JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver.
Toxicology
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-?-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-TAM) and (E)-?-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Ppar?), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen-induced liver carcinogenesis may be associated with its ability to induce genotoxic alterations only without affecting the cellular epigenome and an inability of tamoxifen to induce the development of NAFLD.
Related JoVE Video
Maternal metabolic perturbations elicited by high-fat diet promote Wnt-1-induced mammary tumor risk in adult female offspring via long-term effects on mammary and systemic phenotypes.
Carcinogenesis
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
Many adult chronic diseases are thought to be influenced during early life by maternal nutrition; however, the underlying mechanisms remain largely unknown. Obesity-related diseases may be due partly to high fat consumption. Herein, we evaluated mammary tumor risk in female mouse mammary tumor virus-Wnt-1 transgenic (Tg) offspring exposed to high-fat diet (HFD) or control diet (CD) (45% and 17% kcal from fat, respectively) during gestation and lactation, with CD provided to progeny at weaning. In Tg offspring, maternal HFD exposure increased mammary tumor incidence and decreased tumor latency without affecting tumor volume. Tumor risk was associated with higher tumor necrosis factor-? and insulin and altered oxidative stress biomarkers in sera and with early changes in mammary expression of genes linked to tumor promotion [interleukin 6 (Il6)] or inhibition [phosphatase and tensin homolog deleted on chromosome 10 (Pten), B-cell lymphoma 2 (Bcl2)]. Corresponding wild-type progeny exposed to maternal HFD displayed accelerated mammary development, higher mammary adiposity, increased insulin resistance and early changes in Pten, Bcl2 and Il6, than CD-exposed offspring. Dams-fed HFD showed higher serum glucose and oxidative stress biomarkers but comparable adiposity compared with CD-fed counterparts. In human breast cancer MCF-7 cells, sera from maternal HFD-exposed Tg offspring elicited changes in PTEN, BCL2 and IL6 gene expression, mimicking in vivo exposure; increased cell viability and mammosphere formation and induced measures [insulin receptor substrate-1 (IRS-1), IRS-2] of insulin sensitivity. Serum effects on IRS-1 were recapitulated by exogenous insulin and the PTEN-specific inhibitor SF1670. Hyperinsulinemia and PTEN loss-of-function may thus, couple maternal HFD exposure to enhanced insulin sensitivity via increased mammary IRS-1 expression in progeny, to promote breast cancer risk.
Related JoVE Video
Effect of methionine-deficient and methionine-supplemented diets on the hepatic one-carbon and lipid metabolism in mice.
Mol Nutr Food Res
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
A compromised nutritional status in methyl-group donors may provoke several molecular alterations triggering the development of nonalcoholic fatty liver disease (NAFLD) in humans and experimental animals. In this study, we investigated a role and the underlying molecular mechanisms of methionine metabolic pathway malfunctions in the pathogenesis of NAFLD.
Related JoVE Video
Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
There is increasing recognition that mitochondrial dysfunction is associated with the autism spectrum disorders. However, little attention has been given to the etiology of mitochondrial dysfunction or how mitochondrial abnormalities might interact with other physiological disturbances associated with autism, such as oxidative stress. In the current study we used respirometry to examine reserve capacity, a measure of the mitochondrial ability to respond to physiological stress, in lymphoblastoid cell lines (LCLs) derived from children with autistic disorder (AD) as well as age and gender-matched control LCLs. We demonstrate, for the first time, that LCLs derived from children with AD have an abnormal mitochondrial reserve capacity before and after exposure to increasingly higher concentrations of 2,3-dimethoxy-1,4-napthoquinone (DMNQ), an agent that increases intracellular reactive oxygen species (ROS). Specifically, the AD LCLs exhibit a higher reserve capacity at baseline and a sharper depletion of reserve capacity when ROS exposure is increased, as compared to control LCLs. Detailed investigation indicated that reserve capacity abnormalities seen in AD LCLs were the result of higher ATP-linked respiration and maximal respiratory capacity at baseline combined with a marked increase in proton leak respiration as ROS was increased. We further demonstrate that these reserve capacity abnormalities are driven by a subgroup of eight (32%) of 25 AD LCLs. Additional investigation of this subgroup of AD LCLs with reserve capacity abnormalities revealed that it demonstrated a greater reliance on glycolysis and on uncoupling protein 2 to regulate oxidative stress at the inner mitochondria membrane. This study suggests that a significant subgroup of AD children may have alterations in mitochondrial function which could render them more vulnerable to a pro-oxidant microenvironment derived from intrinsic and extrinsic sources of ROS such as immune activation and pro-oxidant environmental toxicants. These findings are consistent with the notion that AD is caused by a combination of genetic and environmental factors.
