JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Alternative Effector-Function Profiling Identifies Broad HIV-Specific T-Cell Responses in Highly HIV-Exposed Individuals Who Remain Uninfected.
J. Infect. Dis.
PUBLISHED: 09-23-2014
Show Abstract
Hide Abstract
The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine-like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders.
Related JoVE Video
HIV-1 induces B-cell activation and class switch recombination via spleen tyrosine kinase and c-Jun N-terminal kinase pathways.
AIDS
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Patients infected by the HIV type 1 (HIV-1) frequently show a general deregulation of immune system. A direct influence of HIV-1 particles on B-cell activation, proliferation and B-cell phenotype alterations has been recently described. Moreover, expression of activation-induced cytidinedeaminase (AID) mRNA, which is responsible for class switch recombination (CSR) and somatic hypermutation (SHM), was reported to be overexpressed in B cells exposed to HIV-1.
Related JoVE Video
Isolation and Immobilization of Influenza Virus-Specific N-SA-?-2,3-Gal Receptors Using Magnetic Nanoparticles Coated with Chitosan and Maackia amurensis Lectin.
Appl. Biochem. Biotechnol.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Avian influenza viruses preferentially bind to sialic acid alpha-2,3-galactose (N-SA-?-2,3-Gal) receptors on epithelial cells. Herein, we describe a procedure we have developed for isolation of N-SA-?-2,3-Gal receptors from porcine trachea using magnetic nanoparticles (NPs) coated with chitosan (NP-Ch) and functionalized with Maackia amurensis lectin (NP-lectin). Magnetic nanoparticles were coated with chitosan in a one-step co-precipitation, and then M. amurensis lectin was immobilized covalently using glutaraldehyde. Lectin coated nanoparticles were incubated with sialic acid enriched fraction of tracheal homogenate, and N-SA-?-2,3-Gal receptor was extracted under magnetic field in two cycles. The presence of 66.4 kDa protein was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The interaction of immobilized receptor (NP-Ch-R) with M. amurensis lectin (NP-Ch-R-L) was demonstrated by Fourier transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA).
Related JoVE Video
Silicon particles as trojan horses for potential cancer therapy.
J Nanobiotechnology
PUBLISHED: 07-24-2014
Show Abstract
Hide Abstract
BackgroundPorous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells.ResultsWe present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents.ConclusionsIn our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.
Related JoVE Video
Improved prediction of salvage antiretroviral therapy outcomes using ultrasensitive HIV-1 drug resistance testing.
Clin. Infect. Dis.
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
The clinical relevance of ultrasensitive human immunodeficiency virus type 1 (HIV-1) genotypic resistance testing in antiretroviral treatment (ART)-experienced individuals remains unknown.
Related JoVE Video
Dual RXR Agonists and RAR Antagonists Based on the Stilbene Retinoid Scaffold.
ACS Med Chem Lett
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
Arotinoids containing a C5,C8-diphenylnaphthalene-2-yl ring linked to a (C3-halogenated) benzoic acid via an ethenyl connector (but not the corresponding naphthamides), which are prepared by Horner-Wadsworth-Emmons reaction of naphthaldehydes and benzylphosphonates, display the rather unusual property of being RXR agonists (15-fold induction of the RXR reporter cell line was achieved at 3- to 10-fold lower concentration than 9-cis-retinoic acid) and RAR antagonists as shown by transient transactivation studies. The binding of such bulky ligands suggests that the RXR ligand-binding domain is endowed with some degree of structural elasticity.
Related JoVE Video
Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobiotic Lactobacillus rhamnosus CRL1505: role of Toll-like receptor 2.
Microbiol. Immunol.
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
The present study evaluated the effect of nasally given Lactobacillus rhamnosus CRL1505 on the immunocoagulative response during pneumococcal infection in immunocompetent mice. In addition, we aimed to gain insight into the mechanism involved in the immunomodulatory effect of the L. rhamnosus CRL1505 strain by evaluating the role of TLR2. Results showed that nasally given L. rhamnosus CRL1505 effectively regulates inflammation and hemostatic alterations during the pneumococcal infection. Immunobiotic treatment significantly reduced permeability of the bronchoalveolar-capillary barrier, and general cytotoxicity, decreasing lung tissue damage. The CRL1505 strain improved the production of TNF-?, IFN-?, and IL-10 after pneumococcal challenge. In addition, increased TM and TF expressions were found in lungs of L. rhamnosus CRL1505-treated mice. Moreover, we demonstrated, for the first time, that the TLR2 signaling pathway has a role in the induction of IFN-? and IL-10 and in the reduction of TF. The results also allow us to speculate that a PRR, other than TLR2, may mediate the immunobiotic activity of L. rhamnosus CRL1505 and could explain changes in TNF-? and TM.
Related JoVE Video
Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells.
BMC Microbiol.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized.
Related JoVE Video
Probiotic Lactobacillus strains protect against myelosuppression and immunosuppression in cyclophosphamide-treated mice.
Int. Immunopharmacol.
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
This work evaluated the capacity of two probiotic strains, Lactobacillus casei CRL431 and Lactobacillus rhamnosus CRL1506, to protect against myelosuppression and immunosuppression in cyclophosphamide (Cy)-treated mice. Changes in mature granulocytes and progenitor cells in bone marrow (BM) and blood were studied. In addition, the ability of probiotics to accelerate the recovery of the immune response against the opportunistic pathogen Candida albicans was evaluated. We demonstrated for the first time that the preventive treatment with immunomodulatory lactobacilli such as L. casei CRL431 or L. rhamnosus CRL1506 was able to increase immature myeloid progenitors in the BM, allowing an early recovery of myeloid cells after Cy administration. Probiotic lactobacilli were also capable to induce an early recovery of neutrophils in blood, improve phagocytic cells recruitment to infectious sites and increase the resistance against the opportunistic pathogen C. albicans. Although deeper studies regarding the cellular and molecular mechanisms of probiotic actions are needed, these findings support the idea that strains like CRL431 and CRL1506 may accelerate the recovery of Cy-caused immunosuppression by immunopotentiating myeloid cells. Then, probiotic lactobacilli have the potential to be used as alternatives for lessening chemotherapy-induced immunosuppression in cancer patients.
Related JoVE Video
Extraction and immobilization of SA-?-2,6-Gal receptors on magnetic nanoparticles to study receptor stability and interaction with Sambucus nigra lectin.
Appl. Biochem. Biotechnol.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
The interaction between influenza virus hemagglutinins and host cell with terminal sialic acid linked receptors, SA-?-2,6-Gal for human strains is important to obtain insights into this infectious disease. Sambucus nigra lectin has high affinity for SA-?-2,6-Gal receptors. The goals of this work were: to extract the SA-?-2,6-Gal receptors from porcine airways; to perform receptors immobilization and study their storage stability; and to determine some parameters of interaction between the receptor and S. nigra lectin. The receptor isolation was monitored by means of bound sialic acid (BSAc) detection. A major band of protein at 66.7 kDa was clearly visible in SDS-PAGE assay. Eighty-one percent of isolated glycoproteins were immobilized on magnetic nanoparticles. The kinetics of BSAc storage stability at 4 °C was approximated as the first order reaction with kinetic constant and half-life estimated as 0.062 day(-1) and 11.2 days, respectively. The dissociation constant (K d) calculated from Scatchard's plot was 2.47?×?10(-7) M, and the receptor concentration was equal to 7.92?×?10(-5) M. Procedure for N-SA-?-2,6-Gal -receptors extraction based on their affinity to S. nigra lectin with magnetic nanoparticles, and their immobilization in active form, was not described previously, and may have wide application in designing biosensors or virus removal from areas or contaminated samples.
Related JoVE Video
Immunobiotic lactobacilli reduce viral-associated pulmonary damage through the modulation of inflammation-coagulation interactions.
