JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Multicomponent, Mannich-type assembly process for generating novel, biologically-active 2-arylpiperidines and derivatives.
Tetrahedron
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
A multicomponent, Mannich-type assembly process commencing with commercially available bromobenzaldehydes was sequenced with [3+2] dipolar cycloaddition reactions involving nitrones and azomethine ylides to generate collections of fused, bicyclic scaffolds based on the 2-arylpiperidine subunit. Use of the 4-pentenoyl group, which served both as an activator in the Mannich-type reaction and a readily-cleaved amine protecting group, allowed sub-libraries to be prepared through piperidine N-functionalization and cross-coupling of the aryl bromide. A number of these derivatives displayed biological activities that had not previously been associated with this substructure. Methods were also developed that allowed rapid conversion of these scaffolds to novel, polycyclic dihydroquinazolin-2-ones, 2-imino-1,3-benzothiazinanes, dihydroisoquinolin-3-ones and bridged tetrahydroquinolines.
Related JoVE Video
Enantioselective Total Syntheses of Citrinadins A and B. Stereochemical Revision of Their Assigned Structures.
J. Am. Chem. Soc.
PUBLISHED: 09-12-2014
Show Abstract
Hide Abstract
The concise, enantioselective total syntheses of (-)-citrinadin A and (+)-citrinadin B in a total of only 20 and 21 steps, respectively, from commercially available starting materials are described. Our strategy, which minimizes refunctionalization and protection/deprotection operations, features the highly diastereoselective, vinylogous Mannich addition of a dienolate to a chiral pyridinium salt to set the first chiral center. The absolute stereochemistry of this key center was then relayed by a sequence of substrate-controlled reactions, including a highly stereoselective epoxidation/ring opening sequence and an oxidative rearrangement of an indole to furnish a spirooxindole to establish the remaining stereocenters in the pentacyclic core of the citrinadins. An early stage intermediate in the synthesis of (-)-citrinadin A was deoxygenated to generate a dehydroxy compound that was elaborated into (+)-citrinadin B by a sequence of reaction identical to those used to prepare (-)-citrinadin A. These concise syntheses of (-)-citrinadin A and (+)-citrinadin B led to a revision of their stereochemical structures.
Related JoVE Video
Optimized multilocus sequence typing (MLST) scheme for Trypanosoma cruzi.
PLoS Negl Trop Dis
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease possess extensive genetic diversity. This has led to the development of a plethora of molecular typing methods for the identification of both the known major genetic lineages and for more fine scale characterization of different multilocus genotypes within these major lineages. Whole genome sequencing applied to large sample sizes is not currently viable and multilocus enzyme electrophoresis, the previous gold standard for T. cruzi typing, is laborious and time consuming. In the present work, we present an optimized Multilocus Sequence Typing (MLST) scheme, based on the combined analysis of two recently proposed MLST approaches. Here, thirteen concatenated gene fragments were applied to a panel of T. cruzi reference strains encompassing all known genetic lineages. Concatenation of 13 fragments allowed assignment of all strains to the predicted Discrete Typing Units (DTUs), or near-clades, with the exception of one strain that was an outlier for TcV, due to apparent loss of heterozygosity in one fragment. Monophyly for all DTUs, along with robust bootstrap support, was restored when this fragment was subsequently excluded from the analysis. All possible combinations of loci were assessed against predefined criteria with the objective of selecting the most appropriate combination of between two and twelve fragments, for an optimized MLST scheme. The optimum combination consisted of 7 loci and discriminated between all reference strains in the panel, with the majority supported by robust bootstrap values. Additionally, a reduced panel of just 4 gene fragments displayed high bootstrap values for DTU assignment and discriminated 21 out of 25 genotypes. We propose that the seven-fragment MLST scheme could be used as a gold standard for T. cruzi typing, against which other typing approaches, particularly single locus approaches or systematic PCR assays based on amplicon size, could be compared.
Related JoVE Video
Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization.
Mol. Biochem. Parasitol.
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase.
Related JoVE Video
Evolution of a strategy for preparing bioactive small molecules by sequential multicomponent assembly processes, cyclizations, and diversification.
Org. Biomol. Chem.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Related JoVE Video
Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding.
Physiol Rep
PUBLISHED: 07-16-2014
Show Abstract
Hide Abstract
As white adipose tissue (WAT) expands under obesogenic conditions, local WAT hypoxia may contribute to the chronic low-grade inflammation observed in obesity. Aerobic exercise training is beneficial in treating WAT inflammation after obesity is established, but it remains unknown whether exercise training, while on a concomitant high-fat (HF) diet, influences WAT inflammation during the development of obesity. We sought to determine the effects of 4, 8, and 12 weeks of HF feeding and/or moderate intensity treadmill exercise training (EX) on the relationship between inflammatory and hypoxic gene expression within mouse WAT. Male C57Bl6/J mice (n = 113) were randomized into low-fat (LF)/sedentary (SED), LF/EX, HF/SED, or HF/EX groups. The low-fat and high-fat diets contained 10% and 60% energy from fat, respectively. Exercise training consisted of treadmill running 5 days/week at 12 m/min, 8% incline, 40 min/day. Quantitative real-time PCR was used to assess gene expression. HF diet impaired glucose regulation, and upregulated WAT gene expression of inflammation (IL-1?, IL-1ra, TNF?), macrophage recruitment and infiltration (F4/80 and monocyte chemoattractant protein), and M1 (CD11c) and M2 (CD206 and Arginase-1) macrophage polarization markers. Treadmill training resulted in a modest reduction of WAT macrophage and inflammatory gene expression. HF diet had little effect on hypoxia-inducible factor-1? and vascular endothelial growth factor, suggesting that WAT inflammatory gene expression may not be driven by hypoxia within the adipocytes. Treadmill training may provide protection by preventing WAT expansion and macrophage recruitment.
Related JoVE Video
Recent evolution of equine influenza and the origin of canine influenza.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-14-2014
Show Abstract
Hide Abstract
In 2004 an hemagglutinin 3 neuraminidase 8 (H3N8) equine influenza virus was transmitted from horses to dogs in Florida and subsequently spread throughout the United States and to Europe. To understand the molecular basis of changes in the antigenicity of H3 hemagglutinins (HAs) that have occurred during virus evolution in horses, and to investigate the role of HA in the equine to canine cross-species transfer, we used X-ray crystallography to determine the structures of the HAs from two antigenically distinct equine viruses and from a canine virus. Structurally all three are very similar with the majority of amino acid sequence differences between the two equine HAs located on the virus membrane-distal molecular surface. HAs of canine viruses are distinct in containing a Trp-222 ? Leu substitution in the receptor binding site that influences specificity for receptor analogs. In the fusion subdomain of canine and recent equine virus HAs a unique difference is observed by comparison with all other HAs examined to date. Analyses of site-specific mutant HAs indicate that a single amino acid substitution, Thr-30 ? Ser, influences interactions between N-terminal and C-terminal regions of the subdomain that are important in the structural changes required for membrane fusion activity. Both structural modifications may have facilitated the transmission of H3N8 influenza from horses to dogs.
Related JoVE Video
Concise total synthesis of (±)-actinophyllic acid.
Tetrahedron
PUBLISHED: 06-03-2014
Show Abstract
Hide Abstract
A concise total synthesis of the complex indole alkaloid (±)-actinophyllic acid was accomplished by a sequence of reactions requiring only 10 steps from readily-available, known starting materials. The approach featured a Lewis acid-catalyzed cascade of reactions involving stabilized carbocations that delivered the tetracyclic core of the natural product in a single chemical operation. Optimal conversion of this key intermediate into (±)-actinophyllic acid required judicious selection of a protecting group strategy.
