JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cloning and characterization of a hybridoma secreting a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-specific monoclonal antibody and recombinant F(ab).
Toxins (Basel)
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Smokeless tobacco products have been associated with increased risks of oro-pharyngeal cancers, due in part to the presence of tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These potent carcinogens are formed during tobacco curing and as a result of direct nitrosation reactions that occur in the oral cavity. In the current work we describe the isolation and characterization of a hybridoma secreting a high-affinity, NNK-specific monoclonal antibody. A structurally-related benzoyl derivative was synthesized to facilitate coupling to NNK-carrier proteins, which were characterized for the presence of the N-nitroso group using the Griess reaction, and used to immunize BALB/c mice. Splenocytes from mice bearing NNK-specific antibodies were used to create hybridomas. Out of four, one was selected for subcloning and characterization. Approximately 99% of the monoclonal antibodies from this clone were competitively displaced from plate-bound NNKB conjugates in the presence of free NNK. The affinity of the monoclonal antibody to the NNKB conjugates was Kd = 2.93 nM as determined by surface plasmon resonance. Free nicotine was a poor competitor for the NNKB binding site. The heavy and light chain antibody F(ab) fragments were cloned, sequenced and inserted in tandem into an expression vector, with an FMDV Furin 2A cleavage site between them. Expression in HEK 293 cells revealed a functional F(ab) with similar binding features to that of the parent hybridoma. This study lays the groundwork for synthesizing transgenic tobacco that expresses carcinogen-sequestration properties, thereby rendering it less harmful to consumers.
Related JoVE Video
V?2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-07-2011
Show Abstract
Hide Abstract
Natural killer T cell antigen receptors (NKT TCRs) recognize lipid-based antigens (Ags) presented by CD1d. Although the TCR ?-chain is invariant, NKT TCR V? exhibits greater diversity, with one (V?11) and three (V?8, V?7, and V?2) V? chains in humans and mice, respectively. With the exception of the V?2 NKT TCR, NKT TCRs possess canonical tyrosine residues within complementarity determining region (CDR) 2? that are critical for CD1d binding. Thus, how V?2 NKT TCR docks with CD1d-Ag was unclear. Despite the absence of the CDR2?-encoded tyrosine residues, we show that the V?2 NKT TCR engaged CD1d-Ag in a similar manner and with a comparable affinity and energetic footprint to the manner observed for the V?8.2 and V?7 NKT TCRs. Accordingly, the germline-encoded regions of the TCR ?-chain do not exclusively dictate the innate NKT TCR-CD1d-Ag docking mode. Nevertheless, clear fine specificity differences for the CD1d-Ag existed between the V?2 NKT TCR and the V?8.2 and V?7 NKT TCRs, with the V?2 NKT TCR exhibiting greater sensitivity to modifications to the glycolipid Ag. Furthermore, within the V?2 NKT TCR-CD1d-?GalCer complex, the CDR2? loop mediated fewer contacts with CD1d, whereas the CDR1? and CDR3? loops contacted CD1d to a much greater extent compared with most V?11, V?8.2, and V?7 NKT TCRs. Accordingly, there is a greater interplay between the germline- and nongermline-encoded loops within the TCR ?-chain of the V?2 NKT TCR that enables CD1d-Ag ligation.
Related JoVE Video
A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells.
Immunity
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.
Related JoVE Video
Adaptability of the semi-invariant natural killer T-cell receptor towards structurally diverse CD1d-restricted ligands.