Related JoVE Video
Cystathionine ?-synthase-deficient mice thrive on a low-methionine diet.
FASEB J.
PUBLISHED: 11-04-2013
Show Abstract
Hide Abstract
Cystathionine ?-synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Previously, our laboratory developed a mouse model of CBS deficiency, TgI278T Cbs(-)/(-) (abbreviated as Cbs(-/-)), characterized by low weight, low adiposity, decreased Scd-1 expression, facial alopecia, and osteoporosis. To determine the potential benefit of a methionine-restricted diet (MRD), we fed Cbs(-/-) and Cbs(+/-) control mice either an MRD or a regular diet (RD) from weaning till 240 d of age. Cbs(-/-) mice fed the MRD had a 77% decrease in tHcy, 28% increase in weight, 130% increase in fat mass, 82% increase in Scd-1 expression, and 10.6% increase in bone density and entirely lacked the alopecia phenotype observed in age-matched Cbs(-/-) mice fed the RD. At the end of the study, Cbs(-/-) mice fed the MRD were phenotypically indistinguishable from Cbs(+/-) mice fed the RD. Notably, whereas the MRD diet was highly beneficial to Cbs(-/-) mice, it had nearly opposite effect on Cbs(+/-) mice. These studies show that a low-methionine diet can correct the phenotypic consequences of loss of CBS and provide a striking example of how genotype and diet can interact to influence phenotype in mammals.-Gupta, S., Melnyk, S.B., Kruger, W.D. Cystathionine ?-synthase-deficient mice thrive on a low-methionine diet.
Related JoVE Video
Differential susceptibilities to azithromycin treatment of chlamydial infection in the gastrointestinal tract and cervix.
Antimicrob. Agents Chemother.
PUBLISHED: 10-07-2013
Show Abstract
Hide Abstract
Evidence from animal studies suggests that chlamydiae may persist in the gastrointestinal tract (GI) and be a reservoir for reinfection of the genital tract. We hypothesize that there may be a differential susceptibility of organisms in the GI and genital tracts. To determine the effect of azithromycin on persistent chlamydial gut infection, C57BL/6 and BALB/c mice were infected orally and genitally and treated with azithromycin (Az) orally (20, 40, or 80 mg/kg of body weight), and the numbers of chlamydiae were determined from cervix and cecal tissues. The Az concentration in the cecum and cervix was measured by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Az treatment cleared genital infection in both C57BL/6 and BALB/c mice; however, GI infection was not cleared with the same doses. HPLC data showed the presence of Az at both sites of infection, and significant amounts of Az were measured in treatment groups. However, no significant difference in Az levels between the cecum and the cervix was observed, indicating similar levels of Az reaching both sites of infection. These data indicate that antibiotic levels that are sufficient to cure genital infection are ineffectual against GI infection. The results suggest a reevaluation of antibiotic therapy for chlamydial infection.
Related JoVE Video
Effectiveness of methylcobalamin and folinic Acid treatment on adaptive behavior in children with autistic disorder is related to glutathione redox status.
Autism Res Treat
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
Treatments targeting metabolic abnormalities in children with autism are limited. Previously we reported that a nutritional treatment significantly improved glutathione metabolism in children with autistic disorder. In this study we evaluated changes in adaptive behaviors in this cohort and determined whether such changes are related to changes in glutathione metabolism. Thirty-seven children diagnosed with autistic disorder and abnormal glutathione and methylation metabolism were treated with twice weekly 75?µg/Kg methylcobalamin and twice daily 400?µg folinic acid for 3 months in an open-label fashion. The Vineland Adaptive Behavior Scale (VABS) and glutathione redox metabolites were measured at baseline and at the end of the treatment period. Over the treatment period, all VABS subscales significantly improved with an average effect size of 0.59, and an average improvement in skills of 7.7 months. A greater improvement in glutathione redox status was associated with a greater improvement in expressive communication, personal and domestic daily living skills, and interpersonal, play-leisure, and coping social skills. Age, gender, and history of regression did not influence treatment response. The significant behavioral improvements observed and the relationship between these improvements to glutathione redox status suggest that nutritional interventions targeting redox metabolism may benefit some children with autism.
