JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
EVpedia: A Community Web Portal for Extracellular Vesicles Research.
Dae-Kyum Kim, Jaewook Lee, Sae Rom Kim, Dong-Sic Choi, Yae Jin Yoon, Ji Hyun Kim, Gyeongyun Go, Dinh Nhung, Kahye Hong, Su Chul Jang, Si-Hyun Kim, Kyong-Su Park, Oh Youn Kim, Hyun Taek Park, Ji Hye Seo, Elena Aikawa, Monika Baj-Krzyworzeka, Bas W M van Balkom, Mattias Belting, Lionel Blanc, Vincent Bond, Antonella Bongiovanni, Francesc E Borràs, Luc Buée, Edit I Buzás, Lesley Cheng, Aled Clayton, Emanuele Cocucci, Charles S Dela Cruz, Dominic M Desiderio, Dolores Di Vizio, Karin Ekström, Juan M Falcon-Perez, Chris Gardiner, Bernd Giebel, David W Greening, Julia Christina Gross, Dwijendra Gupta, An Hendrix, Andrew F Hill, Michelle M Hill, Esther Nolte-'t Hoen, Do Won Hwang, Jameel Inal, Medicharla V Jagannadham, Muthuvel Jayachandran, Young-Koo Jee, Malene Jørgensen, Kwang Pyo Kim, Yoon-Keun Kim, Thomas Kislinger, Cecilia Lässer, Dong Soo Lee, Hakmo Lee, Johannes van Leeuwen, Thomas Lener, Ming-Lin Liu, Jan Lötvall, Antonio Marcilla, Suresh Mathivanan, Andreas Möller, Jess Morhayim, François Mullier, Irina Nazarenko, Rienk Nieuwland, Diana N Nunes, Ken Pang, Jaesung Park, Tushar Patel, Gabriella Pocsfalvi, Hernando Del Portillo, Ulrich Putz, Marcel I Ramirez, Marcio L Rodrigues, Tae-Young Roh, Felix Royo, Susmita Sahoo, Raymond Schiffelers, Shivani Sharma, Pia Siljander, Richard J Simpson, Carolina Soekmadji, Philip Stahl, Allan Stensballe, Ewa Stępień, Hidetoshi Tahara, Arne Trummer, Hadi Valadi, Laura J Vella, Sun Nyunt Wai, Kenneth Witwer, María Yáñez-Mó, Hyewon Youn, Reinhard Zeidler, Yong Song Gho.
Bioinformatics
PUBLISHED: 11-13-2014
Show Abstract
Hide Abstract
Extracellular vesicles are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for extracellular vesicle-related publications and vesicular components are currently challenging.
Related JoVE Video
Outer membrane vesicles mediate transport of biologically active Vibrio cholerae cytolysin (VCC) from V. cholerae strains.
PLoS ONE
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric ?-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied.
Related JoVE Video
Elevated recombinant clyA gene expression in the uropathogenic Escherichia coli strain 536, a clue to explain pathoadaptive mutations in a subset of extraintestinal E. coli strains.
BMC Microbiol.
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Analysis of the Escherichia coli collection of reference strains (ECOR) for the presence of the gene locus clyA, which encodes the pore-forming protein ClyA (cytolysin A), revealed that a non-functional clyA locus is common among certain extraintestinal pathogenic E. coli (ExPEC). In fact, all 15 ECOR group B2 strains and several additionally examined extraintestinal pathogenic (uropathogenic (UPEC) and neonatal meningitis (NBM)) E. coli strains contained various ?clyA alleles.
Related JoVE Video
Efficient quantification and characterization of bacterial outer membrane derived nano-particles with flow cytometric analysis.
Int. J. Med. Microbiol.