Related JoVE Video
I?B kinase-induced interaction of TPL-2 kinase with 14-3-3 is essential for Toll-like receptor activation of ERK-1 and -2 MAP kinases.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
The MEK-1/2 kinase TPL-2 is critical for Toll-like receptor activation of the ERK-1/2 MAP kinase pathway during inflammatory responses, but it can transform cells following C-terminal truncation. I?B kinase (IKK) complex phosphorylation of the TPL-2 C terminus regulates full-length TPL-2 activation of ERK-1/2 by a mechanism that has remained obscure. Here, we show that TPL-2 Ser-400 phosphorylation by IKK and TPL-2 Ser-443 autophosphorylation cooperated to trigger TPL-2 association with 14-3-3. Recruitment of 14-3-3 to the phosphorylated C terminus stimulated TPL-2 MEK-1 kinase activity, which was essential for TPL-2 activation of ERK-1/2. The binding of 14-3-3 to TPL-2 was also indispensible for lipopolysaccharide-induced production of tumor necrosis factor by macrophages, which is regulated by TPL-2 independently of ERK-1/2 activation. Our data identify a key step in the activation of TPL-2 signaling and provide a mechanistic insight into how C-terminal deletion triggers the oncogenic potential of TPL-2 by rendering its kinase activity independent of 14-3-3 binding.
Related JoVE Video
Community health risk assessment of primary aluminum smelter emissions.
J. Occup. Environ. Med.
PUBLISHED: 05-09-2014
Show Abstract
Hide Abstract
Primary aluminum production is an industrial process with high potential health risk for workers. We consider in this article how to assess community health risks associated with primary aluminum smelter emissions.
Related JoVE Video
Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and ?-alanine, improves learning, memory and hippocampal neurogenesis in aged mice.
Behav. Brain Res.
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Aging is associated with impaired learning and memory accompanied by reductions in adult hippocampal neurogenesis and brain expression of neurotrophic factors among other processes. Epigallocatechin-3-gallate (EGCG, a green tea catechin), ?-alanine (?-ala, the precursor of carnosine), and exercise have independently been shown to be neuroprotective and to reduce inflammation and oxidative stress in the central nervous system. We hypothesized that EGCG, ?-ala supplementation or exercise alone would improve learning and memory and increase neurogenesis in aged mice, and the combined intervention would be better than either treatment alone. Male Balb/cByJ mice (19 months) were given AIN-93M diet with or without EGCG (182mg/kg/d) and ?-ala (417mg/kg/d). Half of the mice were given access to a running wheel (VWR). The first 10 days, animals received 50mg/kg bromodeoxyuridine (BrdU) daily. After 28 days, learning and memory was assessed by Morris water maze (MWM) and contextual fear conditioning (CFC). Brains were collected for immunohistochemical detection of BrdU and quantitative mRNA expression in the hippocampus. VWR increased the number of BrdU cells in the dentate gyrus, increased expression of brain-derived neurotrophic factor, decreased expression of the inflammatory cytokine interleukin-1?, and improved performance in the MWM and CFC tests. The dietary intervention reduced brain oxidative stress as measured by 4-hydroxynonenal in the cerebellum, but had no effect on BrdU labeling or behavioral performance. These results suggest that exercise, but not a diet containing EGCG and ?-ala, exhibit pro-cognitive effects in aged mice when given at these doses in this relatively short time frame.
Related JoVE Video
Double dissociation between the contributions of the septal and temporal hippocampus to spatial learning: the role of prior experience.
Hippocampus
PUBLISHED: 04-09-2014
Show Abstract
Hide Abstract
The mammalian hippocampus is anatomically heterogeneous along its longitudinal axis, and there is evidence that distinct functions are executed by different septotemporal subregions. The best documented example is the dependency of spatial learning on the septal, but not the temporal, hippocampus. Here, we carried out a watermaze memory task in rats with partial lesions of the septal or temporal hippocampus made either before or after training. We then studied memory retention, reversal, and new spatial learning in a novel environment. This resulted in the surprising finding that spatial learning in a new environment is dependent on the temporal hippocampus in rats with preoperative experience of a different pool. Rats with septal hippocampal lesions made after learning not only retained the focused search strategy that was acquired during preoperative training, but were also capable of rapid spatial learning in a second pool. This demonstrates that once spatial information has been acquired in one context, related new learning in a different context can be mediated by the temporal hippocampus, a result that challenges the widely held view that spatial memory is an exclusive function of the septal hippocampus.
Related JoVE Video
A rapid, site-selective and efficient route to the dual modification of DARPins.
Chem. Commun. (Camb.)
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
Designed ankyrin repeat proteins (DARPins) are valuable tools in both biochemistry and medicine. Herein we describe a rapid, simple method for the dual modification of DARPins by introduction of cysteine mutations at specific positions that results in a vast difference in their thiol nucleophilicity, allowing for clean sequential modification.
Related JoVE Video
Receptor binding by H10 influenza viruses.
Nature
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
H10N8 follows H7N9 and H5N1 as the latest in a line of avian influenza viruses that cause serious disease in humans and have become a threat to public health. Since December 2013, three human cases of H10N8 infection have been reported, two of whom are known to have died. To gather evidence relating to the epidemic potential of H10 we have determined the structure of the haemagglutinin of a previously isolated avian H10 virus and we present here results relating especially to its receptor-binding properties, as these are likely to be major determinants of virus transmissibility. Our results show, first, that the H10 virus possesses high avidity for human receptors and second, from the crystal structure of the complex formed by avian H10 haemagglutinin with human receptor, it is clear that the conformation of the bound receptor has characteristics of both the 1918 H1N1 pandemic virus and the human H7 viruses isolated from patients in 2013 (ref. 3). We conclude that avian H10N8 virus has sufficient avidity for human receptors to account for its infection of humans but that its preference for avian receptors should make avian-receptor-rich human airway mucins an effective block to widespread infection. In terms of surveillance, particular attention will be paid to the detection of mutations in the receptor-binding site of the H10 haemagglutinin that decrease its avidity for avian receptor, and could enable it to be more readily transmitted between humans.
Related JoVE Video
The relation between smoking status and medical conditions among incarcerated adults.
J Addict Med
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
The rate of smoking among incarcerated adults is more than 3 times that of the general population. Negative health consequences of smoking have prompted many correctional facilities to become tobacco-free. This presents a unique opportunity to examine health conditions associated with motivation to remain tobacco-free after release from prison. We examined this association among individuals who participated in the WISE randomized clinical trial.
Related JoVE Video
Protein-ligand interactions: probing the energetics of a putative cation-? interaction.
Bioorg. Med. Chem. Lett.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
In order to probe the energetics associated with a putative cation-? interaction, thermodynamic parameters are determined for complex formation between the Grb2 SH2 domain and tripeptide derivatives of RCO-pTyr-Ac6c-Asn wherein the R group is varied to include different alkyl, cycloalkyl, and aryl groups. Although an indole ring is reputed to have the strongest interaction with a guanidinium ion, binding free energies, ?G°, for derivatives of RCO-pTyr-Ac6c-Asn bearing cyclohexyl and phenyl groups were slightly more favorable than their indolyl analog. Crystallographic analysis of two complexes reveals that test ligands bind in similar poses with the notable exception of the relative orientation and proximity of the phenyl and indolyl rings relative to an arginine residue of the domain. These spatial orientations are consistent with those observed in other cation-? interactions, but there is no net energetic benefit to such an interaction in this biological system. Accordingly, although cation-? interactions are well documented as important noncovalent forces in molecular recognition, the energetics of such interactions may be mitigated by other nonbonded interactions and solvation effects in protein-ligand associations.
Related JoVE Video
Enhanced human receptor binding by H5 haemagglutinins.