Related JoVE Video
Strain-dependent dysregulation of one-carbon metabolism in male mice is associated with choline- and folate-deficient diet-induced liver injury.
FASEB J.
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
Dysregulation of one-carbon metabolism-related metabolic processes is a major contributor to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). It is well established that genetic and gender-specific variations in one-carbon metabolism contribute to the vulnerability to NAFLD in humans. To examine the role of one-carbon metabolism dysregulation in the pathogenesis and individual susceptibility to NAFLD, we used a "population-based" mouse model where male mice from 7 inbred were fed a choline- and folate-deficient (CFD) diet for 12 wk. Strain-dependent down-regulation of several key one-carbon metabolism genes, including methionine adenosyltransferase 1? (Mat1a), cystathionine-?-synthase (Cbs), methylenetetrahydrofolate reductase (Mthfr), adenosyl-homocysteinase (Ahcy), and methylenetetrahydrofolate dehydrogenase 1 (Mthfd1), was observed. These changes were strongly associated with interstrain variability in liver injury (steatosis, necrosis, inflammation, and activation of fibrogenesis) and hyperhomocysteinemia. Mechanistically, the decreased expression of Mat1a, Ahcy, and Mthfd1 was linked to a reduced level and promoter binding of transcription factor CCAAT/enhancer binding protein ? (CEBP?), which directly regulates their transcription. The strain specificity of diet-induced dysregulation of one-carbon metabolism suggests that interstrain variation in the regulation of one-carbon metabolism may contribute to the differential vulnerability to NFLD and that correcting the imbalance may be considered as preventive and treatment strategies for NAFLD.
Related JoVE Video
Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum.
Transl Psychiatry
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.
Related JoVE Video
Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally.
Toxicol. Appl. Pharmacol.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL+/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28mg/kg/day) postnatally from birth until 6weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice.
Related JoVE Video
Role of epigenetic and miR-22 and miR-29b alterations in the downregulation of Mat1a and Mthfr genes in early preneoplastic livers in rats induced by 2-acetylaminofluorene.
Mol. Carcinog.
PUBLISHED: 10-02-2011
Show Abstract
Hide Abstract
Carcinogenesis is a multistep sequential process of clonal expansion of initiated cells associated with the accumulation of multiple cancer-specific heritable phenotypes. The acquisition of these heritable cancer-specific alterations may be triggered by mutational and/or non-mutational changes in the genome that affect the regulation of gene expression. Currently, cancer-specific epigenetically mediated changes in gene expression are regarded as driving events in tumorigenesis. In the present study, we investigated the role of gene-specific expression changes in the mechanism of rat hepatocarcinogenesis induced by the complete hepatocarcinogen 2-acetylaminofluorene (2-AAF). The results of the present study demonstrate significant alterations in gene expression, especially of Mat1a and Mthfr genes, during early stages of rat 2-AAF-induced liver carcinogenesis. Both of these genes were downregulated in the livers of 2-AAF-treated male rats. Inhibition of Mat1a expression was associated with an increase in histone H3 lysine 27 trimethylation and a decrease in histone H3 lysine 18 acetylation at the gene promoter/first exon region. Additionally, we demonstrate for the first time a critical contribution of miR-22 and miR-29b microRNAs in the inhibition of Mat1a and Mthfr gene expression during 2-AAF-induced rat hepatocarcinogenesis. The downregulation of Mat1a and Mthfr genes was accompanied by marked functional alterations in one-carbon metabolism. The results of the present study suggest that downregulation of the Mat1a and Mthfr genes may be one of the main driver events that promote liver carcinogenesis by causing a profound accumulation of subsequent epigenetic abnormalities during progression of the carcinogenic process.
Related JoVE Video
Intracellular and extracellular redox status and free radical generation in primary immune cells from children with autism.
Autism Res Treat
PUBLISHED: 07-30-2011
Show Abstract
Hide Abstract
The modulation of the redox microenvironment is an important regulator of immune cell activation and proliferation. To investigate immune cell redox status in autism we quantified the intracellular glutathione redox couple (GSH/GSSG) in resting peripheral blood mononuclear cells (PBMCs), activated monocytes and CD4 T cells and the extracellular cysteine/cystine redox couple in the plasma from 43 children with autism and 41 age-matched control children. Resting PBMCs and activated monocytes from children with autism exhibited significantly higher oxidized glutathione (GSSG) and percent oxidized glutathione equivalents and decreased glutathione redox status (GSH/GSSG). In activated CD4 T cells from children with autism, the percent oxidized glutathione equivalents were similarly increased, and GSH and GSH/GSSG were decreased. In the plasma, both glutathione and cysteine redox ratios were decreased in autistic compared to control children. Consistent with decreased intracellular and extracellular redox status, generation of free radicals was significantly elevated in lymphocytes from the autistic children. These data indicate primary immune cells from autistic children have a more oxidized intracellular and extracellular microenvironment and a deficit in glutathione-mediated redox/antioxidant capacity compared to control children. These results suggest that the loss of glutathione redox homeostasis and chronic oxidative stress may contribute to immune dysregulation in autism.