PUBLISHED: 07-27-2014
Show Abstract
Hide Abstract
There currently exists no efficient and easy method for size profiling and counting of membranous nano-scale particles, such as bacterial outer membrane vesicles (OMVs). We present here a cost-effective and fast method capable of profiling and counting small sample volumes of nano-scale membranous vesicles with standard laboratory equipment without the need for any washing steps. OMV populations of different bacterial species are compared and even subpopulations of OMVs can be identified after a simple labelling procedure. Counting is possible over three orders of magnitude without any changes to the protocol. Protein contaminations do not alter the described measurements.
Related JoVE Video
Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-?B activation.
Infect. Immun.
PUBLISHED: 07-14-2014
Show Abstract
Hide Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. We recently demonstrated that outer membrane vesicles (OMVs) disseminated by A. actinomycetemcomitans could deliver multiple proteins, including biologically active cytolethal distending toxin (CDT), into the cytosol of HeLa cells and human gingival fibroblasts (HGF). In the present work, we have used immunoelectron and confocal microscopy analysis and fluorescently labeled vesicles to further investigate mechanisms for A. actinomycetemcomitans OMV-mediated delivery of bacterial antigens to these host cells. Our results supported that OMVs were internalized into the perinuclear region of HeLa cells and HGF. Colocalization analysis revealed that internalized OMVs colocalized with the endoplasmic reticulum and carried antigens, detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells. Consistent with OMV internalization mediating intracellular antigen exposure, the vesicles acted as strong inducers of cytoplasmic peptidoglycan sensor NOD1- and NOD2-dependent NF-?B activation in human embryonic kidney cells. Moreover, NOD1 was the main sensor of OMV-delivered peptidoglycan in myeloid THP1 cells, contributing to the overall inflammatory responses induced by the vesicles. This work reveals a role of A. actinomycetemcomitans OMVs as a trigger of innate immunity via carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs).
Related JoVE Video
Outer membrane vesicles are vehicles for the delivery of Vibrio tasmaniensis virulence factors to oyster immune cells.
Environ. Microbiol.
PUBLISHED: 06-08-2014
Show Abstract
Hide Abstract
Vibrio?tasmaniensis?LGP32, a facultative intracellular pathogen of oyster haemocytes, was shown here to release outer membrane vesicles (OMVs) both in the extracellular milieu and inside haemocytes. Intracellular release of OMVs occurred inside phagosomes of intact haemocytes having phagocytosed few vibrios as well as in damaged haemocytes containing large vacuoles heavily loaded with LGP32. The OMV proteome of LGP32 was shown to be rich in hydrolases (25%) including potential virulence factors such as proteases, lipases, phospholipases, haemolysins and nucleases. One major caseinase/gelatinase named Vsp for vesicular serine protease was found to be specifically secreted through OMVs in which it is enclosed. Vsp was shown to participate in the virulence phenotype of LGP32 in oyster experimental infections. Finally, OMVs were highly protective against antimicrobial peptides, increasing the minimal inhibitory concentration of polymyxin B by 16-fold. Protection was conferred by OMV titration of polymyxin B but did not depend on the activity of Vsp or another OMV-associated protease. Altogether, our results show that OMVs contribute to the pathogenesis of LGP32, being able to deliver virulence factors to host immune cells and conferring protection against antimicrobial peptides.
Related JoVE Video
Vibrio cholerae utilizes direct sRNA regulation in expression of a biofilm matrix protein.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Vibrio cholerae biofilms contain exopolysaccharide and three matrix proteins RbmA, RbmC and Bap1. While much is known about exopolysaccharide regulation, little is known about the mechanisms by which the matrix protein components of biofilms are regulated. VrrA is a conserved, 140-nt sRNA of V. cholerae, whose expression is controlled by sigma factor ?E. In this study, we demonstrate that VrrA negatively regulates rbmC translation by pairing to the 5' untranslated region of the rbmC transcript and that this regulation is not stringently dependent on the RNA chaperone protein Hfq. These results point to VrrA as a molecular link between the ?E-regulon and biofilm formation in V. cholerae. In addition, VrrA represents the first example of direct regulation of sRNA on biofilm matrix component, by-passing global master regulators.
Related JoVE Video
Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.
Mol. Microbiol.