Int. Immunopharmacol.
PUBLISHED: 01-04-2014
Show Abstract
Hide Abstract
The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.
Related JoVE Video
Dietary supplementation with Lactobacilli improves emergency granulopoiesis in protein-malnourished mice and enhances respiratory innate immune response.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a) protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b) repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c) the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.
Related JoVE Video
Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The course of human immunodeficiency virus type-1 (HIV-1) infection is influenced by a complex interplay between viral and host factors. HIV infection stimulates several proinflammatory genes, such as cyclooxigense-2 (COX-2), which leads to an increase in prostaglandin (PG) levels in the plasma of HIV-1-infected patients. These genes play an indeterminate role in HIV replication and pathogenesis. The effect of prostaglandin E2 (PGE2) on HIV infection is quite controversial and even contradictory, so we sought to determine the role of PGE2 and the signal transduction pathways involved in HIV infection to elucidate possible new targets for antiretrovirals.
Related JoVE Video
Stable HIV-1 integrase diversity during initial HIV-1 RNA Decay suggests complete blockade of plasma HIV-1 replication by effective raltegravir-containing salvage therapy.
Virol. J.
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
There is legitimate concern that minority drug-resistant mutants may be selected during the initial HIV-1 RNA decay phase following antiretroviral therapy initiation, thus undermining efficacy of treatment. The goal of this study was to characterize viral resistance emergence and address viral population evolution during the first phase of viral decay after treatment containing initiation.
Related JoVE Video
Lactobacillus rhamnosus CRL1505 beneficially modulates the immuno-coagulative response after pneumococcal infection in immunocompromised malnourished mice.
Can. J. Microbiol.
PUBLISHED: 08-30-2013
Show Abstract
Hide Abstract
This work evaluated the effect of orally or nasally administered Lactobacillus rhamnosus CRL1505 on the resistance of immunocompromised protein-malnourished mice to pneumococcal infection. In particular, we aimed to gain knowledge of the mechanism involved in the immunomodulatory effect of L. rhamnosus CRL1505 in malnourished hosts by evaluating its impact on the immuno-coagulative response. Malnutrition significantly increased lung tissue damage caused by Streptococcus pneumoniae infection. Lung damage was associated with a deregulated activation of coagulation and an altered inflammatory response. Pneumococcal colonization of lung and bacteremia were significantly reduced (p < 0.05) in malnourished mice receiving the CRL1505 strain. Moreover, mice repleted with supplemental L. rhamnosus CRL1505 showed the least alteration of the alveolar-capillary barrier and cell damage in lungs after the infectious challenge, especially when the CRL1505 strain was administered by nasal route. Besides, mice treated with L. rhamnosus CRL1505 showed an improved respiratory innate immune response and a lower activation of coagulation. The results of this work indicate that L. rhamnosus CRL1505 is able to beneficially modulate the inflammation-coagulation interaction after respiratory infections in malnourished hosts.
Related JoVE Video
Chlorophyll c(CS-170) isolated from Ostreococcus sp. is [7-methoxycarbonyl-8-vinyl]protochlorophyllide a.
Org. Lett.
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
The controversial molecular identification of the so-called chlorophyll cCS-170 has been settled. Despite its relevance as a potential biomarker in the study of eukaryotic picophytoplankton, the structure of this chlorophyll remained so far uncertain. A full characterization by NMR, UV-vis, and ESI-MS is reported, revealing this chlorophyll as [7-methoxycarbonyl-8-vinyl]-protochlorophyllide a.
Related JoVE Video
Draft Genome Sequence of Lactobacillus rhamnosus CRL1505, an Immunobiotic Strain Used in Social Food Programs in Argentina.
Genome Announc
PUBLISHED: 08-17-2013
Show Abstract
Hide Abstract
We report the draft genome sequence of the probiotic Lactobacillus rhamnosus strain CRL1505. This new probiotic strain has been included into official Nutritional Programs in Argentina. The draft genome sequence is composed of 3,417,633 bp with 3,327 coding sequences.
Related JoVE Video
Actin-binding protein drebrin regulates HIV-1-triggered actin polymerization and viral infection.
J. Biol. Chem.
PUBLISHED: 08-07-2013
Show Abstract
Hide Abstract
HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4(+) T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1.
Related JoVE Video
Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection.
BMC Immunol.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before.
Related JoVE Video
Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection.
Int. Immunopharmacol.
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Previously we showed that orally administered Lactobacillus rhamnosus CRL1505 beneficially regulated the balance between pro- and anti-inflammatory mediators in the lungs of poly(I:C)-challenged mice, allowing an effective inflammatory response against the TLR3/RIG-I agonist but at the same time reducing tissue damage. The aim of the present study was to investigate whether oral administration of the CRL1505 strain was able to improve resistance against respiratory syncytial virus (RSV) infection in infant mice and to evaluate the immunological mechanisms involved in the immunobiotic effect. We demonstrated that treatment of 3-week old BALB/c mice with L. rhamnosus CRL1505 significantly reduce lung viral loads and tissue injuries after the challenge with RSV. Moreover, we showed that the protective effect achieved by the CRL1505 strain is related to its capacity to differentially modulate respiratory antiviral immune response. Our results shows that IFN-? and IL-10 secreted in response to L. rhamnosus CRL1505 oral stimulation would modulate the pulmonary innate immune microenvironment conducting to the activation of CD103(+) and CD11b(high) dendritic cells and the generation of CD3(+)CD4(+)IFN-?(+) Th1 cells with the consequent attenuation of the strong and damaging Th2 reactions associated with RSV challenge. Our results indicate that modulation of the common mucosal immune system by immunobiotics could favor protective immunity against respiratory viral pathogens with a high attack rate in early infancy, such as RSV.
Related JoVE Video
Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene.
Neurochem. Res.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated axons with only a borderline impairment in conduction and Rotor-Rod. Plantar muscle reinnervation occurred within 21 days in all mice. Shortly after reinnervation the conduction of P0+/- regenerated axons was markedly slower than WT, however, this difference decayed with time. Nevertheless, after 1 month, regenerated P0+/- axons had longer strength-duration time constant, larger threshold changes during hyperpolarizing electrotonus and longer relative refractory period. Their performance at Rotor-Rod remained also markedly impaired. In contrast, the number and diameter distribution of regenerating myelinated fibers became similar to regenerated WT. Our data suggest that in the presence of heterozygously P0 deficient Schwann cells, regenerating motor axons retain their ability to reinnervate their targets and remyelinate, though their functional recovery is delayed.
Related JoVE Video
Axonal voltage-gated ion channels as pharmacological targets for pain.
Eur. J. Pharmacol.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Upon peripheral nerve injury (caused by trauma or disease process) axons of the dorsal root ganglion (DRG) somatosensory neurons have the ability to sprout and regrow/remyelinate to reinnervate distant target tissue or form a tangled scar mass called a neuroma. This regenerative response can become maladaptive leading to a persistent and debilitating pain state referred to as chronic pain corresponding to the clinical description of neuropathic/chronic inflammatory pain. There is little agreement to what causes peripheral chronic pain other than hyperactivity of the nociceptive DRG neurons which ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage-gated K(+) channels and blockers of hyperpolarization-activated cyclic nucleotide-gated channels that were found to reduce neuronal activity were also found to be effective in neuropathic and inflammatory pain states. The isoforms of these channels present on nociceptive axons have limited specificity. The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation. This drives the need for further development of subtype-specific voltage-gated ion channels modulators, as well as clinically available neurophysiological techniques for monitoring axonal ion channel function in peripheral nerves.
Related JoVE Video
Advanced application of bovine intestinal epithelial cell line for evaluating regulatory effect of lactobacilli against heat-killed enterotoxigenic Escherichia coli-mediated inflammation.