Related JoVE Video
Increased incidence of aflatoxin B1-induced liver tumors in hepatitis virus C transgenic mice.
Int. J. Cancer
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
Viral hepatitis and aflatoxin B1 (AFB1) exposure are common risk factors for hepatocellular carcinoma (HCC). The incidence of HCC in individuals coexposed to hepatitis C (HCV) or B virus and AFB1 is greater than could be explained by the additive effect; yet, the mechanisms are poorly understood because of the lack of an animal model. Our study investigated the outcomes and mechanisms of combined exposure to HCV and AFB1. We hypothesized that HCV transgenic (HCV-Tg; expressing core, E1, E2 and p7, nucleotides 342-2771) mice will be prone to hepatocarcinogenesis when exposed to AFB1. Neonatal (7 days old) HCV-Tg or C57BL/6J wild-type (WT) mice were exposed to AFB1 (6 ?g/g bw) or tricaprylin vehicle (15 ?l/g bw), and male offspring were followed for up to 12 months. No liver lesions were observed in vehicle-treated WT or HCV-Tg mice. Tumors (adenomas or carcinomas) and preneoplastic lesions (hyperplasia or foci) were observed in 22.5% (9 of 40) of AFB1-treated WT mice. In AFB1-treated HCV-Tg mice, the incidence of tumorous or pretumorous lesions was significantly elevated (50%, 18 of 36), with the difference largely due to a 2.5-fold increase in the incidence of adenomas (30.5 vs. 12.5%). Although oxidative stress and steatohepatitis were observed in both AFB1-treated groups, molecular changes indicative of the enhanced inflammatory response and altered lipid metabolism were more pronounced in HCV-Tg mice. In summary, HCV proteins core, E1, E2 and p7 are sufficient to reproduce the cocarcinogenic effect of HCV and AFB1, which is a known clinical phenomenon.
Related JoVE Video
Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes.
Atherosclerosis
PUBLISHED: 09-15-2010
Show Abstract
Hide Abstract
Rice-based diets may have been reported to protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of rice-based diet was addressed using the apolipoprotein E knockout (apoE-/-) mice fed rice protein isolate (RPI) or casein (CAS). Reduced atherosclerotic lesions were observed in aortic sinus and enface analyses of the descending aorta in RPI-fed apoE-/- mice compared with CAS-fed mice. Plasma total- and HDL-cholesterol levels were not different amongst the two groups, suggesting alternative mechanism(s) could have contributed to the atheroprotective effect of rice-based diets. Plasma oxLDL and anti-oxLDL IgG levels were significantly decreased in RPI-fed compared to CAS-fed animals. Plasma and aortic tissue GSH levels and GSH:GSSG ratio were higher in RPI-fed mice compared to CAS-fed group. Interestingly, RPI feeding increased mRNA and protein expression of superoxide dismutase, and mRNA expression of catalase, glutathione peroxidase and glutathione reductase, key antioxidant enzymes implicated inhibiting oxidative stress leading to atherosclerosis. In conclusion, these findings suggest that the reduction in atherosclerotic lesions observed in mice fed the rice-based diet is mediated in part by inhibiting oxidative stress and subsequent oxLDL generation that could result in reduced foam cell formation, an early event during atherogenesis.