PUBLISHED: 11-13-2013
Show Abstract
Hide Abstract
In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed TfoS in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.
Related JoVE Video
Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides.
PLoS Pathog.
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP.
Related JoVE Video
Prevotella jejuni sp. nov., isolated from the small intestine of a child with coeliac disease.
Int. J. Syst. Evol. Microbiol.
PUBLISHED: 06-21-2013
Show Abstract
Hide Abstract
Five obligately anaerobic, Gram-stain-negative, saccharolytic and proteolytic, non-spore-forming bacilli (strains CD3?:?27, CD3?:?28(T), CD3?:?33, CD3?:?32 and CD3?:?34) are described. All five strains were isolated from the small intestine of a female child with coeliac disease. Cells of the five strains were short rods or coccoid cells with longer filamentous forms seen sporadically. The organisms produced acetic acid and succinic acid as major metabolic end products. Phylogenetic analysis based on comparative 16S rRNA gene sequence analysis revealed close relationships between CD3?:?27, CD3?:?28(T) and CD3?:?33, between CD3?:?32 and Prevotella histicola CCUG 55407(T), and between CD3?:?34 and Prevotella melaninogenica CCUG 4944B(T). Strains CD3?:?27, CD3?:?28(T) and CD3?:?33 were clearly different from all recognized species within the genus Prevotella and related most closely to but distinct from P. melaninogenica. Based on 16S rRNA, RNA polymerase ?-subunit (rpoB) and 60 kDa chaperonin protein subunit (cpn60) gene sequencing, and phenotypic, chemical and biochemical properties, strains CD3?:?27, CD3?:?28(T) and CD3?:?33 are considered to represent a novel species within the genus Prevotella, for which the name Prevotella jejuni sp. nov. is proposed. Strain CD3?:?28(T) (?=?CCUG 60371(T)?=?DSM 26989(T)) is the type strain of the proposed novel species. All five strains were able to form homologous aggregates, in which tube-like structures were connecting individual bacteria cells. The five strains were able to bind to human intestinal carcinoma cell lines at 37 °C.
Related JoVE Video
Staphylococcus aureus ?-toxin-dependent induction of host cell death by membrane-derived vesicles.
PLoS ONE
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs), which analogously to outer membrane vesicles (OMVs) of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, ?-toxin (?-hemolysin; Hla) to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active ?-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, ?-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.
Related JoVE Video
Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors.
Nature
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.
Related JoVE Video
Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains.
Infect. Immun.
PUBLISHED: 11-14-2011
Show Abstract
Hide Abstract
The most recently discovered secretion pathway in gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here, we demonstrate the presence of a functionally active T6SS in wild-type V. cholerae O1 strains, as evidenced by the secretion of the T6SS substrate Hcp, which required several gene products encoded within the putative vas gene cluster. Our analyses showed that the T6SS of wild-type V. cholerae O1 strain A1552 was functionally activated when the bacteria were grown under high-osmolarity conditions. The T6SS was also active when the bacteria were grown under low temperature (23°C), suggesting that the system may be important for the survival of the bacterium in the environment. A test of the interbacterial virulence of V. cholerae strain A1552 against an Escherichia coli K-12 strain showed that it was strongly enhanced under high osmolarity and that it depended on the hcp genes. Interestingly, we found that the newly recognized osmoregulatory protein OscR plays a role in the regulation of T6SS gene expression and secretion of Hcp from V. cholerae O1 strains.
Related JoVE Video
Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans.
Infect. Immun.
PUBLISHED: 10-24-2011
Show Abstract
Hide Abstract
Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.
Related JoVE Video
Monitoring surface chemical changes in the bacterial cell wall: multivariate analysis of cryo-x-ray photoelectron spectroscopy data.