Virology
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Mutant H5N1 influenza viruses have been isolated from humans that have increased human receptor avidity. We have compared the receptor binding properties of these mutants with those of wild-type viruses, and determined the structures of their haemagglutinins in complex with receptor analogues. Mutants from Vietnam bind tighter to human receptor by acquiring basic residues near the receptor binding site. They bind more weakly to avian receptor because they lack specific interactions between Asn-186 and Gln-226. In contrast, a double mutant, ?133/Ile155Thr, isolated in Egypt has greater avidity for human receptor while retaining wild-type avidity for avian receptor. Despite these increases in human receptor binding, none of the mutants prefers human receptor, unlike aerosol transmissible H5N1 viruses. Nevertheless, mutants with high avidity for both human and avian receptors may be intermediates in the evolution of H5N1 viruses that could infect both humans and poultry.
Related JoVE Video
A phospha-oseltamivir-biotin conjugate as a strong and selective adhesive for the influenza virus.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
We present the synthesis and application of a molecule containing both the powerful influenza neuraminidase (NA) inhibitor phospha-oseltamivir and d-biotin, connected via an undecaethylene glycol spacer. It inhibits influenza virus neuraminidase (from the H3N2 X31 virus) in the same range as oseltamivir, with a slow off-rate, and produces a stable NA-coated surface when loaded onto streptavidin-coated biosensors. Purified X31 virus binds to these loaded biosensors with an apparent dissociation constant in the low picomolar range and binding of antibodies to the immobilized virus could be readily detected. The compound is thus a potential candidate for the selective immobilization of influenza virus in influenza diagnosis, vaccine choice, development or testing.
Related JoVE Video
Exploratory meta-analysis on lisdexamfetamine versus placebo in adult ADHD.
Drug Des Devel Ther
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Recent studies have promised that lisdexamfetamine (LDX) is effective in the treatment of adults with attention-deficit hyperactivity disorder (ADHD).
Related JoVE Video
Yeast frataxin is stabilized by low salt concentrations: cold denaturation disentangles ionic strength effects from specific interactions.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Frataxins are a family of metal binding proteins associated with the human Friedreich's ataxia disease. Here, we have addressed the effect of non-specifically binding salts on the stability of the yeast ortholog Yfh1. This protein is a sensitive model since its stability is strongly dependent on the environment, in particular on ionic strength. Yfh1 also offers the unique advantage that its cold denaturation can be observed above the freezing point of water, thus allowing the facile construction of the whole protein stability curve and hence the measurement of accurate thermodynamic parameters for unfolding. We systematically measured the effect of several cations and, as a control, of different anions. We show that, while strongly susceptible to ionic strength, as it would be in the cellular environment, Yfh1 stability is sensitive not only to divalent cations, which bind specifically, but also to monovalent cations. We pinpoint the structural bases of the stability and hypothesize that the destabilization induced by an unusual cluster of negatively charged residues favours the entrance of water molecules into the hydrophobic core, consistent with the generally accepted mechanism of cold denaturation.
Related JoVE Video
Protein-Ligand Interactions: Thermodynamic Effects Associated with Increasing the Length of an Alkyl Chain.
ACS Med Chem Lett
PUBLISHED: 12-19-2013
Show Abstract
Hide Abstract
Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and tripeptides of the general form Ac-pTyr-Xaa-Asn in which the Xaa residue bears a linear alkyl chain varying in length from 1-5 carbon atoms. Binding affinity increases upon adding a methylene group to the Ala derivative, but further chain extension gives no extra enhancement in potency. The thermodynamic signatures of the ethyl and n-propyl derivatives are virtually identical as are those for the n-butyl and n-pentyl analogs. Crystallographic analysis of the complexes reveals a high degree of similarity in the structure of the domain and the bound ligands with the notable exception that there is a gauche interaction in the side chains in the bound conformations of ligands having n-propyl, n-butyl, and n-pentyl groups. However, eliminating this unfavorable interaction by introducing a Z-double bond into the side chain of the n-propyl analog does not result in an increase in affinity. Increases in the amount of nonpolar surface that is buried upon ligand binding correlate with favorable changes in ?H°, but these are usually offset by corresponding unfavorable changes in -T?S°; there is little correlation of ?C p with changes in the amount of buried nonpolar surface.
Related JoVE Video
Integrated microscale analysis system for targeted liquid chromatography mass spectrometry proteomics on limited amounts of enriched cell populations.
Anal. Chem.
PUBLISHED: 10-30-2013
Show Abstract
Hide Abstract
Limited samples, such as those that are in vivo sourced via biopsy, are closely representative of biological systems and contain valuable information for drug discovery. However, these precious samples are often heterogeneous and require cellular prefractionation prior to proteomic analysis to isolate specific subpopulations of interest. Enriched cells from in vivo samples are often very limited (<10(4) cells) and pose a significant challenge to proteomic nanoliquid chromatography mass spectrometry (nanoLCMS) sample preparation. To enable the streamlined analysis of these limited samples, we have developed an online cell enrichment, microscale sample preparation, nanoLCMS proteomics workflow by integrating fluorescence activated cell sorting (FACS), focused ultrasonication, microfluidics, immobilized trypsin digestion, and nanoLCMS. To assess the performance of the online FACS-Chip-LCMS workflow, 5000 fluorescent labeled cells were enriched from a 5% heterogeneous cell population and processed for LCMS proteomics in less than 2 h. Within these 5000 enriched cells, 30 peptides corresponding to 17 proteins spanning more than 4 orders of magnitude of cellular abundance were quantified using a QExactive MS. The results from the online FACS-Chip-LCMS workflow starting from 5000 enriched cells were directly compared to results from a traditional macroscale sample preparation workflow starting from 2.0 × 10(6) cells. The microscale FACS-Chip-LCMS workflow demonstrated high cellular enrichment efficiency and high peptide recovery across the wide dynamic range of targeted peptides. Overall the microscale FACS-Chip-LCMS workflow has shown effectiveness in efficiently preparing limited amounts of FACS enriched cells in an online manner for proteomic LCMS.
Related JoVE Video
Cigarette Smoking as an Expression of Independence and Freedom Among Inmates in a Tobacco-Free Prison in the United States.
Nicotine Tob. Res.
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
Most adults report initiation of cigarette smoking during adolescence, a time also marked by developmental striving for independence and freedom. Tobacco use may retain its association with independence and/or freedom into adulthood. This association may contribute to continued tobacco use and/or increased risk of relapse to smoking among some individuals. This study examines the relationship between cigarette smoking and perceptions of independence and freedom among inmates in a tobacco-free prison in the northeastern United States.
Related JoVE Video
Structural basis of AMPK regulation by small molecule activators.
Nat Commun
PUBLISHED: 10-21-2013
Show Abstract
Hide Abstract
AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.
Related JoVE Video
Asymmetric Formal Total Synthesis of the Stemofoline Alkaloids: The Evolution, Development and Application of a Catalytic Dipolar Cycloaddition Cascade.
Tetrahedron
PUBLISHED: 09-28-2013
Show Abstract
Hide Abstract
A formal synthesis of didehydrostemofoline and isodidehydrostemofoline has been accomplished by preparing an intermediate in the Overman synthesis of these alkaloids from commercially available 2-deoxy-D-ribose. The work presented in this account chronicles the evolution of our explorations to identify the optimal steric and electronic control elements necessary to generate the tricyclic core structure of these alkaloids in a single operation from an acyclic precursor. The key step in the synthesis is a novel dipolar cycloaddition cascade sequence that is initiated by cyclization of a rhodium-derived carbene onto the nitrogen atom of a proximal imine group to generate an azomethine ylide that then undergoes spontaneous cyclization via dipolar cycloaddition. The synthesis features several other interesting reactions, including a Boord elimination to prepare a chiral allylic alcohol, a highly diastereoselective Hirama-Itô cyclization, and a useful modification of the Barton decarboxylation protocol.