Related JoVE Video
A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
PUBLISHED: 05-15-2010
Show Abstract
Hide Abstract
The biologic basis of autism is complex and is thought to involve multiple and variable gene-environment interactions. While the logical focus has been on the affected child, the impact of maternal genetics on intrauterine microenvironment during pivotal developmental windows could be substantial. Folate-dependent one carbon metabolism is a highly polymorphic pathway that regulates the distribution of one-carbon derivatives between DNA synthesis (proliferation) and DNA methylation (cell-specific gene expression and differentiation). These pathways are essential to support the programmed shifts between proliferation and differentiation during embryogenesis and organogenesis. Maternal genetic variants that compromise intrauterine availability of folate derivatives could alter fetal cell trajectories and disrupt normal neurodevelopment. In this investigation, the frequency of common functional polymorphisms in the folate pathway was investigated in a large population-based sample of autism case-parent triads. In case-control analysis, a significant increase in the reduced folate carrier (RFC1) G allele frequency was found among case mothers, but not among fathers or affected children. Subsequent log linear analysis of the RFC1 A80G genotype within family trios revealed that the maternal G allele was associated with a significant increase in risk of autism whereas the inherited genotype of the child was not. Further, maternal DNA from the autism mothers was found to be significantly hypomethylated relative to reference control DNA. Metabolic profiling indicated that plasma homocysteine, adenosine, and S-adenosylhomocyteine were significantly elevated among autism mothers consistent with reduced methylation capacity and DNA hypomethylation. Together, these results suggest that the maternal genetics/epigenetics may influence fetal predisposition to autism.
Related JoVE Video
Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes.
Atherosclerosis
PUBLISHED: 04-30-2010
Show Abstract
Hide Abstract
Rice-based diets may have been reported to protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of rice-based diet was addressed using the apolipoprotein E knockout (apoE-/-) mice fed rice protein isolate (RPI) or casein (CAS). Reduced atherosclerotic lesions were observed in aortic sinus and enface analyses of the descending aorta in RPI-fed apoE-/- mice compared with CAS-fed mice. Plasma total- and HDL-cholesterol levels were not different amongst the two groups, suggesting alternative mechanism(s) could have contributed to the atheroprotective effect of rice-based diets. Plasma oxLDL and anti-oxLDL IgG levels were significantly decreased in RPI-fed compared to CAS-fed animals. Plasma and aortic tissue GSH levels and GSH:GSSG ratio were higher in RPI-fed mice compared to CAS-fed group. Interestingly, RPI feeding increased mRNA and protein expression of superoxide dismutase, and mRNA expression of catalase, glutathione peroxidase and glutathione reductase, key antioxidant enzymes implicated inhibiting oxidative stress leading to atherosclerosis. In conclusion, these findings suggest that the reduction in atherosclerotic lesions observed in mice fed the rice-based diet is mediated in part by inhibiting oxidative stress and subsequent oxLDL generation that could result in reduced foam cell formation, an early event during atherogenesis.
Related JoVE Video
Mechanism for prevention of alcohol-induced liver injury by dietary methyl donors.
Toxicol. Sci.
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
Alcohol-induced liver injury (ALI) has been associated with, among other molecular changes, abnormal hepatic methionine metabolism, resulting in decreased levels of S-adenosylmethionine (SAM). Dietary methyl donor supplements such as SAM and betaine mitigate ALI in animal models; however, the mechanisms of protection remain elusive. It has been suggested that methyl donors may act via attenuation of alcohol-induced oxidative stress. We hypothesized that the protective action of methyl donors is mediated by an effect on the oxidative metabolism of alcohol in the liver. Male C57BL/6J mice were administered a control high-fat diet or diet enriched in methyl donors with or without alcohol for 4 weeks using the enteral alcohol feeding model. As expected, attenuation of ALI and an increase in reduced glutathione:oxidized glutathione ratio were achieved with methyl donor supplementation. Interestingly, methyl donors led to a 35% increase in blood alcohol elimination rate, and while there was no effect on alcohol metabolism in the stomach, a profound effect on liver alcohol metabolism was observed. The catalase-dependent pathway of alcohol metabolism was induced, yet the increase in CYP2E1 activity by alcohol was blunted, which may be mitigating production of oxidants. Additional factors contributing to the protective effects of methyl donors in ALI were increased activity of low- and high-K(m) aldehyde dehydrogenases leading to lower hepatic acetaldehyde, maintenance of the efficient mitochondrial energy metabolism, and promotion of peroxisomal beta-oxidation. Profound changes in alcohol metabolism represent additional important mechanism of the protective effect of methyl donors in ALI.
Related JoVE Video
Methionine-deficient diet induces post-transcriptional downregulation of cystathionine ?-synthase.
Nutrition
PUBLISHED: 07-31-2009
Show Abstract
Hide Abstract
Elevated plasma total homocysteine (tHcy) is a risk factor for a variety of human diseases. Homocysteine is formed from methionine and has two primary metabolic fates: remethylation to form methionine or commitment to the transsulfuration pathway by the action of cystathionine ?-synthase (CBS). We have examined the metabolic response in mice of a shift from a methionine-replete to a methionine-free diet.