J. Biol. Chem.
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
Gram-negative bacteria can alter the composition of the lipopolysaccharide (LPS) layer of the outer membrane as a response to different growth conditions and external stimuli. These alterations can, for example, promote attachment to surfaces and biofilm formation. The changes occur in the outermost layer of the cell and may consequently influence interactions between bacterial cells and surrounding host tissue, as well as other surfaces. Microscopic analyses, fractionation of bacterial cells, or other traditional microbiological assays have previously been used to study these alterations. These methods can, however, be time consuming and do not always give detailed chemical information about the bacterial cell surface. We here present an analytical method that provides chemical information on the outermost portion of bacterial cells with respect to protein, peptidoglycan, lipid, and polysaccharide content. The method involves cryo-x-ray photoelectron spectroscopy analyses of the outermost portion (within ?10 nm of the surface) of intact bacterial cells followed by a multivariate curve resolution analysis of carbon spectra. It can be used as a tool for characterizing and monitoring variations in the chemical composition of bacterial cell walls or of isolated outer membrane vesicles, variations that result from e.g. mutations or external stimuli. The method enabled us to predict accurately the alterations in polysaccharide content and surface chemistries of a set of well characterized Escherichia coli LPS mutants. The described approach may moreover be applied to monitor surface chemical composition of other biological samples.
Related JoVE Video
Biochemical and functional characterization of Helicobacter pylori vesicles.
Mol. Microbiol.
PUBLISHED: 08-05-2010
Show Abstract
Hide Abstract
Helicobacter pylori can cause peptic ulcer disease and/or gastric cancer. Adhesion of bacteria to the stomach mucosa is an important contributor to the vigour of infection and resulting virulence. H. pylori adheres primarily via binding of BabA adhesins to ABO/Lewis b (Leb) blood group antigens and the binding of SabA adhesins to sialyl-Lewis x/a (sLex/a) antigens. Similar to most Gram-negative bacteria, H. pylori continuously buds off vesicles and vesicles derived from pathogenic bacteria often include virulence-associated factors. Here we biochemically characterized highly purified H. pylori vesicles. Major protein and phospholipid components associated with the vesicles were identified with mass spectroscopy and nuclear magnetic resonance. A subset of virulence factors present was confirmed by immunoblots. Additional functional and biochemical analysis focused on the vesicle BabA and SabA adhesins and their respective interactions to human gastric epithelium. Vesicles exhibit heterogeneity in their protein composition, which were specifically studied in respect to the BabA adhesin. We also demonstrate that the oncoprotein, CagA, is associated with the surface of H. pylori vesicles. Thus, we have explored mechanisms for intimate H. pylori vesicle-host interactions and found that the vesicles carry effector-promoting properties that are important to disease development.
Related JoVE Video
Studies on a novel serine protease of a ?hapA?prtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model.
PLoS ONE
PUBLISHED: 07-19-2010
Show Abstract
Hide Abstract
Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8?prtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8?prtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL).
Related JoVE Video
VrrA mediates Hfq-dependent regulation of OmpT synthesis in Vibrio cholerae.
J. Mol. Biol.
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
OmpT, an outer membrane porin of Vibrio cholerae, is tightly regulated by the organism in response to different environments. Two transcriptional regulators, cAMP receptor protein (CRP) and ToxR, compete at the ompT promoter region. CRP activates ompT transcription by a loop-forming mechanism, while ToxR functions as an antiactivator and repressor, depending on its interplay with CRP. VrrA, a 140-nt small noncoding RNA in V. cholerae, is controlled by the alternative sigma factor sigma(E). We have demonstrated previously that VrrA represses ompA translation by base-pairing with the 5 region of the mRNA, thereby affecting the release of outer membrane vesicles and modulating the colonization ability of V. cholerae. In this study, we demonstrate that VrrA RNA represses ompT translation by base-pairing with the 5 region of the mRNA and that regulation requires the RNA chaperone protein Hfq. These results add new insight into the regulation of OmpT. In addition to pH/temperature signals via the ToxR regulon and carbon source signals via the cAMP-CRP complex, OmpT is further regulated by signals received via the sigma(E) regulon through VrrA.
Related JoVE Video
Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT) from Campylobacter jejuni.
BMC Microbiol.