BMC Microbiol.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Previously, a bovine intestinal epithelial cell line (BIE cells) was successfully established. This work hypothesized that BIE cells are useful in vitro model system for the study of interactions of microbial- or pathogen-associated molecular patterns (MAMPs or PAMPs) with bovine intestinal epithelial cells and for the selection of immunoregulatory lactic acid bacteria (LAB).
Related JoVE Video
Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P? gene.
Exp. Neurol.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
The relationship between dysmyelination and the progression of neuropathy in Charcot-Marie-Tooth (CMT) hereditary polyneuropathy is unclear. Mice heterozygously deficient for the myelin protein P? gene (P?+/-) are indistinguishable from wild-type (WT) at birth and then develop a slowly progressing demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P?+/- mice as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from plantar muscles and the sciatic nerve, respectively. In 7-month old mice, there was recovery of CMAP and CNAP following RS. When mice were about one year old, electrophysiological recovery following RS was incomplete and in P?+/- also associated with morphological signs of partial Wallerian degeneration. The effect of RS was larger in P?+/- as compared to age-matched WT. When mice were about 2 years old, the effect was stronger and became similar between WT and P?+/-. RS was followed by a transient hyperpolarization, which decreased with age and was smaller in P0+/- than in WT. Our data suggest that both aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P?+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may lead to a lethal Na(+) overload in some axons.
Related JoVE Video
TNF-? may mediate inflammasome activation in the absence of bacterial infection in more than one way.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Members of the mammalian nucleotide binding domain, leucine-rich repeat (LRR)-containing receptor family of proteins are key modulators of innate immunity regulating inflammation. To date, microbial pathogen-associated molecules and toxins have been identified as key triggers of activation of inflammasomes. However, recently, environmental, and neurodegenerative stimuli have been identified that lead to IL-1? release by means of inflammasomes. IL-1? plays a crucial role during brain inflammation, and caspase-1 appears to be a key modulator of IL-1? bioactivity and the consequent transcriptional regulation of gene expression within the brain during inflammation. We show here that exposure of a human neuroblastoma cell line (SK-N-MC cells) to TNF-? promotes ROS-mediated caspase-1 activation and IL-1? secretion. The involvement of NF-?B in the regulation of IL-1? synthesis is investigated through specific inhibition of this transcription factor. The effect of TNF-? was abolished in the presence of ROS inhibitors as NAC, or DPI. Remarkably, SK-N-MC cells do not respond to ATP stimulation in spite of P2X7R expression. These results provide a mechanism by which danger signals and particulate matter mediate inflammation via the inflammasome in the absence of microbial infection.
Related JoVE Video
HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain.
Related JoVE Video
Regulation of retinoid-mediated signaling involved in skin homeostasis by RAR and RXR agonists/antagonists in mouse skin.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used topical application of selective agonists and antagonists for retinoic acid receptors (RARs) ? and ? and retinoid-X receptors (RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RAR? and RXR. ATRA and the RAR? agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1) and the chemokines Ccl17 and Ccl22. In contrast, a RAR? agonist strongly decreased the expression of ATRA-synthesis enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RAR? and RAR? subtypes possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin. We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RAR? and/or RAR? may promote skin-based inflammation and dysregulation of skin barrier properties.
Related JoVE Video
Coagulation activation in an experimental pneumonia model in malnourished mice.
Can. J. Physiol. Pharmacol.
PUBLISHED: 12-14-2011
Show Abstract
Hide Abstract
Malnutrition induces a decrease in immunity that affects the ability of the organism to deal with an infectious challenge. The clotting system is considered a branch of immunity and its activation is important in the pathogenesis of an infectious disease. This work was conducted to determine coagulation modifications in malnourished hosts before and during infection. Weaned mice were malnourished via a protein-free diet. Well-nourished control mice (WNC) consumed a balanced conventional diet. Malnourished mice (MN) and WNC were challenged intranasally with Streptococcus pneumoniae. Blood, bronchoalveolar lavages (BAL), and lung samples were taken at different times post infection. The results were that MN showed altered hemostatic tests and fibrin(ogen) deposits in the lung. Thus, an increase in thrombin-antithrombin complexes (TATc) in plasma and BAL was observed. In the MN group, infection induced a rise in TATc in plasma and BAL and increased plasma fibrinogen and fibrin(ogen) deposits in the lung. A decrease in activated protein C and antithrombin in BAL and an early decrease followed by an increase in plasma Factor VIII were also observed. Thus, malnourishment induced a procoagulant state increased by infection. This is the first work that presents results of an exhaustive study of coagulation in malnourished hosts before and during an infection.
Related JoVE Video
Definition of the viral targets of protective HIV-1-specific T cell responses.
J Transl Med
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
The efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity.
Related JoVE Video
Nerve excitability changes related to axonal degeneration in amyotrophic lateral sclerosis: Insights from the transgenic SOD1(G127X) mouse model.
Exp. Neurol.
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
Motor nerve excitability studies by "threshold tracking" in amyotrophic lateral sclerosis (ALS) revealed heterogeneous abnormalities in motor axon membrane function possibly depending on disease stage. It remains unclear to which extent the excitability deviations reflect a pathogenic mechanism in ALS or are merely a consequence of axonal degeneration. We investigated motor axon excitability in presymptomatic and symptomatic SOD1(G127X) mutants, a mouse model of ALS with late clinical onset and rapid disease progression. After clinical onset, there was a rapid loss of functional motor units associated with an increase in rheobase and strength-duration time constant, an increase in refractoriness at the expense of the superexcitability, larger than normal threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus with impaired accommodation and reduction of the input conductance. These abnormalities progressed rapidly over a few days and were associated with morphological evidence of ongoing axonal degeneration. Presymptomatic mice with unaltered motor performance at rotor-rod measurement also had an increase in refractoriness at the expense of the superexcitability during the recovery cycle. This was, however, associated with smaller than normal deviations during threshold electrotonus, and a steeper resting current-threshold slope indicating slight axonal depolarization in agreement with motoneuronal hyperexcitability indicated by enhanced F-waves. Our data suggest that SOD1(G127X) motor axons undergo a state of membrane depolarization; however, during rapid motoneuron loss disease-specific nerve excitability measures are confounded by excitability changes in degenerating but still conducting axons. These findings should be considered in the interpretation of disease-stage-related nerve excitability changes in ALS.
Related JoVE Video
Clinical and electroencephalographic assessment of cefepime during treatment of nosocomial infections in neurological patients.
Cent Nerv Syst Agents Med Chem
PUBLISHED: 06-13-2011
Show Abstract
Hide Abstract
Objective: Cefepime neurotoxicity usually occurs in patients with renal impairment. The aim of this study was to evaluate the neurotoxicity of cefepime administered by continuous intravenous infusion during treatment of nosocomial infections in neurological patients with normal renal function. Methods: This was an open pilot study of neurological patients with infections caused by cefepime sensitive bacteria. Patients had baseline neurological assessment and electroencephalogram (EEG). Cefepime plasma concentrations were determined 48 hours after infusion was initiated and at end of treatment (EOT). Results: Eleven patients were included. These were diagnosed with a brain tumor (9), cerebrovascular disease (1) and polyneuropathy (1). Infections were surgical site infection in 5, clinically defined nosocomial pneumonia in 4, and bacterial meningitis associated to postoperative CSF fistula in 2. Gram-negative organisms were isolated in 10 patients. Cefepime dose was 2 g/day in 9 patients and 4 g/day in 2. Mean cefepime plasma concentration at 48h was 13.6 ± 2.0 µg/mL (range 4.6 to 24.5 µg/mL), at EOT was 11.9 ± 1.8 µg/mL (range 3.0 to18.9 µg/mL ). EEG interpreted by two experts showed at baseline alpha background rhythm in 5 and theta-alpha rhythm in 6 patients. On EEG at EOT background rhythm was alpha in 4 and theta-alpha in 7, one patient presented isolated sharp and slow wave activity. No mental status changes or seizures occurred and all infections resolved. Conclusion: Significant EEG change was observed in 1of 11 patients. A preserved mental status may correlate with cefepime safety in neurological patients with normal renal function during cefepime treatment.