Related JoVE Video
Glyconanoparticles for the plasmonic detection and discrimination between human and avian influenza virus.
Org. Biomol. Chem.
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
A plasmonic bioassay for the specific detection of human influenza virus has been developed based on gold nanoparticles functionalised with a designed and synthesised thiolated trivalent ?2,6-thio-linked sialic acid derivative. The glyconanoparticles consist of the thiolated trivalent ?2,6-thio-linked sialic acid derivative and a thiolated polyethylene glycol (PEG) derivative self-assembled onto the gold surface. Varying ratios of the trivalent ?2,6-thio-linked sialic acid ligand and the PEG ligand were used; a ratio of 25:75 was found to be optimum for the detection of human influenza virus X31 (H3N2). In the presence of the influenza virus a solution of the glyconanoparticles aggregate following the binding of the trivalent ?2,6-thio-linked sialic acid ligand to the haemagglutinin on the surface of the virus. The aggregation of the glycoparticles with the influenza virus induces a colour change of the solution within 30 min. Non-purified influenza virus in allantoic fluid was successfully detected using the functionalised glyconanoparticles. A comparison between the trivalent and a monovalent ?2,6-thio-linked sialic acid functionalised nanoparticles confirmed that more rapid results, with greater sensitivity, were achieved using the trivalent ligand for the detection of the X31 virus. Importantly, the glyconanoparticles were able to discriminate between human (?2,6 binding) and avian (?2,3 binding) RG14 (H5N1) influenza virus highlighting the binding specificity of the trivalent ?2,6-thio-linked sialic acid ligand.
Related JoVE Video
Studies toward welwitindolinones: formal syntheses of N-methylwelwitindolinone C isothiocyanate and related natural products.
Tetrahedron
PUBLISHED: 08-27-2013
Show Abstract
Hide Abstract
The formal syntheses of N-methylwelwitindolinone C isothiocyanate (4) and several other welwitindolinones 5-8 were achieved by the independent synthesis of 79. The synthesis featured a Lewis acid-mediated coupling between a heteroaryl carbinol and bis-TMS enol ether, an intramolecular enolate arylation, and an unprecedented intramolecular allylic alkylation of a ?-acyloxyenone.
Related JoVE Video
Synthesis of (±)-actinophyllic acid and analogs: applications of cascade reactions and diverted total synthesis.
J. Am. Chem. Soc.
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
Actinophyllic acid is a biologically active indole alkaloid with a unique structural framework that incorporates five contiguous stereocenters. A total synthesis of (±)-actinophyllic acid has been completed that proceeds in only 10 steps from readily available, known compounds and with the isolation of nine intermediates. The synthesis features a novel cascade of reactions of N-stabilized carbocations with ?-nucleophiles to create the tetracyclic core of actinophyllic acid in a single chemical operation. This pivotal cascade sequence generates substructures of the actinophyllic acid core that are not otherwise accessible, and one key intermediate was modified to furnish several novel compounds having potentially promising anticancer activity, one of which induces cell death in a wide range of cancer cell lines.
Related JoVE Video
The effect of crowding and confinement: a comparison of Yfh1 stability in different environments.
Phys Biol
PUBLISHED: 08-06-2013
Show Abstract
Hide Abstract
Crowding and confinement can affect protein stability, favouring the more compact species amongst the folded and unfolded conformations. An unbiased assessment of the relative efficacy of crowded and confined environments has been hampered so far by the paucity of homogeneous comparisons on the same protein. This paper reports spectroscopic studies on yeast frataxin (Yfh1), a protein which provides an excellent model system for stability studies since it undergoes both cold and heat denaturation at measurable temperatures. The stability of Yfh1 was evaluated in the presence of Ficoll 70 and inside the cavities of polyacrylamide gels as means of mimicking crowding and confinement. We find that both effects influence the thermal stability of Yfh1 to a comparable extent thus providing the first direct comparison of crowding and confinement on the same protein. Thanks to the measurement of the full stability curve we also present the first thermodynamic characterization of the stability of a protein in crowding conditions.
Related JoVE Video
Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice.
Neuroimmunomodulation
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Objective(s): Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate-intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running (VWR) would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4- and 22-month-old C57BL/6J mice. Methods: Mice were housed with a running wheel (VWR) or no wheel (standard) for 30 (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Results: Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective standard control groups. VWR had no effect on LPS-induced anorexia, weight loss, increased immobility in the tail suspension test and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and 24 h (aged mice) after injection of LPS, mRNA transcripts for TNF-?, IL-1?, IL-6, and IDO were upregulated in the whole brain independently of VWR. Conclusion: Prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences in young adult and aged mice. © 2013 S. Karger AG, Basel.
Related JoVE Video
Enantioselective total synthesis of (-)-citrinadin A and revision of its stereochemical structure.
J. Am. Chem. Soc.
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
The first enantioselective total synthesis of (-)-citrinadin A has been accomplished in 20 steps from commercially available materials via an approach that minimizes refunctionalization and protection/deprotection operations. The cornerstone of this synthesis features an asymmetric vinylogous Mannich addition of a dienolate to a chiral pyridinium salt to set the initial chiral center. A sequence of substrate-controlled reactions, including a highly stereoselective epoxidation/ring-opening sequence and an oxidative rearrangement of an indole to furnish a spirooxindole, are then used to establish the remaining stereocenters in the pentacyclic core of (-)-citrinadin A. The successful synthesis of citrinadin A led to a revision of the stereochemical structure of the core substructure of the citrinadins.
Related JoVE Video
Sources of Variation in Cuticular Hydrocarbons in the Ant Formica exsecta.
J. Chem. Ecol.
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
Phenotypic variation arises from interactions between genotype and environment, although how variation is produced and then maintained remains unclear. The discovery of the nest-mate recognition system in Formica exsecta ants has allowed phenotypic variation in chemical profiles to be quantified across a natural population of 83 colonies. We investigated if this variation was correlated or not with intrinsic (genetic relatedness), extrinsic (location, light, temperature), or social (queen number) factors. (Z)-9-Alkenes and n-alkanes showed different patterns of variance: island (location) explained only 0.2 % of the variation in (Z)-9-alkenes, but 21-29 % in n-alkanes, whereas colony of origin explained 96 % and 45-49 % of the variation in (Z)-9-alkenes and n-alkanes, respectively. By contrast, within-colony variance of (Z)-9-alkenes was 4 %, and 23-34 % in n-alkanes, supporting the function of the former as recognition cues. (Z)-9-Alkene and n-alkane profiles were correlated with the genetic distance between colonies. Only n-alkane profiles diverged with increasing spatial distance. Sampling year explained a small (5 %), but significant, amount of the variation in the (Z)-9-alkenes, but there was no consistent directional trend. Polygynous colonies and populous monogynous colonies were dominated by a rich C23:1 profile. We found no associations between worker size, mound exposure, or humidity, although effect sizes for the latter two factors were considerable. The results support the conjecture that genetic factors are the most likely source of between-colony variation in cuticular hydrocarbons.
Related JoVE Video
Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS.
J. Biol. Chem.
PUBLISHED: 07-09-2013
Show Abstract
Hide Abstract
The bacterial iron-sulfur cluster (isc) operon is an essential machine that is highly conserved from bacteria to primates and responsible for iron-sulfur cluster biogenesis. Among its components are the genes for the desulfurase IscS that provides sulfur for cluster formation, and a specialized ferredoxin (Fdx) whose role is still unknown. Preliminary evidence suggests that IscS and Fdx interact but nothing is known about the binding site and the role of the interaction. Here, we have characterized the interaction using a combination of biophysical tools and mutagenesis. By modeling the Fdx·IscS complex based on experimental restraints we show that Fdx competes for the binding site of CyaY, the bacterial ortholog of frataxin and sits in a cavity close to the enzyme active site. By in vivo mutagenesis in bacteria we prove the importance of the surface of interaction for cluster formation. Our data provide the first structural insights into the role of Fdx in cluster assembly.