PUBLISHED: 10-16-2009
Show Abstract
Hide Abstract
Background: Cytolethal distending toxin (CDT) is one of the well-characterized virulence factors of Campylobacter jejuni, but it is unknown how CDT becomes surface-exposed or is released from the bacterium to the surrounding environment.
Related JoVE Video
Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease.
Am. J. Gastroenterol.
PUBLISHED: 09-15-2009
Show Abstract
Hide Abstract
Alterations in the composition of the microbiota in the intestine may promote development of celiac disease (CD). Using scanning electron microscopy (SEM) we previously demonstrated that rod-shaped bacteria were present on the epithelium of proximal small intestine in children with CD but not in controls. In this study we characterize the microbiota of proximal small intestine in children with CD and controls and identify CD-associated rod-shaped bacteria.
Related JoVE Video
Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains.
PLoS ONE
PUBLISHED: 07-18-2009
Show Abstract
Hide Abstract
The type VI secretion system (T6SS) has emerged as a protein secretion system important to several gram-negative bacterial species. One of the common components of the system is Hcp, initially described as a hemolysin co-regulated protein in a serotype O17 strain of Vibrio cholerae. Homologs to V. cholerae hcp genes have been found in all characterized type VI secretion systems and they are present also in the serotype O1 strains of V. cholerae that are the cause of cholera diseases but seemed to have non-functional T6SS.
Related JoVE Video
Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum.
Environ. Microbiol.
PUBLISHED: 07-14-2009
Show Abstract
Hide Abstract
Type VI protein secretion systems (T6SS) are essential for virulence of several Gram-negative bacteria. In this study, we identified a T6SS in Vibrio anguillarum, a marine bacterium that causes a hemorrhagic septicemia in fish. A partial operon vtsA-H (vibrio type six secretion) was sequenced and shown to encode eight proteins. VtsE-H are signature proteins found in other T6SSs, while VtsA-D are not associated with T6SS studied so far. In-frame deletions were made in each gene. Secretion of a haemolysin-co-regulated-like protein (Hcp), a protein secreted by all studied T6SSs, was decreased in VtsE-H. Unexpectedly, VtsA, VtsC and VtsD activated while VtsB and VtsE-H repressed hcp expression. The T6SS proteins also regulated expression of two extracellular proteases, EmpA and PrtV, but inversely to Hcp expression. This regulation was indirect as T6S positively regulated expression of the stress-response regulator RpoS and the quorum-sensing regulator VanT, which positively regulate protease expression. Moreover, VtsA-H proteins were not needed for virulence but did play a role in various stress responses. Thus, these data characterize a new role for T6S in the ecology of bacteria and we hypothesize this role to be a signal sensing mechanism that modulates the expression of regulators of the general stress response.
Related JoVE Video
Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.
PLoS ONE
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s) to induce interleukin-8 (IL-8) production by human intestinal epithelial cells. The aim was to identify the secreted component(s) of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV.
Related JoVE Video
A novel sRNA that modulates virulence and environmental fitness of Vibrio cholerae.
RNA Biol
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
We recently described the discovery and initial functional characterization of a new sRNA, VrrA, in Vibrio cholerae O1 strain A1552. The VrrA homologs were found in all Vibrio strains whose genome sequences were reported at present. In this article, we summarize the multi-functional features of VrrA in V. cholerae pathogenesis and physiology, especially in relation to the regulation of outer membrane vesicle formation and its consequence in environmental adaptation of the bacterium. As the vrrA gene was not predicted by any of the previous bioinformatics-based genome-wide screenings for sRNA, we discuss the reasons and give suggestion on improving current bioinformatics tools.
Related JoVE Video
Analysis of the sfaX(II) locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon.
Microb. Pathog.