Related JoVE Video
Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells.
Vet. Res.
PUBLISHED: 05-25-2011
Show Abstract
Hide Abstract
This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a(+)CD11R1(high) and CD4(+) cells from ileal Peyers patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response.
Related JoVE Video
HIV-1 infection and neurocognitive impairment in the current era.
Rev. Med. Virol.
PUBLISHED: 05-03-2011
Show Abstract
Hide Abstract
Brain HIV-1-infection may result in a syndrome of profound cognitive, behavioral and motor impairment known as AIDS dementia complex (ADC) in adults and HIV-related encephalopathy in children. Although the introduction of highly active antiretroviral therapy (HAART) has prolonged and improved the lives of infected individuals, it is clear that HAART does not provide complete protection against neurological damage in HIV/AIDS. HIV-1 associated dementia is a complex phenomenon, which could be the result of several mechanisms caused by those players using different intracellular signaling pathways. Understanding the causes of neurodegeneration during HIV-1 infection and the factors which certain individuals develop disease can provide researches on new therapeutic targets to positively affect disease outcomes. Controlling CNS viral replication with HAART is an essential primary approach, but it should be complemented with adjunctive CNS-directed therapeutics. Understanding the nature of HIV-1 infection within the CNS as well as inflammatory responses will ultimately lead to the elimination of HIV-associated neurocognitive disorders.
Related JoVE Video
Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges.
Int. Immunopharmacol.
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Lactic acid bacteria (LAB) are technologically and commercially important and have various beneficial effects on human health. Several studies have demonstrated that certain LAB strains can exert their beneficial effect on the host through their immunomudulatory activity. Although most research concerning LAB-mediated enhanced immune protection is focused on gastrointestinal tract pathogens, recent studies have centered on whether these immunobiotics might sufficiently stimulate the common mucosal immune system to provide protection to other mucosal sites as well. In this sense, LAB have been used for the development of probiotic foods with the ability to stimulate respiratory immunity, which would increase resistance to infections, even in immunocompromised hosts. On the other hand, the advances in the molecular biology of LAB have enabled the development of recombinant strains expressing antigens from respiratory pathogens that have proved effective to induce protective immunity. In this review we examine the current scientific literature concerning the use of LAB strains to prevent respiratory infections. In particular, we have focused on the works that deal with the capacity of probiotic and recombinant LAB to improve the immune response against Streptococcus pneumoniae. Research from the last decade demonstrates that LAB represent a promising resource for the development of prevention strategies against respiratory infections that could be effective tools for medical application.
Related JoVE Video
Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice.
Microbiol. Immunol.
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
The effect of Lactobacillus casei CRL 431 (Lc), when administered as a supplement to a repletion diet, on the resistance of malnourished mice to Candida albicans infection was studied. Weaned mice were malnourished by being given a protein-free diet (PFD) for 21 days. The malnourished mice were then fed a balanced conventional diet (BCD) for 7 days or BCD for 7 days with supplemental Lc on days 6 and 7 (BCD+Lc). Malnourished (MNC) and well-nourished (WNC) mice were used as controls. At the end of the treatments the mice were infected intraperitoneally with C. albicans. Animals that had received probiotics had improved survival and resistance against this infection compared to those in the BCD and MNC groups. The number and fungicidal activity of phagocytes, and the concentrations of tumor necrosis factor-?, interferon-? and interleukin-6 (IL-6), increased in blood and infected tissues in all experimental groups, but MNC mice showed lower concentrations than those in the WNC group. BCD and BCD+Lc mice showed higher concentrations of these variables than those in the MNC group, but only the BCD+Lc group presented values similar to the WNC mice. Malnutrition also impaired the production of IL-17 and IL-10 in response to infection. Both repletion treatments normalized IL-17 concentrations, but IL-10 in the BCD+Lc group was significantly higher than in WNC mice. The addition of L. casei to the repletion diet normalized the immune response against C. albicans, allowing efficient recruitment and activation of phagocytes, as well as effective release of pro-inflammatory cytokines. In addition, probiotic treatment induced an increase in IL-10 concentrations, which would have helped to prevent damage caused by the inflammatory response.
Related JoVE Video
Cleaning efficacy using two engine-driven systems versus manual instrumentation in curved root canals: a scanning electron microscopic study.
J Endod
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
This ex vivo study evaluated the cleanliness of curved root canal walls after chemomechanical instrumentation using two automated systems versus manual instrumentation while using a standardized irrigation protocol.
Related JoVE Video
TNF-? contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT.
PLoS ONE
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
There is increasing evidence that soluble factors in inflammatory central nervous system diseases not only regulate the inflammatory process but also directly influence electrophysiological membrane properties of neurons and astrocytes. In this context, the cytokine TNF-? (tumor necrosis factor-?) has complex injury promoting, as well as protective, effects on neuronal viability. Up-regulated TNF-? expression has also been found in various neurodegenerative diseases such as cerebral malaria, AIDS dementia, Alzheimers disease, multiple sclerosis, and stroke, suggesting a potential pathogenic role of TNF-? in these diseases as well. We used the neuroblastoma cells SK-N-MC. Transcriptional activity was measured using luciferase reporter gene assays by using lipofectin. We performed cotransfection experiments of NFAT (nuclear factor of activated T cells) promoter constructed with a dominant negative version of NFAT (dn-NFAT). Cell death was performed by MTT (3-(4,5-dimethylthiazol-2-yl)5,5-diphenyltetrazolium bromide) and TUNEL assays. NFAT translocation was confirmed by Western blot. Involvement of NFAT in cell death was assessed by using VIVIT. P53, Fas-L, caspase-3, and caspase-9 expressions were carried out by Western blot. The mechanisms involved in TNF-?-induced cell death were assessed by using microarray analysis. TNF-? causes neuronal cell death in the absence of glia. TNF-? treatment results in nuclear translocation of NFAT through activation of calcineurin in a Ca(2+) independent manner. We demonstrated the involvement of FasL/Fas, cytochrome c, and caspase-9 but the lack of caspase-3 activation. NB cell death was absolutely reverted in the presence of VIVIT, and partially diminished by anti-Fas treatment. These data demonstrate that TNF-? promotes FasL expression through NFAT activation in neuroblastoma cells and this event leads to increased apoptosis through independent caspase-3 activation.
Related JoVE Video
Development of a fermented goats milk containing Lactobacillus rhamnosus: in vivo study of health benefits.
J. Sci. Food Agric.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Lactobacillus rhamnosus CRL1505, a strain of goats milk origin, is able to stimulate mucosal immunity and protect immunocompetent mice from intestinal and respiratory infections.
Related JoVE Video
[Consent in DNA sample harvesting. With special reference to processes with minors (Part I)].
Rev Derecho Genoma Hum
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
At present, there is no doubt as to the enormous importance of genetic testing for DNA markers in investigating crimes and identifying the guilty parties. We consider it unnecessary to sing the virtues of this celebrated method, which is now generally permitted by our courts, and which is forcing us to resolve diverse matters that the scarcity and insufficiency of current legislation is unable to settle. The objective of this paper is to analyse the consent given by the affected party to having genetic samples taken, as well as the inclusion of their profiles into police databases afterwards. This consent appears to be the main source of legitimacy in these scenarios. However, in order for it to take full effect, certain requirements must be met, especially in relation to the affected party giving informed consent. This means that in order for the consent to be considered valid, the victim must be informed of the legal scope and consequences that may arise from the test, as well as the legal consequences that may arise from their refusal. In the case of children, debate is needed as to whether they can be asked to give a genetic sample, if court authorisation or permission from their legal representatives or even their lawyer is always necessary or whether the informed, voluntary consent of the child might be sufficient, also whether police databases can or should have access to these samples.