Related JoVE Video
Changes in the hemagglutinin of H5N1 viruses during human infection--influence on receptor binding.
Virology
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process.
Related JoVE Video
Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes.
Annu. Rev. Biochem.
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
Predicting protein-binding affinities of small molecules, even closely related ones, is a formidable challenge in biomolecular recognition and medicinal chemistry. A thermodynamic approach to optimizing affinity in protein-ligand interactions requires knowledge and understanding of how altering the structure of a small molecule will be manifested in protein-binding enthalpy and entropy changes; however, there is a relative paucity of such detailed information. In this review, we examine two strategies commonly used to increase ligand potency. The first of these involves introducing a cyclic constraint to preorganize a small molecule in its biologically active conformation, and the second entails adding nonpolar groups to a molecule to increase the amount of hydrophobic surface that is buried upon binding. Both of these approaches are motivated by paradigms suggesting that protein-binding entropy changes should become more favorable, but paradoxes can emerge that defy conventional wisdom.
Related JoVE Video
Rapid mixing kinetic techniques.
Methods Mol. Biol.
PUBLISHED: 06-05-2013
Show Abstract
Hide Abstract
Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution.
Related JoVE Video
Multicomponent Assembly Processes for the Synthesis of Diverse Yohimbine and Corynanthe Alkaloid Analogues.
ACS Comb Sci
PUBLISHED: 06-04-2013
Show Abstract
Hide Abstract
A strategy involving a Mannich-type multicomponent assembly process followed by a 1,3-dipolar cycloaddition has been developed for the rapid and efficient construction of parent heterocyclic scaffolds bearing indole and isoxazolidine rings. These key intermediates were then readily elaborated using well-established protocols for refunctionalization and cross-coupling to access a diverse 180-member library of novel pentacyclic and tetracyclic compounds related to the Yohimbine and Corynanthe alkaloids. Several other new multicomponent assembly processes were developed to access dihydro-?-carboline-fused benzodiazepines, pyrimidinediones, and rutaecarpine derivatives.
Related JoVE Video
Receptor binding by an H7N9 influenza virus from humans.
Nature
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
Of the 132 people known to have been infected with H7N9 influenza viruses in China, 37 died, and many were severely ill. Infection seems to have involved contact with infected poultry. We have examined the receptor-binding properties of this H7N9 virus and compared them with those of an avian H7N3 virus. We find that the human H7 virus has significantly higher affinity for ?-2,6-linked sialic acid analogues (human receptor) than avian H7 while retaining the strong binding to ?-2,3-linked sialic acid analogues (avian receptor) characteristic of avian viruses. The human H7 virus does not, therefore, have the preference for human versus avian receptors characteristic of pandemic viruses. X-ray crystallography of the receptor-binding protein, haemagglutinin (HA), in complex with receptor analogues indicates that both human and avian receptors adopt different conformations when bound to human H7 HA than they do when bound to avian H7 HA. Human receptor bound to human H7 HA exits the binding site in a different direction to that seen in complexes formed by HAs from pandemic viruses and from an aerosol-transmissible H5 mutant. The human-receptor-binding properties of human H7 probably arise from the introduction of two bulky hydrophobic residues by the substitutions Gln226Leu and Gly186Val. The former is shared with the 1957 H2 and 1968 H3 pandemic viruses and with the aerosol-transmissible H5 mutant. We conclude that the human H7 virus has acquired some of the receptor-binding characteristics that are typical of pandemic viruses, but its retained preference for avian receptor may restrict its further evolution towards a virus that could transmit efficiently between humans, perhaps by binding to avian-receptor-rich mucins in the human respiratory tract rather than to cellular receptors.
Related JoVE Video
Efficiencies of fragmentation of glycosaminoglycan chloramides of the extracellular matrix by oxidizing and reducing radicals: potential site-specific targets in inflammation?
Free Radic. Biol. Med.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
Hypochlorous acid and its conjugate base, hypochlorite ions, produced under inflammatory conditions, may produce chloramides of glycosaminoglycans, these being significant components of the extracellular matrix (ECM). This may occur through the binding of myeloperoxidase directly to the glycosaminoglycans. The N-Cl group in the chloramides is a potential selective target for both reducing and oxidizing radicals, leading possibly to more efficient and damaging fragmentation of these biopolymers relative to the parent glycosaminoglycans. To investigate the effect of the N-Cl group, we used ionizing radiation to produce quantifiable concentrations of the reducing radicals, hydrated electron and superoxide radical, and also of the oxidizing radicals, hydroxyl, carbonate, and nitrogen dioxide, all of which were reacted with hyaluronan and heparin and their chloramides in this study. PAGE gels calibrated for molecular weight allowed the consequent fragmentation efficiencies of these radicals to be calculated. Hydrated electrons were shown to produce fragmentation efficiencies of 100 and 25% for hyaluronan chloramide (HACl) and heparin chloramide (HepCl), respectively. The role of the sulfate group in heparin in the reduction of fragmentation can be rationalized using mechanisms proposed by M.D. Rees et al. (J. Am. Chem. Soc.125:13719-13733; 2003), in which the initial formation of an amidyl radical leads rapidly to a C-2 radical on the glucosamine moiety. This is 100% efficient at causing glycosidic bond breakage in HACl but only 25% efficient in HepCl, the role of the sulfate group being to favor the nonfragmentary routes for the C-2 radical. The weaker reducing agent, the superoxide radical, did not cause fragmentation of either HACl or HepCl although kinetic reactivity had been demonstrated in earlier studies. Experiments using the oxidizing radicals, hydroxyl and carbonate, both potential in vivo species, showed significant increases in fragmentation efficiencies for both HACl and HepCl, relative to the parent molecules. The carbonate radical was shown to be involved in site-specific reactions at the N-Cl groups, reacting via abstraction of Cl, to produce the same amidyl radical produced by one-electron reductants such as the hydrated electron. As for the hydrated electrons, the data support fragmentation efficiencies of 100 and 29% for reaction of carbonate radicals at N-Cl for HACl and HepCl, respectively. For the weaker oxidant, nitrogen dioxide, no fragmentation was observed, probably because of a low kinetic reactivity and low reduction potential. It seems likely therefore that the N-Cl group can direct damage to extracellular matrix glycosaminoglycan chloramides, which may be produced under inflammatory conditions. The in vivo species, the carbonate radical, is also much more likely to be site-specific in its reactions with such components of the ECM than the hydroxyl radical.
Related JoVE Video
Behavioral responses of California sea lions to mid-frequency (3250-3450 Hz) sonar signals.
Mar. Environ. Res.
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Military sonar has the potential to negatively impact marine mammals. To investigate factors affecting behavioral disruption in California sea lions (Zalophus californianus), fifteen sea lions participated in a controlled exposure study using a simulated tactical sonar signal (1 s duration, 3250-3450 Hz) as a stimulus. Subjects were placed into groups of three and each group received a stimulus exposure of 125, 140, 155, 170, or 185 dB re: 1 ?Pa (rms). Each subject was trained to swim across an enclosure, touch a paddle, and return to the start location. Sound exposures occurred at the mid-point of the enclosure. Control and exposure sessions were run consecutively and each consisted of ten, 30-s trials. The occurrence and severity of behavioral responses were used to create acoustic dose-response and dose-severity functions. Age of the subject significantly affected the dose-response relationship, but not the dose-severity relationship. Repetitive exposures did not affect the dose-response relationship.
Related JoVE Video
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency.