PUBLISHED: 05-13-2009
Show Abstract
Hide Abstract
We describe the expression and regulation of the gene sfaX(II) located near the Sfa(II) fimbrial determinant in the newborn meningitis Escherichia coli (NMEC) isolate IHE3034. sfaX(II) belongs to a gene family, the 17-kDa genes, typically located downstream (300-3000bp) of different fimbrial operons found in E. coli isolates of uropathogenic and newborn meningitis origin. Using transcriptional sfaX(II) reporter gene fusions we found that different environmental conditions commonly affecting expression of fimbrial genes also affected sfaX(II) expression. Analysis of the sfaX(II) transcripts showed that the gene is part of the main fimbrial operon as it is transcribed together with the rest of the fimbrial genes. In addition, the sfaX(II) gene can be expressed from a more proximal promoter and is found to be subject to strong down-regulation by the nucleoid protein H-NS. Studies with an sfaX(II) mutant derivative of IHE3034 did not reveal effects on Sfa(II) fimbrial biogenesis as monitored by e.g. immunofluorescence microscopy. Nevertheless, a mutation in sfaX(II) resulted in altered expression of other surface components. Moreover, we define a new gene, sfaY(II), coding for a putative phosphodiesterase that is located in between the sfaX(II) gene and the fimbrial biogenesis genes. Our studies by ectopic expression of sfaY(II) in Vibrio cholerae showed that the gene product caused reduced biofilm formation and it is proposed that sfaY(II) can influence cyclic-di-GMP turnover in the bacteria. Our findings demonstrate that the operons typical for S-fimbriae of extraintestinal pathogenic E. coli include previously unrecognized novel regulatory genes.
Related JoVE Video
Role of melanin pigment in expression of Vibrio cholerae virulence factors.
Infect. Immun.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
We identified the mutated gene locus in a pigment-overproducing Vibrio cholerae mutant of strain A1552. The deduced gene product is suggested to be an oxidoreductase based on partial homology to putative homogentisate 1,2-dioxygenase in Pseudomonas aeruginosa and Mesorhizobium loti, and we propose that the gene VC1345 in the V. cholerae genome be denoted hmgA in accordance with the nomenclature for other species. The hmgA::mini-Tn5 mutant showed a nonpigmented phenotype after complementation with a plasmid clone carrying the WT hmgA(+) locus. Microarray transcription analysis revealed that expression of hmgA and the neighboring genes encoding a postulated two-component sensor system was growth phase dependent. Results from quantitative reverse transcription-PCR analysis showed that hmgA operon expression was reduced in the rpoS mutant, but pigment production by the WT V. cholerae or the hmgA mutant was not detectably influenced by the stationary-phase regulator RpoS. The pigmented mutant showed increased UV resistance in comparison with the WT strain. Interestingly, the pigment-producing mutant expressed more toxin-coregulated pilus and cholera toxin than WT V. cholerae. Moreover, the hmgA mutant showed a fivefold increase in the ability to colonize the intestines of infant mice. A possible mechanism by which pigment production might cause induction of the ToxR regulon due to generation of hydrogen peroxide was supported by results from tests showing that externally supplied H(2)O(2) led to higher TcpA levels. Taken together, our findings suggest that melanin pigment formation may play a role in V. cholerae virulence factor expression.
Related JoVE Video
Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin.
Mol. Microbiol.
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
Haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly), a putative EHEC virulence factor, belongs to the RTX (repeat-in-toxin) family whose members rapidly inactivate themselves by self-aggregation. By investigating the status of EHEC-Hly secreted extracellularly, we found the toxin both in a free, soluble form and associated, with high tendency and independently of its acylation status, to outer membrane vesicles (OMVs) extruded by EHEC. We compared the interaction of both toxin forms with erythrocytes using scanning electron microscopy and binding assays. The OMV-associated toxin was substantially (80 times) more stable under physiological conditions than the free EHEC-Hly as demonstrated by prolonged haemolytic activity (half-life time 20 h versus 15 min). The haemolysis was preceded by calcium-dependent binding of OMVs carrying EHEC-Hly to erythrocytes; this binding was mediated by EHEC-Hly. We demonstrate that EHEC-Hly is a biologically active cargo in OMVs with dual roles: a cell-binding protein and a haemolysin. These paired functions produce a biologically potent form of the OMV-associated RTX toxin and augment its potential towards target cells. Our findings provide a general concept for stabilization of RTX toxins and open new insights into the biology of these important virulence factors.