Related JoVE Video
Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons.
Brain
PUBLISHED: 12-17-2010
Show Abstract
Hide Abstract
Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild demyelinating adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined threshold tracking excitability studies with conventional nerve conduction studies, behavioural studies using rotor-rod measurements, and histological measures to assess membrane dysfunction and its progression in protein zero deficient homozygous mutants as compared with age-matched wild-type controls. The involvement of Na(V)1.8 was investigated by pharmacologic block using the subtype-selective Na(V)1.8 blocker A-803467 and chronically in Na(V)1.8 knock-outs. We found that in the context of dysmyelination, abnormal potassium ion currents and membrane depolarization, the ectopic Na(V)1.8 channels further impair the motor axon excitability in protein zero deficient homozygous mutants to an extent that precipitates conduction failure in severely affected axons. Our data suggest that a Na(V)1.8 channelopathy contributed to the poor motor function of protein zero deficient homozygous mutants, and that the conduction failure was associated with partially reversible reduction of the electrically evoked muscle response and of the clinical function as indicated by the partial recovery of function at rotor-rod measurements. As a consequence of these findings of partially reversible dysfunction, we propose that the Na(V)1.8 voltage gated sodium channel should be considered as a novel therapeutic target for Charcot-Marie-Tooth disease.
Related JoVE Video
Retinoic acid receptor modulators: a perspective on recent advances and promises.
Expert Opin Ther Pat
PUBLISHED: 11-20-2010
Show Abstract
Hide Abstract
Retinoids are currently used in the clinic for the treatment of skin diseases and acute promielocytic leukemia and are known to contribute to early development and organogenesis in embryo and throughout life. Most of these activities are primarily due to the binding of the retinoid to the retinoic acid receptors (RARs, subtypes ?, ? and ?). Ligand modulates, via allosteric conformational changes, the ability of RARs to interact with different sets of co-regulators. Structure-based insights on the ligand-binding domain of the ligand-bound RARs have clearly linked retinoid function to co-activator (CoA) recruitment for agonists, CoA dissociation for antagonists and corepressor stabilization for inverse agonists.
Related JoVE Video
Sealing properties of a calcium aluminate luting agent.
Am J Dent
PUBLISHED: 07-09-2010
Show Abstract
Hide Abstract
To determine the self-sealing properties of Ceramir C&B, a new calcium aluminate-based luting material and to compare it to two commercially available cements, using a bacterial model system.
Related JoVE Video
Effect of immediate and delayed post space preparation on coronal bacterial microleakage in teeth obturated with a methacrylate-based sealer with and without accelerator.
Am J Dent
PUBLISHED: 07-09-2010
Show Abstract
Hide Abstract
To investigate the sealing properties of root fillings with resin-coated gutta-percha cones and a methacrylate-based resin endodontic sealer with and without an accelerator component in root canals subjected to immediate or delayed post space preparation.
Related JoVE Video
Related JoVE Video
Resistance of young mice to pneumococcal infection can be improved by oral vaccination with recombinant Lactococcus lactis.
J Microbiol Immunol Infect
PUBLISHED: 03-29-2010
Show Abstract
Hide Abstract
Oral immunization with Lactococcus lactis PppA (LPA+), a recombinant strain that is able to express the pneumococcal protective protein A, can improve the resistance to respiratory challenge with Streptococcus pneumoniae in adult mice. In this study, we investigated whether oral immunization protocols using LPA+ are able to protect young mice against pneumococcal respiratory infection.
Related JoVE Video
A unique secondary-structure switch controls constitutive gene repression by retinoic acid receptor.
Nat. Struct. Mol. Biol.
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
In the absence of ligand, some nuclear receptors, including retinoic acid receptor (RAR), act as transcriptional repressors by recruiting corepressor complexes to target genes. This constitutive repression is crucial in metazoan reproduction, development and homeostasis. However, its specific molecular determinants had remained obscure. Using structural, biochemical and cell-based assays, we show that the basal repressive activity of RAR is conferred by an extended beta-strand that forms an antiparallel beta-sheet with specific corepressor residues. Agonist binding induces a beta-strand-to-alpha-helix transition that allows for helix H11 formation, which in turn provokes corepressor release, repositioning of helix H12 and coactivator recruitment. Several lines of evidence suggest that this structural switch could be implicated in the intrinsic repressor function of other nuclear receptors. Finally, we report on the molecular mechanism by which inverse agonists strengthen corepressor interaction and enhance gene silencing by RAR.
Related JoVE Video
Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections.
Bioeng Bugs
PUBLISHED: 03-16-2010
Show Abstract
Hide Abstract
Most studies of Lactococcus lactis as delivery vehicles of pneumococcal antigens are focused on the effectiveness of mucosal recombinant vaccines against Streptococcus pneumoniae in animal models. At present, there are three types of pneumococcal vaccines: capsular polysaccharide pneumococcal vaccines (PPV), protein-polysaccharide conjugate pneumococcal vaccines (PCV) and protein-based pneumococcal vaccines (PBPV). Only PPV and PCV have been licensed. These vaccines, however, do not represent a definitive solution. Novel, safe and inexpensive vaccines are necessary, especially in developing countries. Probiotic microorganisms such as lactic acid bacteria (LAB) are an interesting alternative for their use as vehicles in pneumococcal vaccines due to their GRAS (Generally Recognized As Safe) status. Thus, the adjuvanticity of Lactococcus lactis by itself represents added value over the use of other bacteria, a question dealt with in this review. In addition, the expression of different pneumococcal antigens as well as the use of oral and nasal mucosal routes of administration of lactococcal vaccines is considered. The advantages of nasal live vaccines are evident; nonetheless, oral vaccines can be a good alternative when the adequate dose is used. Another point addressed here is the use of live versus inactivated vaccines. In this sense, few researchers have focused on inactivated strains to be used as vaccines against pneumoccoccus. The immunogenicity of live vaccines is better than the one afforded by inactivated ones; however, the probiotic-inactivated vaccine combination has improved this matter considerably. The progress made so far in the protective immune response induced by recombinant vaccines, the successful trials in animal models and the safety considerations of their application in humans suggest that the use of recombinant vaccines represents a good short-term option in the control of pneumococcal diseases.
Related JoVE Video
Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk: impact on intestinal and respiratory infections.
Int. J. Food Microbiol.
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
The immune stimulation induced by Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) on the resistance to infection with an intestinal pathogen (Salmonella typhimurium) and a respiratory pathogen (Streptococcus pneumoniae) was studied in swiss-albine mice experimental models. The cytokine profiles that induced the innate and specific immune response in both infectious processes were investigated. Both strains were able to improve resistance against the intestinal pathogen. Only Lr05 was able to induce a significant decrease in the number of S. pneumoniae in the lung, prevent its dissemination into the blood and induce a significant increase in Th1 (INF-gamma) and Th2 (IL-6, IL-4 and IL-10) cytokine levels in the bronchoalveolar lavages (BAL). The changes in the cytokines profiles in BAL were associated with an increase in the number and activity of phagocytic cells and with the increase in specific antibodies in serum and BAL, which would explain the increased resistance to the challenge. The administration of Lr06 did not induce significant effects at the respiratory mucosal level. The results described in the present paper showed that certain LAB strains can share certain functional properties, although some of them can perform a functional role better than others, so that it is important to perform careful studies on specific strains, according to their therapeutic use.
Related JoVE Video
Nuclear factor-kappaB activation regulates cyclooxygenase-2 induction in human astrocytes in response to CXCL12: role in neuronal toxicity.
