JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Improved multiple displacement amplification (iMDA) and ultraclean reagents.
BMC Genomics
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA).
Related JoVE Video
Differentiating microbial forensic qPCR target and control products by electrospray ionization mass spectrometry.
Biosecur Bioterror
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Molecular bioforensic research is dependent on rapid and sensitive methods such as real-time PCR (qPCR) for the identification of microorganisms. The use of synthetic positive control templates containing small modifications outside the primer and probe regions is essential to ensure all aspects of the assay are functioning properly, including the primers and probes. However, a typical qPCR or reverse transcriptase qPCR (qRT-PCR) assay is limited in differentiating products generated from positive controls and biological samples because the fluorescent probe signals generated from each type of amplicon are indistinguishable. Additional methods used to differentiate amplicons, including melt curves, secondary probes, and amplicon sequencing, require significant time to implement and validate and present technical challenges that limit their use for microbial forensic applications. To solve this problem, we have developed a novel application of electrospray ionization mass spectrometry (ESI-MS) to rapidly differentiate qPCR amplicons generated with positive biological samples from those generated with synthetic positive controls. The method has sensitivity equivalent to qPCR and supports the confident and timely determination of the presence of a biothreat agent that is crucial for policymakers and law enforcement. Additionally, it eliminates the need for time-consuming methods to confirm qPCR results, including development and validation of secondary probes or sequencing of small amplicons. In this study, we demonstrate the effectiveness of this approach with microbial forensic qPCR assays targeting multiple biodefense agents (bacterial, viral, and toxin) for the ability to rapidly discriminate between a positive control and a positive sample.
Related JoVE Video
Transmission of aerosolized seasonal H1N1 influenza A to ferrets.
PLoS ONE
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Influenza virus is a major cause of morbidity and mortality worldwide, yet little quantitative understanding of transmission is available to guide evidence-based public health practice. Recent studies of influenza non-contact transmission between ferrets and guinea pigs have provided insights into the relative transmission efficiencies of pandemic and seasonal strains, but the infecting dose and subsequent contagion has not been quantified for most strains. In order to measure the aerosol infectious dose for 50% (aID(50)) of seronegative ferrets, seasonal influenza virus was nebulized into an exposure chamber with controlled airflow limiting inhalation to airborne particles less than 5 µm diameter. Airborne virus was collected by liquid impinger and Teflon filters during nebulization of varying doses of aerosolized virus. Since culturable virus was accurately captured on filters only up to 20 minutes, airborne viral RNA collected during 1-hour exposures was quantified by two assays, a high-throughput RT-PCR/mass spectrometry assay detecting 6 genome segments (Ibis T5000™ Biosensor system) and a standard real time RT-qPCR assay. Using the more sensitive T5000 assay, the aID(50) for A/New Caledonia/20/99 (H1N1) was approximately 4 infectious virus particles under the exposure conditions used. Although seroconversion and sustained levels of viral RNA in upper airway secretions suggested established mucosal infection, viral cultures were almost always negative. Thus after inhalation, this seasonal H1N1 virus may replicate less efficiently than H3N2 virus after mucosal deposition and exhibit less contagion after aerosol exposure.
Related JoVE Video
Simultaneous identification of mycobacterial isolates to the species level and determination of tuberculosis drug resistance by PCR followed by electrospray ionization mass spectrometry.