Cell Rep
PUBLISHED: 05-03-2013
Show Abstract
Hide Abstract
The design of effective cell replacement therapies requires detailed knowledge of how embryonic stem cells form primary tissues, such as mesoderm or neurectoderm that later become skeletal muscle or nervous system. Members of the T-box transcription factor family are key in the formation of these primary tissues, but their underlying molecular activities are poorly understood. Here, we define in vivo genome-wide regulatory inputs of the T-box proteins Brachyury, Eomesodermin, and VegT, which together maintain neuromesodermal stem cells and determine their bipotential fates in frog embryos. These T-box proteins are all recruited to the same genomic recognition sites, from where they activate genes involved in stem cell maintenance and mesoderm formation while repressing neurogenic genes. Consequently, their loss causes embryos to form an oversized neural tube with no mesodermal derivatives. This collaboration between T-box family members thus ensures the continuous formation of correctly proportioned neural and mesodermal tissues in vertebrate embryos during axial elongation.
Related JoVE Video
The postsubiculum and spatial learning: the role of postsubicular synaptic activity and synaptic plasticity in hippocampal place cell, object, and object-location memory.
J. Neurosci.
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
Visual landmarks exert stimulus control over spatial behavior and the spatially tuned firing of place, head-direction, and grid cells in the rodent. However, the neural site of convergence for representations of landmarks and representations of space has yet to be identified. A potential site of plasticity underlying associations with landmarks is the postsubiculum. To test this, we blocked glutamatergic transmission in the rat postsubiculum with CNQX, or NMDA receptor-dependent plasticity with d-AP5. These infusions were sufficient to block evoked potentials from the lateral dorsal thalamus and long-term depression following tetanization of this input to the postsubiculum, respectively. In a second experiment, CNQX disrupted the stability of rat hippocampal place cell fields in a familiar environment. In a novel environment, blockade of plasticity with d-AP5 in the postsubiculum did not block the formation of a stable place field map following a 6 h delay. In a final behavioral experiment, postsubicular infusions of both compounds blocked object-location memory in the rat, but did not affect object recognition memory. These results suggest that the postsubiculum is necessary for the recognition of familiar environments, and that NMDA receptor-dependent plasticity in the postsubiculum is required for the formation of new object-place associations that support recognition memory. However, plasticity in the postsubiculum is not necessary for the formation of new spatial maps.
Related JoVE Video
Forced smoking abstinence: not enough for smoking cessation.
JAMA Intern Med
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Millions of Americans are forced to quit smoking as they enter tobacco-free prisons and jails, but most return to smoking within days of release. Interventions are needed to sustain tobacco abstinence after release from incarceration.
Related JoVE Video
Receptor binding by a ferret-transmissible H5 avian influenza virus.
Nature
PUBLISHED: 04-05-2013
Show Abstract
Hide Abstract
Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA-receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.
Related JoVE Video
Studies of long chain lipids in insects by high temperature gas chromatography and high temperature gas chromatography-mass spectrometry.
J Chromatogr A
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
The organic compounds occurring naturally on the cuticles (surfaces) of insects are important for insect communication, help to act as protective water barriers and are useful in chemical taxonomy. Typically the cuticular lipids are only studied by gas chromatography-mass spectrometry (GC-MS) of hexane or pentane extracts, so the normal limitations of GC-MS makes it perhaps unsurprising that compounds with more than about 35 carbon atoms have only rarely been reported. Here we show by high temperature (HT) GC and HTGC-MS of extracts of eleven species of insects from nine genera, that longer chain compounds are actually common. Wax esters and triacylglycerides are virtually ubiquitous in such extracts, but long chain (>C35) hydrocarbons also sometimes occur. Whilst the latter have occasionally been reported previously from mass spectrometry studies, the use of the HTGC combination with MS allowed even some isobaric isomers to be separated and thus more complete lipid distributions to be monitored. Since the physical properties of cuticular compounds depend on this composition of the mixtures, such differences may influence the water loss rates of the insects, amongst other effects. In addition, the high molecular weight compound profiles may allow species to be more easily differentiated, one from another. It would be interesting to apply these methods to examination of the cuticular lipids of insects on a more routine basis, ideally in combination with MALDI-TOF-MS and imaging methods.
Related JoVE Video
Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis.
Brain Behav. Immun.
PUBLISHED: 03-01-2013
Show Abstract
Hide Abstract
The purpose of this study was to examine whether exercise training reduced inflammation and symptomology in a mouse model of colitis. We hypothesized that moderate forced treadmill running (FTR) or voluntary wheel running (VWR) would reduce colitis symptoms and colon inflammation in response to dextran sodium sulfate (DSS). Male C57Bl/6J mice were randomized to sedentary, moderate intensity FTR (8-12 m/min, 40 min, 6 weeks, 5x/week), or VWR (30 days access to wheels). DSS was given at 2% (w/v) in drinking water over 5 days. Mice discontinued exercise 24 h prior to and during DSS treatment. Colons were harvested on Days 6, 8 and 12 in FTR and Day 8 post-DSS in VWR experiments. Contrary to our hypothesis, we found that moderate FTR exacerbated colitis symptomology and inflammation as measured by significant (p<0.05) increases in diarrhea and IL-6, IL-1?, IL-17 colon gene expression. We also observed higher mortality (3/10 died vs. 0/10, p=0.07) in the FTR/DSS group. In contrast, VWR alleviated colitis symptoms and reduced inflammatory gene expression in the colons of DSS-treated mice (p<0.05). While DSS treatment reduced food/fluid intake and body weight, there was a tendency for FTR to exacerbate, and for VWR to attenuate, this effect. FTR (in the absence of DSS) increased gene expression of the chemokine and antibacterial protein CCL6 suggesting that FTR altered gut homeostasis that may be related to the exaggerated response to DSS. In conclusion, we found that FTR exacerbated, whereas VWR attenuated, symptoms and inflammation in response to DSS.
Related JoVE Video
Total synthesis of (-)-dihydroprotolichesterenic acid via diastereoselective conjugate addition to chiral fumarates.
Tetrahedron Lett.
PUBLISHED: 02-11-2013
Show Abstract
Hide Abstract
A diastereoselective conjugate addition of a variety of monoorganocuprates, Li[RCuI], to chiral fumarates to provide funtionalized succinates has been developed. The utility of this reaction is demonstrated in a concise total synthesis of (-)-dihydroprotolichesterenic acid that required only four steps and proceeded in an overall 31% yield.
Related JoVE Video
Functional connectivity between the thalamus and postsubiculum: analysis of evoked responses elicited by stimulation of the laterodorsal thalamic nucleus in anesthetized rats.
Hippocampus
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
The laterodorsal nucleus (LDN) of the thalamus provides a prominent afferent projection to the postsubiculum (dorsal presubiculum). To characterize synaptic transmission in this pathway, we placed stimulating electrodes in the LDN and recorded fEPSPs elicited in the postsubiculum of urethane-anesthetized rats. LDN stimulation elicited a source-sink dipole between the deep and superficial layers of the postsubiculum, respectively, consistent with anatomical evidence for the termination of thalamic afferents in the superficial layers of the structure, and the existence of deep layer neurons with apical dendrites extending into these layers. Postsubicular fEPSPs were typically 0.5-1.0 mV in amplitude, with a peak latency of approximately 6 ms. Consistent with anatomical observations, the short onset latency of fEPSPs elicited by LDN stimulation, and their ability to follow a 60-Hz train of stimulation, indicate that the projection is monosynaptic. Paired-pulse stimulation revealed pronounced paired-pulse depression that was maximal at 100 ms, suggesting that initial release probabilities are high at LDN-postsubiculum synapses, in common with many neocortical pathways. A conventional tetanus protocol that yields LTP in hippocampal pathways had no effect on postsubicular fEPSPs, but long-term depression could be induced by 60-Hz stimulation. Drug infusion studies revealed that synaptic transmission in the LDN-postsubiculum projection is predominantly AMPA-receptor mediated. Rats were implanted with indwelling infusion cannulae targeting the postsubiculum, and, after a recovery period, were anaesthetized withurethane, and implanted with stimulating and recording electrodes. Infusion of CNQX almost completely abolished postsubicular fEPSPs, whereas D-AP5 had little effect. However, 60-Hz LTD was blocked by D-AP5 infusion, revealing that this form of synaptic plasticity is NMDA-receptor dependent.
