L Williams, Peter R Williamson, Bradly G Wouters, Chenghan Wu, Dao-Cheng Wu, William K K Wu, Andreas Wyttenbach, Ramnik J Xavier, Zhijun Xi, Pu Xia, Gengfu Xiao, Zhiping Xie, Zhonglin Xie, Da-zhi Xu, Jianzhen Xu, Liang Xu, Xiaolei Xu, Ai Yamamoto, Akitsugu Yamamoto, Shunhei Yamashina, Michiaki Yamashita, Xianghua Yan, Mitsuhiro Yanagida, Dun-Sheng Yang, Elizabeth Yang, Jin-Ming Yang, Shi Yu Yang, Wannian Yang, Wei Yuan Yang, Zhifen Yang, Meng-Chao Yao, Tso-Pang Yao, Behzad Yeganeh, Wei-Lien Yen, Jia-Jing Yin, Xiao-Ming Yin, Ook-Joon Yoo, Gyesoon Yoon, Seung-Yong Yoon, Tomohiro Yorimitsu, Yuko Yoshikawa, Tamotsu Yoshimori, Kohki Yoshimoto, Ho Jin You, Richard J Youle, Anas Younes, Li Yu, Long Yu, Seong-Woon Yu, Wai Haung Yu, Zhi-Min Yuan, Zhenyu Yue, Cheol-Heui Yun, Michisuke Yuzaki, Olga Zabirnyk, Elaine Silva-Zacarin, David Zacks, Eldad Zacksenhaus, Nadia Zaffaroni, Zahra Zakeri, Herbert J Zeh, Scott O Zeitlin, Hong Zhang, Hui-Ling Zhang, Jianhua Zhang, Jing-Pu Zhang, Lin Zhang, Long Zhang, Ming-Yong Zhang, Xu Dong Zhang, Mantong Zhao, Yi-Fang Zhao, Ying Zhao, Zhizhuang J Zhao, Xiaoxiang Zheng, Boris Zhivotovsky, Qing Zhong, Cong-Zhao Zhou, Changlian Zhu, Wei-Guo Zhu, Xiao-feng Zhu, Xiongwei Zhu, Yuangang Zhu, Teresa Zoladek, Wei-Xing Zong, Antonio Zorzano, Jürgen Zschocke, Brian Zuckerbraun.
Autophagy
Show Abstract
Hide Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Related JoVE Video
No evidence for inositol 1,4,5-trisphosphate-dependent Ca2+ release in isolated fibers of adult mouse skeletal muscle.
J. Gen. Physiol.
Show Abstract
Hide Abstract
The presence and role of functional inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) in adult skeletal muscle are controversial. The current consensus is that, in adult striated muscle, the relative amount of IP(3)Rs is too low and the kinetics of Ca(2+) release from IP(3)R is too slow compared with ryanodine receptors to contribute to the Ca(2+) transient during excitation-contraction coupling. However, it has been suggested that IP(3)-dependent Ca(2+) release may be involved in signaling cascades leading to regulation of muscle gene expression. We have reinvestigated IP(3)-dependent Ca(2+) release in isolated flexor digitorum brevis (FDB) muscle fibers from adult mice. Although Ca(2+) transients were readily induced in cultured C2C12 muscle cells by (a) UTP stimulation, (b) direct injection of IP(3), or (c) photolysis of membrane-permeant caged IP(3), no statistically significant change in calcium signal was detected in adult FDB fibers. We conclude that the IP(3)-IP(3)R system does not appear to affect global calcium levels in adult mouse skeletal muscle.
Related JoVE Video
Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.
PLoS ONE
Show Abstract
Hide Abstract
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.