JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans.
Diabetologia
PUBLISHED: 08-18-2014
Show Abstract
Hide Abstract
The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(?-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms.
Related JoVE Video
Glucocorticoid hormones and energy homeostasis.
Horm Mol Biol Clin Investig
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
Abstract Glucocorticoids (GC) and their cognate intracellular receptor, the glucocorticoid receptor (GR), have been characterised as critical checkpoints in the endocrine control of energy homeostasis in mammals. Indeed, aberrant GC action has been linked to a variety of severe metabolic diseases, including obesity, insulin resistance and type 2 diabetes. As a steroid-binding member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are - in many cases - associated with glucose and lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of GC/GR function in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism.
Related JoVE Video
11?-Hydroxysteroid dehydrogenase-1 is involved in bile acid homeostasis by modulating fatty acid transport protein-5 in the liver of mice.
Mol Metab
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
11?-Hydroxysteroid dehydrogenase-1 (11?-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11?-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specific and global 11?-HSD1-deficient mice. 11?-HSD1-deficiency resulted in elevated circulating unconjugated BAs, an effect more pronounced in global than liver-specific knockout mice. Gene expression analyses revealed decreased expression of the BA-CoA ligase Fatp5, suggesting impaired BA amidation. Reduced organic anion-transporting polypeptide-1A1 (Oatp1a1) and enhanced organic solute-transporter-? (Ostb) mRNA expression were observed in livers from global 11?-HSD1-deficient mice. The impact of 11?-HSD1-deficiency on BA homeostasis seems to be GR-independent because intrahepatic corticosterone and GR target gene expression were not substantially decreased in livers from global knockout mice. Moreover, Fatp5 expression in livers from hepatocyte-specific GR knockout mice was unchanged. The results revealed a role for 11?-HSD1 in BA homeostasis.
Related JoVE Video
Thermogenic adipocytes: from cells to physiology and medicine.
Metab. Clin. Exp.
PUBLISHED: 07-07-2014
Show Abstract
Hide Abstract
The identification of active brown fat in humans has evoked widespread interest in the biology of non-shivering thermogenesis among basic and clinical researchers. As a consequence we have experienced a plethora of contributions related to cellular and molecular processes in thermogenic adipocytes as well as their function in the organismal context and their relevance to human physiology. In this review we focus on the cellular basis of non-shivering thermogenesis, particularly in relation to human health and metabolic disease. We provide an overview of the cellular function and distribution of thermogenic adipocytes in mouse and humans, and how this can be affected by environmental factors, such as prolonged cold exposure. We elaborate on recent evidence and open questions on the distinction of classical brown versus beige/brite adipocytes. Further, the origin of thermogenic adipocytes as well as current models for the recruitment of beige/brite adipocytes is discussed with an emphasis on the role of progenitor cells. Focusing on humans, we describe the expanding evidence for the activity, function and physiological relevance of thermogenic adipocytes. Finally, as the potential of thermogenic adipocyte activation as a therapeutic approach for the treatment of obesity and associated metabolic diseases becomes evident, we highlight goals and challenges for current research on the road to clinical translation.
Related JoVE Video
Hypoxia-inducible lipid droplet-associated (HILPDA) is a novel peroxisome proliferator-activated receptor (PPAR) target involved in hepatic triglyceride secretion.
J. Biol. Chem.
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Peroxisome proliferator-activated receptors (PPARs) play major roles in the regulation of hepatic lipid metabolism through the control of numerous genes involved in processes such as lipid uptake and fatty acid oxidation. Here we identify hypoxia-inducible lipid droplet-associated (Hilpda/Hig2) as a novel PPAR target gene and demonstrate its involvement in hepatic lipid metabolism. Microarray analysis revealed that Hilpda is one of the most highly induced genes by the PPAR? agonist Wy14643 in mouse precision cut liver slices. Induction of Hilpda mRNA by Wy14643 was confirmed in mouse and human hepatocytes. Oral dosing with Wy14643 similarly induced Hilpda mRNA levels in livers of wild-type mice but not Ppara(-/-) mice. Transactivation studies and chromatin immunoprecipitation showed that Hilpda is a direct PPAR? target gene via a conserved PPAR response element located 1200 base pairs upstream of the transcription start site. Hepatic overexpression of HILPDA in mice via adeno-associated virus led to a 4-fold increase in liver triglyceride storage, without any changes in key genes involved in de novo lipogenesis, ?-oxidation, or lipolysis. Moreover, intracellular lipase activity was not affected by HILPDA overexpression. Strikingly, HILPDA overexpression significantly impaired hepatic triglyceride secretion. Taken together, our data uncover HILPDA as a novel PPAR target that raises hepatic triglyceride storage via regulation of triglyceride secretion.