Related JoVE Video
Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis.
PLoS ONE
Show Abstract
Hide Abstract
Lipopolysaccharide (LPS) is the major component of the surface of Gram-negative bacteria and its polysaccharide portion is situated at the outermost region. We investigated the relationship between the polysaccharide portion of LPS and biofilm formation using a series of Escherichia coli mutants defective in genes earlier shown to affect the LPS sugar compositions. Biofilm formation by a deep rough LPS mutant, the hldE strain, was strongly enhanced in comparison with the parental strain and other LPS mutants. The hldE strain also showed a phenotype of increased auto-aggregation and stronger cell surface hydrophobicity compared to the wild-type. Similar results were obtained with another deep rough LPS mutant, the waaC strain whose LPS showed same molecular mass as that of the hldE strain. Confocal laser scanning microscopy (CLSM) analysis and biofilm formation assay using DNase I revealed that biofilm formation by the hldE strain was dependent on extracellular DNA. Furthermore, a loss of flagella and an increase in amount of outer membrane vesicles in case of the hldE strain were also observed by transmission electron microscopy and atomic force microscopy, respectively. In addition, we demonstrated that a mutation in the hldE locus, which alters the LPS structure, caused changes in both expression and properties of several surface bacterial factors involved in biofilm formation and virulence. We suggest that the implication of these results should be considered in the context of biofilm formation on abiotic surfaces, which is frequently associated with nosocominal infections such as the catheter-associated infections.
Related JoVE Video
Lachnoanaerobaculum gen. nov., a new genus in the Lachnospiraceae: characterization of Lachnoanaerobaculum umeaense gen. nov., sp. nov., isolated from the human small intestine, and Lachnoanaerobaculum orale sp. nov., isolated from saliva, and reclassific
Int. J. Syst. Evol. Microbiol.
Show Abstract
Hide Abstract
Two novel obligately anaerobic, Gram-stain-positive, saccharolytic and non-proteolytic spore-forming bacilli (strains CD3:22(T) and N1(T)) are described. Strain CD3:22(T) was isolated from a biopsy of the small intestine of a child with coeliac disease, and strain N1(T) from the saliva of a healthy young man. The cells of both strains were observed to be filamentous, approximately 5 to >20 µm long, some of them curving and with swellings. The novel organisms produced H(2)S, NH(3), butyric acid and acetic acid as major metabolic end products. Phylogenetic analyses, based on comparative 16S rRNA gene sequencing, revealed close relationships (98% sequence similarity) between the two isolates, as well as the type strain of Eubacterium saburreum and four other Lachnospiraceae bacterium-/E. saburreum-like organisms. This group of bacteria were clearly different from any of the 19 known genera in the family Lachnospiraceae. While Eubacterium species are reported to be non-spore-forming, reanalysis of E. saburreum CCUG 28089(T) confirmed that the bacterium is indeed able to form spores. Based on 16S rRNA gene sequencing, phenotypic and biochemical properties, strains CD3:22(T) and N1(T) represent novel species of a new and distinct genus, named Lachnoanaerobaculum gen. nov., in the family Lachnospiraceae [within the order Clostridiales, class Clostridia, phylum Firmicutes]. Strain CD3:22(T) (=CCUG 58757(T) =DSM 23576(T)) is the type strain of the type species, Lachnoanaerobaculum umeaense gen. nov., sp. nov., of the proposed new genus. Strain N1(T) (=CCUG 60305(T)=DSM 24553(T)) is the type strain of Lachnoanaerobaculum orale sp. nov. Moreover, Eubacterium saburreum is reclassified as Lachnoanaerobaculum saburreum comb. nov. (type strain CCUG 28089(T) =ATCC 33271(T) =CIP 105341(T) =DSM 3986(T) =JCM 11021(T) =VPI 11763(T)).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.