J. Clin. Microbiol.
PUBLISHED: 12-29-2010
Show Abstract
Hide Abstract
Mycobacterium tuberculosis that is resistant to both isoniazid (INH) and rifampin (RIF) is spreading. It has become a public health problem in part because the standard culture methods used to determine the appropriate treatment regimen for patients often take months following the presumptive diagnosis of tuberculosis. Furthermore, the misidentification of nontuberculosis mycobacteria (NTM) in patients presumably suffering from tuberculosis results in additional human and health care costs. The mechanisms of resistance for several drugs used to treat Mycobacterium tuberculosis are well understood and therefore should be amenable to determination by rapid molecular methods. We describe here the use of PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) in an assay that simultaneously determines INH and RIF resistance in Mycobacterium tuberculosis and identifies and determines the species of NTMs. The assay panel included 16 primer pairs in eight multiplexed reactions and was validated using a collection of 1,340 DNA samples from cultured specimens collected in the New York City area, the Republic of Georgia, and South Africa. Compared with phenotypic data, the PCR/ESI-MS assay had 89.3% sensitivity and 95.8% specificity in the determination of INH resistance and 96.3% sensitivity and 98.6% specificity in the determination of RIF resistance. Based on a set of 264 previously characterized liquid culture specimens, the PCR/ESI-MS method had 97.0% sensitivity and 99.9% specificity for determination of NTM identity. The assay also provides information on ethambutol, fluoroquinolone, and diarylquinoline resistance and lineage-specific polymorphisms, to yield highly discriminative digital signatures potentially suitable for epidemiology tracking.
Related JoVE Video
New technology for rapid molecular diagnosis of bloodstream infections.
Expert Rev. Mol. Diagn.
PUBLISHED: 05-15-2010
Show Abstract
Hide Abstract
Technologies for the correct and timely diagnosis of bloodstream infections are urgently needed. Molecular diagnostic methods have yet to have a major impact on the diagnosis of bloodstream infections; however, new methods are being developed that are beginning to address key issues. In this article, we discuss the key needs and objectives of molecular diagnostics for bloodstream infections and review some of the currently available methods and how these techniques meet key needs. We then focus on a new method that combines nucleic acid amplification with mass spectrometry in a novel approach to molecular diagnosis of bloodstream infections.
Related JoVE Video
A "silent culture-negative" abdominal aortic mycotic aneurysm: Rapid detection of Bartonella species using PCR and high-throughput mass spectrometry.
Hawaii Med J
PUBLISHED: 04-20-2010
Show Abstract
Hide Abstract
A gram-negative, rod-shaped microorganism was detected in a 69-year-old man suffering from chronic back pain but otherwise exhibiting no signs of infection. The bacterium could not be identified using any routine diagnostic modality. A research use only application utilizing PCR and Mass Spectrometry was performed on nucleic acid extracted from the tissue sample. These studies resulted in the implication of Bartonella quintana as the underlying cause of the infection. B. quintana is not a well-known cause of an abdominal aortic mycotic aneurysm. This article will discuss the B. quintana infection, its diagnosis and treatment, and reinforce the potential of B. quintana as a possible etiology in mycotic aneurysms that show no apparent indications of infection. It will also explore the potential use of polymerase chain reaction detected by electrospray ionization mass spectrometry (PCR/ESI-MS) to help identify B. quintana in a situation where other conventional methods prove non-informative.
Related JoVE Video
Base composition profiling of human mitochondrial DNA using polymerase chain reaction and direct automated electrospray ionization mass spectrometry.
Anal. Chem.
PUBLISHED: 08-19-2009
Show Abstract
Hide Abstract
We describe an automated system for high-resolution profiling of human mitochondrial DNA (mtDNA) based upon multiplexed polymerase chain reaction (PCR) followed by desolvation and direct analysis using electrospray ionization mass spectrometry (PCR/ESI-MS). The assay utilizes 24 primer pairs that amplify targets in the mtDNA control region, including the hypervariable regions typically sequenced in a forensic analysis. Profiles consisting of product base compositions can be stored in a database, compared to each other, and compared to sequencing results. Approximately 94% of discriminating information obtained by sequencing is retained with this technique. The assay is more discriminating than sequencing minimum HV1 and HV2 regions because it interrogates more of the mitochondrial genome. A profile compared to a population database can be subjected to the same statistics used for assessing the significance of concordant mtDNA sequences. The assay is not hindered by length heteroplasmy, can directly analyze template mixtures, and has a sensitivity of <25 pg of total DNA per reaction. Analysis of 3331 independent trials of the same sample over 28 months produced an average mass measurement uncertainty of 10.1 +/- 8.0 ppm, with >99% of trials producing a full profile with automated analysis. The technique has direct application to analysis of forensic biological evidence.