J. Neurochem.
PUBLISHED: 02-17-2010
Show Abstract
Hide Abstract
Neurodegenerative and neuroinflammatory disorders are commonly associated with local chemokine release. In other way, emerging data indicate that the prostaglandin E2 (PGE(2)), one of the major prostaglandins produced in the brain, play a central role in several pathological diseases. In this study, we investigated the relationship between CXCL12, cyclooxygenase (COX)-2 and PGE(2) in human brain cells. CXCL12 induced COX-2 and secretion of PGE(2) in a dose-dependent manner in human astrocytes. This induction was abolished by treatment with pertussis toxin and AMD3100, confirming the role of CXCR4 signaling. The nuclear factor-kappaB involvement was confirmed by using pyrrolidine dithiocarbamate, and with transient transfection assays. Over-expression of inhibitory proteins of nuclear factor-kappaB abrogated COX-2 induction, and CXCL12 induced p65/relA translocation. Culture supernatants from CXCL12-treated astrocytes reduced viability of neuroblastoma cells, and COX inhibitors abrogated this toxicity. Therefore, the relationship between chemokines and PGs could differentially influence the pathogenic network responsible for neurodegeneration.
Related JoVE Video
Non-steroidal anti-inflammatory drugs increase the antiretroviral activity of nucleoside reverse transcriptase inhibitors in HIV type-1-infected T-lymphocytes: role of multidrug resistance protein 4.
Antivir. Ther. (Lond.)
PUBLISHED: 12-25-2009
Show Abstract
Hide Abstract
The multidrug resistance proteins (MRPs) form a subfamily within the ATP binding cassette transporters that confer resistance to a variety of structurally unrelated compounds. MRP4 has been reported to transport antiretroviral drugs out of cells in an active process. Although the main therapeutic effects of non-steroidal anti-inflammatory drugs (NSAIDs) are their ability to inhibit cyclooxygenase activity, in recent years, some pharmacological effects independent of this action have been described, such as inhibition of the activity of MRP4.
Related JoVE Video
Increased adiposity in the retinol saturase-knockout mouse.
FASEB J.
PUBLISHED: 11-25-2009
Show Abstract
Hide Abstract
The enzyme retinol saturase (RetSat) catalyzes the saturation of all-trans-retinol to produce (R)-all-trans-13,14-dihydroretinol. As a peroxisome proliferator-activated receptor (PPAR) gamma target, RetSat was shown to be required for adipocyte differentiation in the 3T3-L1 cell culture model. To understand the mechanism involved in this putative proadipogenic effect of RetSat, we studied the consequences of ablating RetSat expression on retinoid metabolism and adipose tissue differentiation in RetSat-null mice. Here, we report that RetSat-null mice have normal levels of retinol and retinyl palmitate in liver, serum, and adipose tissue, but, in contrast to wild-type mice, are deficient in the production of all-trans-13,14-dihydroretinol from dietary vitamin A. Despite accumulating more fat, RetSat-null mice maintained on either low-fat or high-fat diets gain weight and have similar rates of food intake as age- and gender-matched wild-type control littermates. This increased adiposity of RetSat-null mice is associated with up-regulation of PPARgamma, a key transcriptional regulator of adipogenesis, and also its downstream target, fatty acid-binding protein 4 (FABP4/aP2). On the basis of these results, we propose that dihydroretinoids produced by RetSat control physiological processes that influence PPARgamma activity and regulate lipid accumulation in mice.-Moise, A. R., Lobo, G. P., Erokwu, B., Wilson, D. L., Peck, D., Alvarez, S., Domínguez, M., Alvarez, R., Flask, C. A., de Lera, A. R., von Lintig, J., Palczewski, K. Increased adiposity in the retinol saturase-knockout mouse.
Related JoVE Video
Enhanced immune response to pneumococcal infection in malnourished mice nasally treated with heat-killed Lactobacillus casei.
Microbiol. Immunol.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
The present study analyzed whether nasal administration of viable and non-viable Lactobacillus casei CRL 431 to immunocompromised mice was capable of increasing resistance against Streptococcus pneumoniae. Weaned mice were malnourished after consuming a PFD for 21 days. Malnourished mice were fed a BCD for 7 days or BCD for 7 days with viable or non-viable L. casei nasal treatments on day 6 and day 7 (BCD+LcV and BCD+LcN, respectively). The MNC group received PFD whereas the WNC mice consumed BCD. MNC mice showed greater lung colonization, more severe lung injuries, impaired leukocyte recruitment and reduced antibodies and cytokine production when compared with WNC mice. Administration of L. casei increased the resistance of malnourished mice to the infection. Both BCD+LcV and BCD+LcN treatments prevented the dissemination of the pathogen to the blood and induced its lung clearance. BCD+LcV or BCD+LcN groups showed improved production of TNF-alpha and activity of phagocytes in the respiratory tract, an effect that was not observed in the BCD control group. In addition, IL-4 and IL-10 were significantly increased in BCD+LcV and BCD+LcN groups, which correlated with the increase in the levels of specific respiratory IgA. The nasal treatments with L. casei were also effective at stimulating the production of specific IgG at both the systemic and the respiratory levels. The comparative study between the viable and the non-viable bacteria demonstrated that viability would be an important factor to achieve maximum protective effects. However, the results from this study suggest that heat-killed lactic acid bacteria are also effective in the immunomodulation of the systemic and respiratory immune system.
Related JoVE Video
Lactobacillus casei: influence on the innate immune response and haemostatic alterations in a liver-injury model.
Can. J. Microbiol.
PUBLISHED: 09-22-2009
Show Abstract
Hide Abstract
Lactobacilllus casei CRL 431 has the ability to modulate the local and systemic immune responses, which are significantly involved in liver injury caused by hepatotoxins. This work was conducted to determine whether L. casei has a preventive effect on the hepatic damage undergone during an acute liver injury (ALI).
Related JoVE Video
Activation of retinoic acid receptors by dihydroretinoids.
Mol. Pharmacol.
PUBLISHED: 09-21-2009
Show Abstract
Hide Abstract
Vitamin A-derived metabolites act as ligands for nuclear receptors controlling the expression of a number of genes. Stereospecific saturation of the C(13)-C(14) double bond of all-trans-retinol by the enzyme, retinol saturase (RetSat), leads to the production of (R)-all-trans-13,14-dihydroretinol. In liver and adipose tissue, expression of RetSat is controlled by peroxisome proliferator-activated receptors (PPAR) alpha and gamma, respectively. Expression of RetSat in adipose tissue is also required for PPARgamma activation and adipocyte differentiation, but the involved mechanism is poorly understood. In this study, we examined the potential of (R)-all-trans-13,14-dihydroretinol and its metabolites to control gene transcription via nuclear receptors. Using a cell-based transactivation assay to screen 25 human nuclear receptors for activation, we found that dihydroretinoids have a narrow transcriptional profile limited primarily to activation of retinoic acid receptors (RARs). Although (R)-all-trans-13,14-dihydroretinoic acid exhibited comparable potency to retinoic acid in promoting the interaction of RARs with a coactivator peptide in vitro, its potency in activating RAR-controlled genes in cell-based assays was much lower than that of retinoic acid. As an explanation for the weak RAR agonist activity of dihydroretinoids in cell-based assays, we propose that both delivery of ligand to the nucleus and RAR activation favor retinoic acid over dihydroretinoids. Discrimination between the cognate ligand, retinoic acid, and close analogs such as dihydroretinoids, occurs at multiple levels and may represent a mechanism to modulate retinoid-dependent physiological processes.
Related JoVE Video
Yogurt: effect on leukocytes and blood coagulation in an acute liver injury model.