Related JoVE Video
Design of inhibitors of influenza virus membrane fusion: synthesis, structure-activity relationship and in vitro antiviral activity of a novel indole series.
Antiviral Res.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
The fusion of virus and endosome membranes is an essential early stage in influenza virus infection. The low pH-induced conformational change which promotes the fusogenic activity of the haemagglutinin (HA) is thus an attractive target as an antiviral strategy. The anti-influenza drug Arbidol is representative of a class of antivirals which inhibits HA-mediated membrane fusion by increasing the acid stability of the HA. In this study two series of indole derivatives structurally related to Arbidol were designed and synthesized to further probe the foundation of its antiviral activity and develop the basis for a structure-activity relationship (SAR). Ethyl 5-(hydroxymethyl)-1-methyl-2-(phenysulphanylmethyl)-1H-indole-3-carboxylate (15) was identified as one of the most potent inhibitors and more potent than Arbidol against certain subtypes of influenza A viruses. In particular, 15 exhibited a much greater affinity and preference for binding group 2 than group 1 HAs, and exerted a greater stabilising effect, in contrast to Arbidol. The results provide the basis for more detailed SAR studies of Arbidol binding to HA; however, the greater affinity for binding HA was not reflected in a comparable increase in antiviral activity of 15, apparently reflecting the complex nature of the antiviral activity of Arbidol and its derivatives.
Related JoVE Video
Social support and smoking abstinence among incarcerated adults in the United States: a longitudinal study.
BMC Public Health
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
In the United States, tobacco use among prisoners is nearly three times that of the general population. While many American prisons and jails are now tobacco-free, nearly all inmates return to smoking as soon as they are released back into the community.
Related JoVE Video
Do the honeybee pathogens Nosema ceranae and deformed wing virus act synergistically?
Environ Microbiol Rep
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
The honeybee pathogens Nosema ceranae and deformed wing virus (DWV) cause the collapse of honeybee colonies. Therefore, it is plausible that these two pathogens act synergistically to increase colony losses, since N.ceranae causes damage to the mid-gut epithelial ventricular cells and actively suppresses the honeybees immune response, either of which could increase the virulence of viral pathogens within the bee. To test this hypothesis we exploited 322 Hawaiian honeybee colonies for which DWV prevalence and load is known. We determined via PCR that N.ceranae was present in 89-95% of these colonies, with no Nosema apis being detected. We found no significant difference in spore counts in colonies infected with DWV and those in which DWV was not detected, either on any of the four islands or across the entire honeybee population. Furthermore, no significant correlation between DWV loads (?CT levels) and N.ceranae spore counts was found, so these two pathogens are not acting synergistically. Although the Hawaiian honeybees have the highest known prevalence of N.ceranae in the world, with average number of spores been 2.7 million per bee, no acute Nosema related problems i.e. large-scale colony deaths, have been reported by Hawaiian beekeepers.
Related JoVE Video
Self-assembly and conformational heterogeneity of the AXH domain of ataxin-1: an unusual example of a chameleon fold.
Biophys. J.
PUBLISHED: 01-20-2013
Show Abstract
Hide Abstract
Ataxin-1 is a human protein responsible for spinocerebellar ataxia type 1, a hereditary disease associated with protein aggregation and misfolding. Essential for ataxin-1 aggregation is the anomalous expansion of a polyglutamine tract near the protein N-terminus, but the sequence-wise distant AXH domain modulates and contributes to the process. The AXH domain is also involved in the nonpathologic functions of the protein, including a variety of intermolecular interactions with other cellular partners. The domain forms a globular dimer in solution and displays a dimer of dimers arrangement in the crystal asymmetric unit. Here, we have characterized the domain further by studying its behavior in the crystal and in solution. We solved two new structures of the domain crystallized under different conditions that confirm an inherent plasticity of the AXH fold. In solution, the domain is present as a complex equilibrium mixture of monomeric, dimeric, and higher molecular weight species. This behavior, together with the tendency of the AXH fold to be trapped in local conformations, and the multiplicity of protomer interfaces, makes the AXH domain an unusual example of a chameleon protein whose properties bear potential relevance for the aggregation properties of ataxin-1 and thus for disease.
Related JoVE Video
Evaluating the use of Apo-neocarzinostatin as a cell penetrating protein.
Protein Eng. Des. Sel.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Protein-ligand complex neocarzinostatin (NCS) is a small, thermostable protein-ligand complex that is able to deliver its ligand cargo into live mammalian cells where it induces DNA damage. Apo-NCS is able to functionally display complementarity determining regions loops, and has been hypothesised to act as a cell-penetrating protein, which would make it an ideal scaffold for cell targeting, and subsequent intracellular delivery of small-molecule drugs. In order to evaluate apo-NCS as a cell penetrating protein, we have evaluated the efficiency of its internalisation into live HeLa cells using matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry and fluorescence microscopy. Following incubation of cells with apo-NCS, we observed no evidence of internalisation.
Related JoVE Video
Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.
Psychoneuroendocrinology
PUBLISHED: 01-05-2013
Show Abstract
Hide Abstract
The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1?, IL-1?, TNF-? and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD.
Related JoVE Video
Cluster and Fold Stability of E. coli ISC-Type Ferredoxin.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Iron-sulfur clusters are essential protein prosthetic groups that provide their redox potential to several different metabolic pathways. Formation of iron-sulfur clusters is assisted by a specialised machine that comprises, among other proteins, a ferredoxin. As a first step to elucidate the precise role of this protein in cluster assembly, we have studied the factors governing the stability and the dynamic properties of E. coli ferredoxin using different spectroscopic techniques. The cluster-loaded protein is monomeric and well structured with a flexible C-terminus but is highly oxygen sensitive so that it readily loses the cluster leading to an irreversible unfolding under aerobic conditions. This process is slowed down by reducing conditions and high ionic strengths. NMR relaxation experiments on the cluster-loaded protein also show that, once the cluster is in place, the protein forms a globular and relatively rigid domain. These data indicate that the presence of the iron-sulfur cluster is the switch between a functional and a non-functional state.
Related JoVE Video
Transcriptome characterisation of the ant Formica exsecta with new insights into the evolution of desaturase genes in social hymenoptera.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Despite the recent sequencing of seven ant genomes, no genomic data are available for the genus Formica, an important group for the study of eusocial traits. We sequenced the transcriptome of the ant Formica exsecta with the 454 FLX Titanium technology from a pooled sample of workers from 70 Finnish colonies.
Related JoVE Video
Bupropion for adults with attention-deficit hyperactivity disorder: meta-analysis of randomized, placebo-controlled trials.
Psychiatry Clin. Neurosci.
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
The aim of this study was to systematically review the efficacy, acceptability and tolerability of bupropion in comparison to placebo. Only randomized-controlled trials were included in the meta-analysis.
Related JoVE Video
Tandem Electrocyclic Ring Opening/Radical Cyclization: Application to the Total Synthesis of Cribrostatin 6.
Tetrahedron
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
A concise total synthesis ofcribrostatin 6 (1), an antimicrobial and antineoplastic agent,was accomplished using a tandem electrocyclic ring opening/radical cyclization sequence. Specifically, intermediate4 underwent a 4?-electrocyclic ring opening, radical cyclization, and homolytic aromatic substitution sequence followed by an oxidation to afford the natural product1in one pot. Owing to the rapid buildup of complexity in the key step, 1 could be synthesized from commercially available starting materials in only four linear steps. Application of this chemistry to the concise syntheses of analogs of cribrostatin 6 (1) is also reported.