EMBO J.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
The semi-invariant natural killer (NK) T-cell receptor (NKTcr) recognises structurally diverse glycolipid antigens presented by the monomorphic CD1d molecule. While the alpha-chain of the NKTcr is invariant, the beta-chain is more diverse, but how this diversity enables the NKTcr to recognise diverse antigens, such as an alpha-linked monosaccharide (alpha-galactosylceramide and alpha-galactosyldiacylglycerol) and the beta-linked trisaccharide (isoglobotriaosylceramide), is unclear. We demonstrate here that NKTcrs, which varied in their beta-chain usage, recognised diverse glycolipid antigens with a similar binding mode on CD1d. Nevertheless, the NKTcrs recognised distinct epitopic sites within these antigens, including alpha-galactosylceramide, the structurally similar alpha-galactosyldiacylglycerol and the very distinct isoglobotriaosylceramide. We also show that the relative roles of the CDR loops within the NKTcr beta-chain varied as a function of the antigen. Thus, while NKTcrs characteristically use a conserved docking mode, the NKTcr beta-chain allows these cells to recognise unique aspects of structurally diverse CD1d-restricted ligands.
Related JoVE Video
T cell receptor CDR2 beta and CDR3 beta loops collaborate functionally to shape the iNKT cell repertoire.
Immunity
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Mouse type I natural killer T cell receptors (iNKT TCRs) use a single V alpha 14-J alpha 18 sequence and V beta s that are almost always V beta 8.2, V beta 7, or V beta 2, although the basis of this differential usage is unclear. We showed that the V beta bias occurred as a consequence of the CDR2 beta loops determining the affinity of the iNKT TCR for CD1d-glycolipids, thus controlling positive selection. Within a conserved iNKT-TCR-CD1d docking framework, these inherent V beta-CD1d affinities are further modulated by the hypervariable CDR3 beta loop, thereby defining a functional interplay between the two iNKT TCR CDR beta loops. These V beta biases revealed a broadly hierarchical response in which V beta 8.2 > V beta 7 > V beta 2 in the recognition of diverse CD1d ligands. This restriction of the iNKT TCR repertoire during thymic selection paradoxically ensures that each peripheral iNKT cell recognizes a similar spectrum of antigens.
Related JoVE Video
Synthesis and evaluation of 3- and 4-deoxy and -fluoro analogs of the immunostimulatory glycolipid, KRN7000.
Bioorg. Med. Chem. Lett.
PUBLISHED: 03-31-2009
Show Abstract
Hide Abstract
Four 3- and 4-deoxy and -fluorogalactosyl ceramides were synthesized, and their ability to stimulate iNKT cells, based on levels of IL-2 production, was assessed in three NKT cell receptor hybridomas. In two of the hybridomas, 1.2 and 2H4, all of the analogs were immunostimulatory, while in the 1.4 hybridoma only the 4-fluoro analog led to the production of significant levels of IL-2.
Related JoVE Video
Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex.
J. Biol. Chem.
Show Abstract
Hide Abstract
Human and mouse type I natural killer T (NKT) cells respond to a variety of CD1d-restricted glycolipid antigens (Ags), with their NKT cell antigen receptors (NKT TCRs) exhibiting reciprocal cross-species reactivity that is underpinned by a conserved NKT TCR-CD1d-Ag docking mode. Within this common docking footprint, the NKT TCR recognizes, to varying degrees of affinity, a range of Ags. Presently, it is unclear whether the human NKT TCRs will mirror the generalities underpinning the fine specificity of the mouse NKT TCR-CD1d-Ag interaction. Here, we assessed human NKT TCR recognition against altered glycolipid ligands of ?-galactosylceramide (?-GalCer) and have determined the structures of a human NKT TCR in complex with CD1d-4,4?-deoxy-?-GalCer and CD1d-?-GalCer with a shorter, di-unsaturated acyl chain (C20:2). Altered glycolipid ligands with acyl chain modifications did not affect the affinity of the human NKT TCR-CD1d-Ag interaction. Surprisingly, human NKT TCR recognition is more tolerant to modifications at the 4-OH position in comparison with the 3-OH position of ?-GalCer, which contrasts the fine specificity of the mouse NKT TCR-CD1d-Ag recognition (4-OH > 3-OH). The fine specificity differences between human and mouse NKT TCRs was attributable to differing interactions between the respective complementarity-determining region 1? loops and the Ag. Accordingly, germline encoded fine-specificity differences underpin human and mouse type I NKT TCR interactions, which is an important consideration for therapeutic development and NKT cell physiology.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.