J Med Food
PUBLISHED: 09-09-2009
Show Abstract
Hide Abstract
This study determined whether cow or goat yogurt administration has a preventive effect on the hepatic damage undergone during an acute liver injury. Acute liver injury was induced by an intraperitoneal injection of d-galactosamine. Groups of mice were fed with cow or goat yogurt for 2 days or 7 days before the d-galactosamine injection. Blood and liver samples were obtained 12 hours after d-galactosamine inoculation. d-Galactosamine induced an increase in serum amino-transaminases, a reduction in the number of blood leukocytes, an enhancement in neutrophil myeloperoxidase activity, a recruitment of leukocytes toward the liver, an increase in cell death, and an alteration in prothrombin time, activated partial thromboplastin time, and fibrinogen levels. Treatment with cow or goat yogurt was effective at increasing leukocyte number and decrease myeloperoxidase activity. We also observed a decrease in leukocyte accumulation in the liver and a reduction in cell death. Activated partial thromboplastin time and fibrinogen were normalized, but prothrombin time only showed an improvement without reaching normal values. Cow or goat yogurts were effective at protecting against an experimental acute liver injury, especially when administered for 7 days.
Related JoVE Video
C3 halogen and c8 substituents on stilbene arotinoids modulate retinoic Acid receptor subtype function.
ChemMedChem
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
The synthesis and biological evaluation of the entire series of C3-halogenated derivatives and bulkier substituents at the C8 position of the parent stilbene-based RARbeta-selective agonist BMS641 4 c was undertaken. The synthesis uses an E-selective Horner-Wadsworth-Emmons (HWE) condensation of C8-substituted C5-dimethyl dihydronaphthaldehyde and the benzylic phosphonates derived from the C3-halogenated benzoates to construct the stilbene skeleton. Transactivation studies revealed the synergistic effect of small halogen atoms at C3 (F, Cl) and the moderately bulky phenyl group at C8 (in 4 b and 4 c) to achieve RARbeta selectivity. Our results, supported by computational studies, provide a structural rationale for the mixed agonist-antagonist activities of these arotinoids, which are potent agonists of the RARbeta subtype and antagonists of the RARalpha paralogue. Moreover, transitions from partial agonists to inverse agonists and antagonists can be accomplished with the incorporation of the same halogen atoms into the structures of known modulators BMS701 (5 a) and BMS493 (6 a), which have bulkier substituents than phenyl (p-tolyl and phenylethynyl, respectively) at C8. Conversely, incorporation of halogen atoms in 6 a converted the ligand from an RARbeta inverse agonist (6 b) to an antagonist (6 c) or an agonist (6 d). Amazingly, 6 a-c commonly acted as inverse agonists for RARalpha, while 6 d and 6 e acted as regular RARalpha antagonists, not affecting co-repressor interaction. In the case of the mixed agonist/antagonist 5 a, C3-halogenation yields inverse RARalpha and RARbeta agonists (5 b-d) with the exception of iodinated 5 e, which is a regular antagonist for both these receptors. Because RARbeta gene expression is frequently deleted or epigenetically silenced in several tumor cells, the novel repertoire of receptor and function-selective RAR agonists, mixed agonist/antagonists, regular antagonists, and inverse agonists will be useful in the elucidation of the mechanism of tumor suppression by retinoids.
Related JoVE Video
Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.
Dev. Biol.
PUBLISHED: 05-31-2009
Show Abstract
Hide Abstract
Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation.
Related JoVE Video
Retinoic acid and Wnt/beta-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus.
Dev. Biol.
PUBLISHED: 05-26-2009
Show Abstract
Hide Abstract
A role for Wnt/beta-catenin signaling in axial patterning has been demonstrated in animals as basal as cnidarians, while roles in axial patterning for retinoic acid (RA) probably evolved in the deuterostomes and may be chordate-specific. In vertebrates, these two pathways interact both directly and indirectly. To investigate the evolutionary origins of interactions between these two pathways, we manipulated Wnt/beta-catenin and RA signaling in the basal chordate amphioxus during the gastrula stage, which is the RA-sensitive period for anterior/posterior (A/P) patterning. The results show that Wnt/beta-catenin and RA signaling have distinctly different roles in patterning the A/P axis of the amphioxus gastrula. Wnt/beta-catenin specifies the identity of the ends of the embryo (high Wnt = posterior; low Wnt = anterior) but not intervening positions. Thus, upregulation of Wnt/beta-catenin signaling induces ectopic expression of posterior markers at the anterior tip of the embryo. In contrast, RA specifies position along the A/P axis, but not the identity of the ends of the embryo-increased RA signaling strongly affects the domains of Hox expression along the A/P axis but has little or no effect on the expression of either anterior or posterior markers. Although the two pathways may both influence such things as specification of neuronal identity, interactions between them in A/P patterning appear to be minimal.
Related JoVE Video
Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
Congenital diaphragmatic hernia (CDH) is a frequently occurring source of severe neonatal respiratory distress. It has been hypothesized that abnormal retinoid signaling contributes to the etiology of this developmental anomaly. Here, we use rodent models toward specifically understanding the role of retinoid signaling in the developing diaphragm and how its perturbation is a common mechanism in drug-induced CDH. This includes monitoring of retinoic acid (RA) response element (RARE) activation with RARE-lacZ mice, RA supplementation studies, systematic analyses of the expression profile of key elements in the RA signaling pathway within the developing diaphragm, and the in utero delivery of a RA receptor (RAR) antagonist. These data demonstrate the timing of RARE perturbation by CDH-inducing teratogens and the efficacy of RA supplementation. Furthermore, a detailed profile of retinoid binding proteins, synthetic enzymes, and retinoid receptors within primordial diaphragm cells was obtained. The expression profile of RAR-alpha was particularly striking in regard to its overlap with the regions of primordial diaphragm affected in multiple CDH models. Blocking of RAR signaling with the pan-RAR antagonist BMS493 induced a very high degree of CDH, with a marked left-right sidedness that depended on the timing of drug delivery. Collectively, these data demonstrate that retinoid signaling is essential for normal diaphragm development, providing further support to the hypothesis that abnormalities related to the retinoid signaling pathway cause diaphragmatic defects. This study also yielded a novel experimental model that should prove particularly useful for further studies of CDH.
Related JoVE Video
Retinoid receptor subtype-selective modulators through synthetic modifications of RARgamma agonists.
Bioorg. Med. Chem.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
A series of retinoids designed to interfere with the repositioning of H12 have been synthesized to identify novel RARgamma antagonists based on the structure of known RARgamma agonists. The transcriptional activities of the novel ligands were revealed by cell-based reporting assays, using engineered cells containg RAR subtype-selective fusions of the RAR ligand-binding domains with the yeast GAL4 activator DNA-binding domain and the cognate luciferase reporter gene. Whereas none of the ligands exhibited features of a selective RARgamma antagonist, some of them are endowed with interesting activities. In particular 24a acts as a pan-RAR agonist that induces at high concentration a higher transactivation potential on RARalpha than TTNPB and synergizes at low concentration with TTNPB-bound RARalpha but not RARbeta or RARgamma. Similarly, 24c synergizes with TTNPB-bound RARgamma and exhibits RARalpha,beta antagonist activity. Compounds 24b and 25b are strong RARalpha,beta-selective antagonists without agonist or antagonist activities for RARgamma. Compounds 24b and 24c display weak RXR antagonist activity. In addition several pan-antagonists and partial agonist/antagonists have been defined.
Related JoVE Video
Lactobacillus casei modulates the inflammation-coagulation interaction in a pneumococcal pneumonia experimental model.
J Inflamm (Lond)
PUBLISHED: 04-28-2009
Show Abstract
Hide Abstract
We have previously demonstrated that Lactobacillus casei CRL 431 administration improved the resistance to pneumococcal infection in a mouse model.
Related JoVE Video
Geographic variation in the prevalence of Kaposi sarcoma-associated herpesvirus and risk factors for transmission.