Related JoVE Video
Hepatic transforming growth factor-? 1 stimulated clone-22 D1 controls systemic cholesterol metabolism.
Mol Metab
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Disturbances in lipid homeostasis are hallmarks of severe metabolic disorders and their long-term complications, including obesity, diabetes, and atherosclerosis. Whereas elevation of triglyceride (TG)-rich very-low-density lipoproteins (VLDL) has been identified as a risk factor for cardiovascular complications, high-density lipoprotein (HDL)-associated cholesterol confers atheroprotection under obese and/or diabetic conditions. Here we show that hepatocyte-specific deficiency of transcription factor transforming growth factor ? 1-stimulated clone (TSC) 22 D1 led to a substantial reduction in HDL levels in both wild-type and obese mice, mediated through the transcriptional down-regulation of the HDL formation pathway in liver. Indeed, overexpression of TSC22D1 promoted high levels of HDL cholesterol in healthy animals, and hepatic expression of TSC22D1 was found to be aberrantly regulated in disease models of opposing energy availability. The hepatic TSC22D1 transcription factor complex may thus represent an attractive target in HDL raising strategies in obesity/diabetes-related dyslipidemia and atheroprotection.
Related JoVE Video
PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity.
EMBO Mol Med
PUBLISHED: 01-11-2014
Show Abstract
Hide Abstract
Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.
Related JoVE Video
Browning of white adipose tissue uncouples glucose uptake from insulin signaling.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.
Related JoVE Video
Immune cells and metabolic dysfunction.
Semin Immunopathol
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Throughout evolution, effective nutrient sensing and control of systemic energy homeostasis have relied on a close physical and functional interaction between immune and metabolically active cells. However, in todays obesogenic environment, this fine-tuned immunometabolic interface is perturbed. As a consequence, chronic inflammatory conditions and aberrant activation of immune cells have emerged as key features of obesity-related metabolic disorders, including insulin resistance, cardiovascular complications, and type 2 diabetes, whereas a major research focus has been placed on the adipocyte-macrophage interaction in the context of metabolic dysfunction; recent studies have not only expanded the scope of relevant immune cells in this setting but also highlight the impact of distinct metabolic organs, including the liver, on immunometabolic control, metabolic disease development, and potential anti-inflammatory therapeutic options in obesity-driven pathologies. This review will thus summarize recent progress in this emerging area of metabolic research.
Related JoVE Video
Aging-dependent reduction in glyoxalase 1 delays wound healing.
Gerontology
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
Methylglyoxal (MG), the major dicarbonyl substrate of the enzyme glyoxalase 1 (GLO1), is a reactive metabolite formed via glycolytic flux. Decreased GLO1 activity in situ has been shown to result in an accumulation of MG and increased formation of advanced glycation endproducts, both of which can accumulate during physiological aging and at an accelerated rate in diabetes and other chronic degenerative diseases. To determine the physiological consequences which result from elevated MG levels and the role of MG and GLO1 in aging, wound healing in young (?12 weeks) and old (?52 weeks) wild-type mice was studied. Old mice were found to have a significantly slower rate of wound healing compared to young mice (74.9 ± 2.2 vs. 55.4 ± 1.5% wound closure at day 6; 26% decrease; p < 0.0001). This was associated with decreases in GLO1 transcription, expression and activity. The importance of GLO1 was confirmed in mice by inhibition of GLO1. Direct application of MG to the wounds of young mice, decreased wound healing by 24% compared to untreated mice, whereas application of BSA modified minimally by MG had no effect. Treatment of either young or old mice with aminoguanidine, a scavenger of free MG, significantly increased wound closure by 16% (66.8 ± 1.6 vs. 77.2 ± 3.1%; p < 0.05) and 64% (40.4 ± 7.9 vs. 66.4 ± 5.2%; p < 0.05), respectively, by day 6. As a result of the aminoguanidine treatment, the overall rate of wound healing in the old mice was restored to the level observed in the young mice. These findings were confirmed in vitro, as MG reduced migration and proliferation of fibroblasts derived from young and old, wild-type mice. The data demonstrate that the balance between MG and age-dependent GLO1 downregulation contributes to delayed wound healing in old mice.