Related JoVE Video
Molecular genotyping of microbes by multilocus PCR and mass spectrometry: a new tool for hospital infection control and public health surveillance.
Methods Mol. Biol.
PUBLISHED: 06-13-2009
Show Abstract
Hide Abstract
We describe a new technology for the molecular genotyping of microbes using a platform known commercially as the Ibis T5000. The technology couples multilocus polymerase chain reaction (PCR) to electrospray ionization/mass spectrometry (PCR/ESI-MS) and was developed to provide rapid, high-throughput, and precise digital analysis of either isolated colonies or original patient specimens on a platform suitable for use in hospital or reference diagnostic laboratories or public health settings. The PCR/ESI-MS method measures digital molecular signatures from microbes, enabling real-time epidemiological surveillance and outbreak investigation. This technology will facilitate understanding of the pathways by which infectious organisms spread and will enable appropriate interventions on a time frame not previously achievable.
Related JoVE Video
Rapid and high-throughput pan-Orthopoxvirus detection and identification using PCR and mass spectrometry.
PLoS ONE
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit.
Related JoVE Video
Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.
PLoS ONE
Show Abstract
Hide Abstract
Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry.
Related JoVE Video
Detection of heartworm infection in dogs via PCR amplification and electrospray ionization mass spectrometry of nucleic acid extracts from whole blood samples.
Am. J. Vet. Res.
Show Abstract
Hide Abstract
To develop and evaluate a rapid and accurate assay involving PCR amplification and electrospray ionization mass spectrometry of nucleic acid extracts from whole blood samples for the detection of Dirofilaria immitis infection in dogs.
Related JoVE Video
Exhaled aerosol transmission of pandemic and seasonal H1N1 influenza viruses in the ferret.
PLoS ONE
Show Abstract
Hide Abstract
Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected donor ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa.
Related JoVE Video
Automated analysis of sequence polymorphism in STR alleles by PCR and direct electrospray ionization mass spectrometry.
Forensic Sci Int Genet
Show Abstract
Hide Abstract
Short tandem repeats (STRs) are the primary genetic markers used for the analysis of biological samples in forensic and human identity testing. The discrimination power of a combination of STRs is sufficient in many human identity testing comparisons unless the evidence is substantially compromised and/or there are insufficient relatives or a potential mutation may have arisen in kinship analyses. An automated STR assay system that is based on electrospray ionization mass spectrometry (ESI-MS) has been developed that can increase the discrimination power of some of the CODIS core STR loci and thus provide more information in typical and challenged samples and cases. Data from the ESI-MS STR system is fully backwards compatible with existing STR typing results generated by capillary electrophoresis. In contrast, however, the ESI-MS analytical system also reveals nucleotide polymorphisms residing within the STR alleles. The presence of these polymorphisms expands the number of alleles at a locus. Population studies were performed on the 13 core CODIS STR loci from African Americans, Caucasians and Hispanics capturing both the length of the allele, as well as nucleotide variations contained within repeat motifs or flanking regions. Such additional polymorphisms were identified in 11 of the 13 loci examined whereby several nominal length alleles were subdivided. A substantial increase in heterozygosity was observed, with close to or greater than 5% of samples analyzed being heterozygous with equal-length alleles in at least one of five of the core CODIS loci. This additional polymorphism increases discrimination power significantly, whereby the seven most polymorphic STR loci have a discrimination power equivalent to the 10 most discriminating of the CODIS core loci. An analysis of substructure among the three population groups revealed a higher ? than would be observed compared with using alleles designated by nominal length, i.e., repeats solely. Two loci, D3S1358 and vWA produced ? estimates of 0.0477 and 0.0234, respectively, when the expanded allele complement (i.e., nominal allele and SNPs) was considered compared to 0.0145 and 0.01266, respectively when only nominal repeat number was considered. These differences may indicate underlying population specific allele distributions exist within these populations. A system of nomenclature has been developed that facilitates the databasing, searching and analyses of these combined data forms.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.