Related JoVE Video
Highly dispersed palladium(II) in a defective metal-organic framework: application to C-H activation and functionalization.
J. Am. Chem. Soc.
PUBLISHED: 11-28-2011
Show Abstract
Hide Abstract
High reversibility during crystallization leads to relatively defect-free crystals through repair of nonperiodic inclusions, including those derived from impurities. Microporous coordination polymers (MCPs) can achieve a high level of crystallinity through a related mechanism whereby coordination defects are repaired, leading to single crystals. In this work, we discovered and exploited the fact that this process is far from perfect for MCPs and that a minority ligand that is coordinatively identical to but distinct in shape from the majority linker can be inserted into the framework, resulting in defects. The reaction of Zn(II) with 1,4-benzenedicarboxylic acid (H(2)BDC) in the presence of small amounts of 1,3,5-tris(4-carboxyphenyl)benzene (H(3)BTB) leads to a new crystalline material, MOF-5(O(h)), that is nearly identical to MOF-5 but has an octahedral morphology and a number of defect sites that are uniquely functionalized with dangling carboxylates. The reaction with Pd(OAc)(2) impregnates the metal ions, creating a heterogeneous catalyst with ultrahigh surface area. The Pd(II)-catalyzed phenylation of naphthalene within Pd-impregnated MOF-5(O(h)) demonstrates the potential utility of an MCP framework for modulating the reactivity and selectivity of such transformations. Furthermore, this novel synthetic approach can be applied to different MCPs and will provide scaffolds functionalized with catalytically active metal species.
Related JoVE Video
Libraries of 2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-amine derivatives via a multicomponent assembly process/1,3-dipolar cycloaddition strategy.
ACS Comb Sci
PUBLISHED: 11-10-2011
Show Abstract
Hide Abstract
A Mannich-type multicomponent assembly process/1,3-dipolar cycloaddition strategy has been developed for the rapid and efficient construction of a parent tetrahydroisoquinoline fused isoxazolidine scaffold, which was subsequently functionalized using well-established protocols to access a diverse 70-membered library of novel 2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline-2-amine derivatives.
Related JoVE Video
Diversity Oriented Synthesis: Concise Entry to Novel Derivatives of Yohimbine and Corynanthe Alkaloids.
Tetrahedron Lett.
PUBLISHED: 10-31-2011
Show Abstract
Hide Abstract
A novel MCAP-cycloaddition sequence has been applied to the facile synthesis of ?-carboline intermediates to gain rapid access to novel derivatives of yohimbine-like and corynanthe-like compounds that may be easily diversified by cross-coupling reactions and N-derivatizations to generate small compound libraries.
Related JoVE Video
Protein-ligand interactions: thermodynamic effects associated with increasing nonpolar surface area.
J. Am. Chem. Soc.
PUBLISHED: 10-27-2011
Show Abstract
Hide Abstract
Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and Ac-pTyr-Xaa-Asn derived tripeptides in which the Xaa residue is an ?,?-cycloaliphatic amino acid that varies in ring size from three- to seven-membered. Although the six- and seven-membered ring analogs are approximately equipotent, binding affinities of those having three- to six-membered rings increase incrementally with ring size because increasingly more favorable binding enthalpies dominate increasingly less favorable binding entropies, a finding consistent with an enthalpy-driven hydrophobic effect. Crystallographic analysis reveals that the only significant differences in structures of the complexes are in the number of van der Waals contacts between the domain and the methylene groups in the Xaa residues. There is a positive correlation between buried nonpolar surface area and binding free energy and enthalpy, but not with ?C(p). Displacing a water molecule from a protein-ligand interface is not necessarily reflected in a favorable change in binding entropy. These findings highlight some of the fallibilities associated with commonly held views of relationships of structure and energetics in protein-ligand interactions and have significant implications for ligand design.
Related JoVE Video
A population-based study of health service deficits for US adults with asthma.
J Asthma
PUBLISHED: 10-04-2011
Show Abstract
Hide Abstract
Asthma prevalence in the United States is higher than it is in many other countries and its impact in terms of healthcare expenditures and morbidity and mortality is staggering. In the United States, many groups bear a disproportionate burden of asthma. Understanding the epidemiology of adult asthma and deficits in health care can identify opportunities for improving care and effectively managing resources.
Related JoVE Video
Scope of the organocatalysed asymmetric reductive amination of ketones with trichlorosilane.
Org. Biomol. Chem.
PUBLISHED: 09-29-2011
Show Abstract
Hide Abstract
A highly active organocatalyst has been shown to affect the asymmetric reductive amination of ketones producing both aromatic and aliphatic amines. At 1 mol% catalyst loading, a series of structurally diverse chiral amines were quickly and economically prepared with good enantioselectivity and generally useful yield. The efficient synthesis of the calcimimetic (+)-NPS R-568 (67%, 89% ee) demonstrated the synthetic applicability of this methodology.
Related JoVE Video
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF DIVERSELY FUNCTIONALIZED NITROGEN HETEROCYCLES.
Heterocycles
PUBLISHED: 09-15-2011
Show Abstract
Hide Abstract
Several multicomponent assembly processes have been developed for the synthesis of intermediates that may be elaborated by a variety of cyclizations to generate a diverse array of highly functionalized heterocycles from readily-available starting materials. The overall approach enables the efficient preparation of libraries of small molecules derived from fused, privileged scaffolds.
Related JoVE Video
Novel approach to the lundurine alkaloids: synthesis of the tetracyclic core.
Org. Lett.
PUBLISHED: 09-02-2011
Show Abstract
Hide Abstract
The tetracyclic core of the lundurine family of alkaloids has been synthesized by a novel approach that features a double ring-closing olefin metathesis to form the five-and eight-membered rings.
Related JoVE Video
Toward a total synthesis of the stemofoline alkaloids: Advancement of a 1,3-dipolar cycloaddition strategy.
Tetrahedron Lett.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Novel, intramolecular 1,3-dipolar cycloadditions of azomethine ylides have been applied to the synthesis of functionalized core structures of the stemofoline alkaloids. In an effort to maximize the efficiency of this key transformation in the context of an eventual total synthesis of these complex natural products, a number of strategic modifications to the cycloaddition substrate were investigated. These collective efforts have provided useful insights into the operative, regiochemical control elements for 1,3-dipolar cycloadditions leading to stemofoline alkaloids. A potential intermediate in the synthesis of these alkaloids was prepared.
Related JoVE Video
Multicomponent assembly strategies for the synthesis of diverse tetrahydroisoquinoline scaffolds.
Org. Lett.
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
Several novel multicomponent assembly processes have been developed for the rapid and efficient assembly of various heterocyclic scaffolds bearing a tetrahydroisoquinoline core, each of which allows for facile derivatization to access a diverse array of compounds. This work led to the serendipitous discovery of a new method for the synthesis of a fused quinazolone ring system, which was applied to a one-step total synthesis of the quinazolinocarboline alkaloid rutaecarpine.
Related JoVE Video
Exercise, inflammation and aging.
Aging Dis
PUBLISHED: 08-03-2011
Show Abstract
Hide Abstract
Aging results in chronic low grade inflammation that is associated with increased risk for disease, poor physical functioning and mortality. Strategies that reduce age-related inflammation may improve the quality of life in older adults. Regular exercise is recommended for older people for a variety of reasons including increasing muscle mass and reducing risk for chronic diseases of the heart and metabolic systems. Only recently has exercise been examined in the context of inflammation. This review will highlight key randomized clinical trial evidence regarding the influence of exercise training on inflammatory biomarkers in the elderly. Potential mechanisms will be presented that might explain why exercise may exert an anti-inflammatory effect.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.