Related JoVE Video
Metabolic control through glucocorticoid hormones: an update.
Mol. Cell. Endocrinol.
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
In the past decades, glucocorticoid (GC) hormones and their cognate, intracellular receptor, the glucocorticoid receptor (GR), have been well established as critical checkpoints in mammalian energy homeostasis. Whereas many aspects in healthy nutrient metabolism require physiological levels and/or action of GC, aberrant GC/GR signalling has been linked to severe metabolic dysfunction, including obesity, insulin resistance and type 2 diabetes. Consequently, studies of the molecular mechanisms within the GC signalling axis have become a major focus in biomedical research, up-to-date particularly focusing on systemic glucose and lipid handling. However, with the availability of novel high throughput technologies and more sophisticated metabolic phenotyping capabilities, as-yet non-appreciated, metabolic functions of GC have been recently discovered, including regulatory roles of the GC/GR axis in protein and bile acid homeostasis as well as metabolic inter-organ communication. Therefore, this review summarises recent advances in GC/GR biology, and summarises findings relevant for basic and translational metabolic research.
Related JoVE Video
Detecting endogenous SUMO targets in mammalian cells and tissues.
Nat. Struct. Mol. Biol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
SUMOylation is an essential modification that regulates hundreds of proteins in eukaryotic cells. Owing to its dynamic nature and low steady-state levels, endogenous SUMOylation is challenging to detect. Here, we present a method that allows efficient enrichment and identification of endogenous targets of SUMO1 and the nearly identical SUMO2 and 3 (SUMO 2/3) from vertebrate cells and complex organ tissue. Using monoclonal antibodies for which we mapped the epitope, we enriched SUMOylated proteins by immunoprecipitation and peptide elution. We used this approach in combination with MS to identify SUMOylated proteins, which resulted in the first direct comparison of the endogenous SUMO1- and SUMO2/3-modified proteome in mammalian cells, to our knowledge. This protocol provides an affordable and feasible tool to investigate endogenous SUMOylation in primary cells, tissues and organs, and it will facilitate understanding of SUMOs role in physiology and disease.
Related JoVE Video
Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue.
Cell Metab.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.
Related JoVE Video
TSC22D4 is a molecular output of hepatic wasting metabolism.
EMBO Mol Med
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. Here, we show that tumour growth triggers hepatic metabolic dysfunction as part of the cancer cachectic phenotype, particularly by reduced hepatic very-low-density-lipoprotein (VLDL) secretion and hypobetalipoproteinemia. As a molecular cachexia output pathway, hepatic levels of the transcription factor transforming growth factor beta 1-stimulated clone (TSC) 22 D4 were increased in cancer cachexia. Mimicking high cachectic levels of TSC22D4 in healthy livers led to the inhibition of hepatic VLDL release and lipogenic genes, and diminished systemic VLDL levels under both normal and high fat dietary conditions. Liver-specific ablation of TSC22D4 triggered hypertriglyceridemia through the induction of hepatic VLDL secretion. Furthermore, hepatic TSC22D4 expression levels were correlated with the degree of body weight loss and VLDL hypo-secretion in cancer cachexia, and TSC22D4 deficiency rescued tumour cell-induced metabolic dysfunction in hepatocytes. Therefore, hepatic TSC22D4 activity may represent a molecular rationale for peripheral energy deprivation in subjects with metabolic wasting diseases, including cancer cachexia.
Related JoVE Video
Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor.
Cell Metab.