J. Infect. Dis.
PUBLISHED: 04-09-2009
Show Abstract
Hide Abstract
The aim of the present study was to estimate the prevalence of Kaposi sarcoma-associated herpesvirus (KSHV) in the female general population, to define geographic variation in and heterosexual transmission of the virus.
Related JoVE Video
Growth factor-antagonized rexinoid apoptosis involves permissive PPARgamma/RXR heterodimers to activate the intrinsic death pathway by NO.
Cancer Cell
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Growth factor (GF) deprivation and/or blocking of cognate signaling can induce apoptosis and is the basis of several cancer treatment paradigms. We observed that RXR agonists (rexinoids) induce apoptosis of tumor cells when GF support is abrogated. This "rexinoid apoptosis" involves activation of both iNOS and eNOS by RXR-PPARgamma and results in production of apoptogenic NO. IGF/EGF-induced IGF receptor 1-mediated MAP kinase blocks rexinoid apoptosis by RXR phosphorylation. Combining rexinoids with the MAPK inhibitor U0126 induced apoptosis in human cancer cells in vitro and ex vivo and blocked xenograft growth in vivo. Our results suggest a regulatory mechanism in which GF signaling antagonizes RXR-PPARgamma-mediated default apoptosis to sustain cell life.
Related JoVE Video
Efficacy of the NaviTip FX irrigation needle in removing post instrumentation canal smear layer and debris in curved root canals.
J Endod
PUBLISHED: 03-21-2009
Show Abstract
Hide Abstract
This study evaluated the effectiveness of the NaviTip FX (Ultradent Products Inc, South Jordan, UT), a 30-gauge brush-covered irrigation needle, in removing debris and smear layer in vitro.
Related JoVE Video
Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes.
J. Cell. Sci.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
The human immunodeficiency virus 1 (HIV-1) envelope regulates the initial attachment of viral particles to target cells through its association with CD4 and either CXCR4 or CCR5. Although F-actin is required for CD4 and CXCR4 redistribution, little is known about the molecular mechanisms underlying this fundamental process in HIV infection. Using CD4(+) CXCR4(+) permissive human leukemic CEM T cells and primary lymphocytes, we have investigated whether HIV-1 Env might promote viral entry and infection by activating ERM (ezrin-radixin-moesin) proteins to regulate F-actin reorganization and CD4/CXCR4 co-clustering. The interaction of the X4-tropic protein HIV-1 gp120 with CD4 augments ezrin and moesin phosphorylation in human permissive T cells, thereby regulating ezrin-moesin activation. Moreover, the association and clustering of CD4-CXCR4 induced by HIV-1 gp120 requires moesin-mediated anchoring of actin in the plasma membrane. Suppression of moesin expression with dominant-negative N-moesin or specific moesin silencing impedes reorganization of F-actin and HIV-1 entry and infection mediated by the HIV-1 envelope protein complex. Therefore, we propose that activated moesin promotes F-actin redistribution and CD4-CXCR4 clustering and is also required for efficient X4-tropic HIV-1 infection in permissive lymphocytes.
Related JoVE Video
Functional change of the auditory cortex related to brain serotonergic neurotransmission in type 1 diabetic adolescents with and without depression.
World J. Biol. Psychiatry
PUBLISHED: 03-12-2009
Show Abstract
Hide Abstract
The aim of this study was to determine whether diabetic patients who were depressed present a decrease of brain serotonergic activity compared to diabetic patients without depression or patients with depression but without diabetes. Determination was made with plasma free fraction of L-tryptophan (FFT) and intensity-dependent auditory-evoked potentials (IDAEPs). Thirty-seven adolescents were studied (20 type 1 diabetic subjects: nine with depression, 11 without depression), nine controls and eight subjects with only depression. FFT, glucose, glycated haemoglobin, free fatty acids, albumin and IDAEPs were determined. All diabetic patients showed a significant decrease of FFT. The group diabetic subjects with depression presented a steeper slope of the amplitude-intensity function of N1/P2 component, suggesting a higher reactivity of the auditory cortex in comparison to diabetic subjects without depression, subjects with only depression, and controls. This was associated with lower plasma FFT. Diabetic subjects with depression had a deficiency of metabolic control due to poor treatment adherence. These findings suggest an enhanced deterioration of brain serotonergic neurotransmission in diabetic subjects with depression with abnormal responses of the auditory cortex. The N1/P2 component of IDAEP is proposed as a non-invasive indicator of brain serotonergic tone that differentiates depressed from non-depressed diabetic patients.
Related JoVE Video
Motor axon excitability during Wallerian degeneration.
Brain
PUBLISHED: 03-11-2009
Show Abstract
Hide Abstract
Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial latent phase, action potential propagation and structural integrity of the distal segment are maintained. The aim of this study was to investigate in vivo the changes in membrane function of motor axons during the latent phase of Wallerian degeneration. Multiple indices of axonal excitability of the tibial nerve at ankle distal to axotomy were monitored by threshold-tracking. The plantar compound muscle action potentials (CMAPs) were recorded under anesthesia in three animal models: 8-week-old wild-type mice, 8-week-old slow Wallerian degeneration mutant mice and 3-year-old cats. We found that the progressive decrease in CMAP following crush injury was associated with slowing of conduction and marked abnormalities in excitability: increased peak threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus, enhanced superexcitability during the recovery cycle and increased rheobase. In the context of decreased current-threshold slope and increased chronaxie, these deviations in excitability were consistent with a decrease in voltage-dependent Na(+) and K(+) conductances. Our data suggest that during the latent phase of Wallerian degeneration there is a gradual disruption in ion-channel function leading to abnormalities in excitability that precede conduction failure and axonal disintegration. These findings may have clinical relevance and should be taken into consideration in interpretation of the specificity of abnormalities in excitability measures in disorders characterized by axonal degeneration.
Related JoVE Video
Aldo-keto reductases from the AKR1B subfamily: retinoid specificity and control of cellular retinoic acid levels.
Chem. Biol. Interact.
PUBLISHED: 02-28-2009
Show Abstract
Hide Abstract
NADP(H)-dependent cytosolic aldo-keto reductases (AKRs) have been added to the group of enzymes which contribute to oxidoreductive conversions of retinoids. Recently, we found that two members from the AKR1B subfamily (AKR1B1 and AKRB10) were active in the reduction of all-trans- and 9-cis-retinaldehyde, with K(m) values in the micromolar range, but with very different k(cat) values. With all-trans-retinaldehyde, AKR1B10 shows a much higher k(cat) value than AKR1B1 (18 min(-1)vs. 0.37 min(-1)) and a catalytic efficiency comparable to that of the best retinaldehyde reductases. Structural, molecular dynamics and site-directed mutagenesis studies on AKR1B1 and AKR1B10 point that subtle differences at the entrance of their retinoid-binding site, especially at position 125, are determinant for the all-trans-retinaldehyde specificity of AKR1B10. Substitutions in the retinoid cyclohexene ring, analyzed here further, also influence such specificity. Overall it is suggested that the rate-limiting step in the reaction mechanism with retinaldehyde differs between AKR1B1 and AKR1B10. In addition, we demonstrate here that enzymatic activity of AKR1B1 and AKR1B10 lowers all-trans- and 9-cis-retinoic acid-dependent trans-activation in living cells, indicating that both enzymes may contribute to pre-receptor regulation of retinoic acid and retinoid X nuclear receptors. This result supports that overexpression of AKR1B10 in cancer (an updated review on this topic is included) may contribute to dedifferentiation and tumor development.
Related JoVE Video
[Risk factors for falls amongst older people living in nursing home. A cohort study].
Rev Esp Geriatr Gerontol
PUBLISHED: 02-25-2009
Show Abstract
Hide Abstract
To determine factors associated with falls in institutionalized elderly.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.