Related JoVE Video
Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism.
FASEB J.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
Research into the metabolic phenotype of autism has been relatively unexplored despite the fact that metabolic abnormalities have been implicated in the pathophysiology of several other neurobehavioral disorders. Plasma biomarkers of oxidative stress have been reported in autistic children; however, intracellular redox status has not yet been evaluated. Lymphoblastoid cells (LCLs) derived from autistic children and unaffected controls were used to assess relative concentrations of reduced glutathione (GSH) and oxidized disulfide glutathione (GSSG) in cell extracts and isolated mitochondria as a measure of intracellular redox capacity. The results indicated that the GSH/GSSG redox ratio was decreased and percentage oxidized glutathione increased in both cytosol and mitochondria in the autism LCLs. Exposure to oxidative stress via the sulfhydryl reagent thimerosal resulted in a greater decrease in the GSH/GSSG ratio and increase in free radical generation in autism compared to control cells. Acute exposure to physiological levels of nitric oxide decreased mitochondrial membrane potential to a greater extent in the autism LCLs, although GSH/GSSG and ATP concentrations were similarly decreased in both cell lines. These results suggest that the autism LCLs exhibit a reduced glutathione reserve capacity in both cytosol and mitochondria that may compromise antioxidant defense and detoxification capacity under prooxidant conditions.
Related JoVE Video
Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet.
J. Hepatol.
PUBLISHED: 02-15-2009
Show Abstract
Hide Abstract
The importance of epigenetic changes in etiology and pathogenesis of disease has been increasingly recognized. However, the role of epigenetic alterations in the genesis of hepatic steatosis and cause of individual susceptibilities to this pathological state are largely unknown.
Related JoVE Video
Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism.
Am. J. Clin. Nutr.
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Metabolic abnormalities and targeted treatment trials have been reported for several neurobehavioral disorders but are relatively understudied in autism.
Related JoVE Video
Acetaminophen-induced acute liver injury in HCV transgenic mice.
Toxicol. Appl. Pharmacol.
Show Abstract
Hide Abstract
The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility.
Related JoVE Video
Associations between maternal genotypes and metabolites implicated in congenital heart defects.
Mol. Genet. Metab.
Show Abstract
Hide Abstract
The development of non-syndromic congenital heart defects (CHDs) involves a complex interplay of genetics, metabolism, and lifestyle. Previous studies have implicated maternal single nucleotide polymorphisms (SNPs) and altered metabolism in folate-related pathways as CHD risk factors.
Related JoVE Video
Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism.
FASEB J.
Show Abstract
Hide Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ? C57BL/6J ? C3H/HeJ < 129S1/SvImJ ? CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor ? (PPAR?)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPAR?-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.
Related JoVE Video
Postnatal exposure to trichloroethylene alters glutathione redox homeostasis, methylation potential, and neurotrophin expression in the mouse hippocampus.
Neurotoxicology
Show Abstract
Hide Abstract
Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity.
Related JoVE Video
Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice.
Hepatology
Show Abstract
Hide Abstract
Alcoholic liver injury is a major public health issue worldwide. Even though the major mechanisms of this disease have been established over the past decades, little is known about genetic susceptibility factors that may predispose individuals who abuse alcoholic beverages to liver damage and subsequent pathological conditions. We hypothesized that a panel of genetically diverse mouse strains may be used to examine the role of endoplasmic reticulum (ER) stress and one-carbon metabolism in the mechanism of interindividual variability in alcoholic liver injury. We administered alcohol (up to 27 mg/kg/d) in a high-fat diet using an intragastric intubation model for 28 days to male mice from 14 inbred strains (129S1/SvImJ, AKR/J, BALB/cJ, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, C57BL/10J, DBA/2J, FVB/NJ, KK/HIJ, MOLF/EiJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ). Profound interstrain differences (more than 3-fold) in alcohol-induced steatohepatitis were observed among the strains in spite of consistently high levels of urine alcohol that were monitored throughout the study. We found that ER stress genes were induced only in strains with the most liver injury. Liver glutathione and methyl donor levels were affected in all strains, albeit to a different degree. The most pronounced effects that were closely associated with the degree of liver injury were hyperhomocysteinemia and strain-dependent differences in expression patterns of one-carbon metabolism-related genes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.