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
Systemic bile acid (BA) homeostasis is a critical determinant of dietary fat digestion, enterohepatic function, and postprandial thermogenesis. However, major checkpoints for the dynamics and the molecular regulation of BA homeostasis remain unknown. Here we show that hypothalamic-pituitary-adrenal (HPA) axis impairment in humans and liver-specific deficiency of the glucocorticoid receptor (GR) in mice disrupts the normal changes in systemic BA distribution during the fasted-to-fed transition. Fasted mice with hepatocyte-specific GR knockdown had smaller gallbladder BA content and were more susceptible to developing cholesterol gallstones when fed a cholesterol-rich diet. Hepatic GR deficiency impaired liver BA uptake/transport via lower expression of the major hepatocyte basolateral BA transporter, Na(+)-taurocholate transport protein (Ntcp/Slc10a1), which affected dietary fat absorption and brown adipose tissue activation. Our results demonstrate a role of the HPA axis in the endocrine regulation of BA homeostasis through the liver GR control of enterohepatic BA recycling.
Related JoVE Video
Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia.
Cell Metab.
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
The aberrant accumulation of lipids in the liver ("fatty liver") is tightly associated with several components of the metabolic syndrome, including type 2 diabetes, coronary heart disease, and atherosclerosis. Here we show that the impaired hepatic expression of transcriptional cofactor transducin beta-like (TBL) 1 represents a common feature of mono- and multigenic fatty liver mouse models. Indeed, the liver-specific ablation of TBL1 gene expression in healthy mice promoted hypertriglyceridemia and hepatic steatosis under both normal and high-fat dietary conditions. TBL1 deficiency resulted in inhibition of fatty acid oxidation due to impaired functional cooperation with its heterodimerization partner TBL-related (TBLR) 1 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR) ?. As TBL1 expression levels were found to also inversely correlate with liver fat content in human patients, the lack of hepatic TBL1/TBLR1 cofactor activity may represent a molecular rationale for hepatic steatosis in subjects with obesity and the metabolic syndrome.
Related JoVE Video
Transcriptional co-factors and hepatic energy metabolism.
Mol. Cell. Endocrinol.
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
After binding to their cognate DNA-binding partner, transcriptional co-factors exert their function through the recruitment of enzymatic, chromatin-modifying activities. In turn, the assembly of co-factor-associated multi-protein complexes efficiently impacts target gene expression. Recent advances have established transcriptional co-factor complexes as a critical regulatory level in energy homeostasis and aberrant co-factor activity has been linked to the pathogenesis of severe metabolic disorders including obesity, type 2 diabetes and other components of the Metabolic Syndrome. The liver represents the key peripheral organ for the maintenance of systemic energy homeostasis, and aberrations in hepatic glucose and lipid metabolism have been causally linked to the manifestation of disorders associated with the Metabolic Syndrome. Therefore, this review focuses on the role of distinct classes of transcriptional co-factors in hepatic glucose and lipid homeostasis, emphasizing pathway-specific functions of these co-factors under physiological and pathophysiological conditions.
Related JoVE Video
Control of adipose tissue inflammation through TRB1.
Diabetes
PUBLISHED: 06-03-2010
Show Abstract
Hide Abstract
Based on its role as an energy storage compartment and endocrine organ, white adipose tissue (WAT) fulfills a critical function in the maintenance of whole-body energy homeostasis. Indeed, WAT dysfunction is connected to obesity-related type 2 diabetes triggered at least partly by an inflammatory response in adipocytes. The pseudokinase tribbles (TRB) 3 has been identified by us and others as a critical regulator of hepatic glucose homeostasis in type 2 diabetes and WAT lipid homeostasis. Therefore, this study aimed to test the hypothesis that the TRB gene family fulfills broader functions in the integration of metabolic and inflammatory pathways in various tissues.
Related JoVE Video
Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes.
Science
PUBLISHED: 05-06-2010
Show Abstract
Hide Abstract
Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.
Related JoVE Video
Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations.
J. Steroid Biochem. Mol. Biol.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids and their cognate, intracellular receptor, the glucocorticoid receptor have been characterized as critical checkpoints in the delicate hormonal control of energy homeostasis in mammals. Whereas physiological levels of glucocorticoids are required for proper metabolic control, aberrant glucocorticoid action has been linked to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Based on its importance for human health, studies of the molecular mechanisms of within the glucocorticoid signaling axis have become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the glucocorticoid receptor pathway has been proven to be of substantial value for the development of novel therapies in the treatment of chronic metabolic disorders. Therefore, this review focuses on the consequences of endogenous and experimental modulation of glucocorticoid receptor expression for metabolic homeostasis and dysregulation, particularly emphasizing tissue-specific contributions of the glucocorticoid pathway to the control of energy metabolism.
Related JoVE Video
Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis.
Sci Signal
PUBLISHED: 12-03-2009
Show Abstract
Hide Abstract
Brown adipose tissue (BAT) is a primary site of energy expenditure through thermogenesis, which is mediated by the uncoupling protein-1 (UCP-1) in mitochondria. Here, we show that protein kinase G (PKG) is essential for brown fat cell differentiation. Induction of adipogenic markers and fat storage was impaired in the absence of PKGI. Furthermore, PKGI mediated the ability of nitric oxide (NO) and guanosine 3,5-monophosphate (cGMP) to induce mitochondrial biogenesis and increase the abundance of UCP-1. Mechanistically, we found that PKGI controlled insulin signaling in BAT by inhibiting the activity of RhoA and Rho-associated kinase (ROCK), thereby relieving the inhibitory effects of ROCK on insulin receptor substrate-1 and activating the downstream phosphoinositide 3-kinase-Akt cascade. Thus, PKGI links NO and cGMP signaling with the RhoA-ROCK and the insulin pathways, thereby controlling induction of adipogenic and thermogenic programs during brown fat cell differentiation.
Related JoVE Video
In vivo phosphoenolpyruvate carboxykinase promoter mapping identifies disrupted hormonal synergism as a target of inflammation during sepsis in mice.
Hepatology
PUBLISHED: 10-13-2009
Show Abstract
Hide Abstract
In mammals, proper maintenance of blood glucose levels within narrow limits is one of the most critical prerequisites for healthy energy homeostasis and body function. Consequently, hyper- and hypoglycemia represent hallmarks of severe metabolic pathologies, including type II diabetes and acute sepsis, respectively. Although the liver plays a crucial role in the control of systemic glucose homeostasis, the molecular mechanisms of aberrant hepatic glucose regulation under metabolic stress conditions remain largely unknown. Here we report the development of a liver-specific adenoviral in vivo system for monitoring promoter activity of the key gluconeogenic enzyme gene phosphoenolpyruvate carboxykinase (PEPCK) in mice. By employing in vivo promoter deletion technology, the glucocorticoid response unit (GRU) and the cyclic adenosine monophosphate (cAMP)-responsive element (CRE) were identified as critical cis-regulatory targets of proinflammatory signaling under septic conditions. In particular, both elements were found to be required for inhibition of PEPCK transcription during sepsis, thereby mediating endotoxic hypoglycemia. Indeed, expression of nuclear receptor cofactor peroxisome proliferator-activator receptor coactivator 1alpha (PGC-1alpha), the molecular mediator of GRU/CRE synergism on the PEPCK promoter, was found to be specifically repressed in septic liver, and restoration of PGC-1alpha in cytokine-exposed hepatocytes blunted the inhibitory effect of proinflammatory signaling on PEPCK gene expression.
Related JoVE Video
Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL.
PLoS Genet.
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.
Related JoVE Video
Liver-specific loss of lipolysis-stimulated lipoprotein receptor triggers systemic hyperlipidemia in mice.
Diabetes
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. In contrast, aberrantly high levels of triglycerides in the blood ("hypertriglyceridemia") represent a hallmark of the metabolic syndrome and type 2 diabetes. As hypertriglyceridemia has been identified as an important risk factor for cardiovascular complications, in this study we aimed to identify molecular mechanisms in aberrant triglyceride elevation under these conditions.
Related JoVE Video
Targeting activation of specific NF-?B subunits prevents stress-dependent atherothrombotic gene expression.
Mol. Med.
Show Abstract
Hide Abstract
Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-?B (NF-?B) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-?B-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-?B-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein(-/-) (ApoE(-/-)) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease.
Related JoVE Video
White and brown adipose stem cells: from signaling to clinical implications.
Biochim. Biophys. Acta
Show Abstract
Hide Abstract
Epidemiological studies estimate that by the year 2030, 2.16 billion people worldwide will be overweight and 1.12 billion will be obese [1]. Besides its now established function as an endocrine organ, adipose tissue plays a fundamental role as an energy storage compartment. As such, adipose tissue is capable of extensive expansion or retraction depending on the energy balance or disease state of the host, a plasticity that is unparalleled in other organs and - under conditions of excessive energy intake - significantly contributes to the afore mentioned obesity pandemic. Expansion of adipose tissue is driven by both hypertrophy and hyperplasia of adipocytes, which can renew frequently to compensate for cell death. This underlines the importance of adipocyte progenitor cells within the distinct adipose tissue depots to control both energy storage and endocrine functions of adipose tissue. Here we summarize recent findings on the identity and plasticity of adipose stem cells, the involved signaling cascades, and potential clinical implications of these cells for the treatment of metabolic dysfunction in obesity. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.
Related JoVE Video
Selective enrichment of newly synthesized proteins for quantitative secretome analysis.
Nat. Biotechnol.
Show Abstract
Hide Abstract
Secreted proteins constitute a large and biologically important subset of proteins that are involved in cellular communication, adhesion and migration. Yet secretomes are understudied because of technical limitations in the detection of low-abundance proteins against a background of serum-containing media. Here we introduce a method that combines click chemistry and pulsed stable isotope labeling with amino acids in cell culture to selectively enrich and quantify secreted proteins. The combination of these two labeling approaches allows cells to be studied irrespective of the complexity of the background proteins. We provide an in-depth and differential secretome analysis of various cell lines and primary cells, quantifying secreted factors, including cytokines, chemokines and growth factors. In addition, we reveal that serum starvation has a marked effect on secretome composition. We also analyze the kinetics of protein secretion by macrophages in response to lipopolysaccharides.
Related JoVE Video
Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype.
PLoS ONE
Show Abstract
Hide Abstract
To date, genome-wide association studies (GWAS) have identified at least 32 novel loci for obesity and body mass-related traits. However, the causal genetic variant and molecular mechanisms of specific susceptibility genes in relation to obesity are yet to be fully confirmed and characterised. Here, we examined whether the candidate gene NEGR1 encoding the neuronal growth regulator 1, also termed neurotractin or Kilon, accounts for the obesity association. To characterise the function of NEGR1 for body weight control in vivo, we generated two novel mutant mouse lines, including a constitutive NEGR1-deficient mouse line as well as an ENU-mutagenised line carrying a loss-of-function mutation (Negr1-I87N) and performed metabolic phenotypic analyses. Ablation of NEGR1 results in a small but steady reduction of body mass in both mutant lines, accompanied with a small reduction in body length in the Negr1-I87N mutants. Magnetic resonance scanning reveals that the reduction of body mass in Negr1-I87N mice is due to a reduced proportion of lean mass. Negr1-I87N mutants display reduced food intake and physical activity while normalised energy expenditure remains unchanged. Expression analyses confirmed the brain-specific distribution of NEGR1 including strong expression in the hypothalamus. In vitro assays show that NEGR1 promotes cell-cell adhesion and neurite growth of hypothalamic neurons. Our results indicate a role of NEGR1 in the control of body weight and food intake. This study provides evidence that supports the link of the GWAS candidate gene NEGR1 with body weight control.
Related JoVE Video
MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes.
Stem Cells
Show Abstract
Hide Abstract
Adipose tissue contains thermogenic adipocytes (i.e., brown and brite/beige) that oxidize nutrients at exceptionally high rates via non-shivering thermogenesis. Its recent discovery in adult humans has opened up new avenues to fight obesity and related disorders such as diabetes. Here we identified miR-26a and miR-26b as key regulators of human white and brite adipocyte differentiation. Both microRNAs are upregulated in early adipogenesis, and their inhibition prevented lipid accumulation while their overexpression accelerated it. Intriguingly, miR-26a significantly induced pathways related to energy dissipation, shifted mitochondrial morphology towards that seen in brown adipocytes, and promoted uncoupled respiration by markedly increasing the hallmark protein of brown fat, uncoupling protein 1 (UCP1). By combining in silico target prediction, transcriptomics, and an RNA interference screen, we identified the sheddase ADAM metallopeptidase domain 17 (ADAM17) as a direct target of miR-26 that mediated the observed effects on white and brite adipogenesis. These results point to a novel, critical role for the miR-26 family and its downstream effector ADAM17 in human adipocyte differentiation by promoting characteristics of energy-dissipating thermogenic adipocytes. Stem Cells 2013.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.